
Hindawi Publishing Corporation
Boundary Value Problems
Volume 2010, Article ID 570932, 8 pages
doi:10.1155/2010/570932

Research Article
Nodal Solutions for a Class of Fourth-Order
Two-Point Boundary Value Problems

Jia Xu1,2 and XiaoLing Han1

1 Department of Mathematics, Northwest Normal University, Lanzhou 730070, China
2 College of Physical Education, Northwest Normal University, Lanzhou 730070, China

Correspondence should be addressed to Jia Xu, xujia@nwnu.edu.cn

Received 18 February 2010; Accepted 27 April 2010

Academic Editor: Irena Rachůnková
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We consider the fourth-order two-point boundary value problem u′′′′ +Mu = λh(t)f(u), 0 < t < 1,
u(0) = u(1) = u′(0) = u′(1) = 0, where λ ∈ R is a parameter, M ∈ (−π4, π4/64) is given constant,
h ∈ C([0, 1], [0,∞)) with h(t)/≡ 0 on any subinterval of [0, 1], f ∈ C(R,R) satisfies f(u)u > 0 for
all u/= 0, and limu→−∞f(u)/u = 0, limu→+∞f(u)/u = f+∞, limu→ 0f(u)/u = f0 for some f+∞, f0 ∈
(0,+∞). By using disconjugate operator theory and bifurcation techniques, we establish existence
and multiplicity results of nodal solutions for the above problem.

1. Introduction

The deformations of an elastic beam in equilibrium state with fixed both endpoints can be
described by the fourth-order ordinary differential equation boundary value problem

u′′′′ = λh(t)f(u), 0 < t < 1,

u(0) = u(1) = u′(0) = u′(1) = 0,
(1.1)

where f : R → R is continuous, λ ∈ R is a parameter. Since the problem (1.1) cannot
transform into a system of second-order equation, the treatment method of second-order
system does not apply to the problem (1.1). Thus, existing literature on the problem (1.1) is
limited. In 1984, Agarwal and chow [1] firstly investigated the existence of the solutions of the
problem (1.1) by contraction mapping and iterative methods, subsequently, Ma and Wu [2]
and Yao [3, 4] studied the existence of positive solutions of this problem by the Krasnosel’skii
fixed point theorem on cones and Leray-Schauder fixed point theorem. Especially, when
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h(t) ≡ 0, Korman [5] investigated the uniqueness of positive solutions of the problem (1.1)
by techniques of bifurcation theory. However, the existence of sign-changing solution for this
problem have not been discussed.

In this paper, applying disconjugate operator theory and bifurcation techniques, we
consider the existence of nodal solution of more general the problem:

u′′′′ +Mu = λh(t)f(u), 0 < t < 1,

u(0) = u(1) = u′(0) = u′(1) = 0,
(1.2)

under the assumptions:

(H1) λ ∈ R is a parameter, M ∈ (−π4, π4/64) is given constant,

(H2) h ∈ C([0, 1], [0,∞)) with h(t)/≡ 0 on any subinterval of [0, 1],

(H3) f ∈ C(R,R) satisfies f(u)u > 0 for all u/= 0, and

lim
u→−∞

f(u)
u

= 0, lim
u→+∞

f(u)
u

= f+∞, lim
u→ 0

f(u)
u

= f0 (1.3)

for some f+∞, f0 ∈ (0,∞).

However, in order to use bifurcation technique to study the nodal solutions of the
problem (1.2), we firstly need to prove that the generalized eigenvalue problem

u′′′′ +Mu = μ˜h(t)u, 0 < t < 1,

u(0) = u(1) = u′(0) = u′(1) = 0
(1.4)

(where ˜h satisfies (H2)) has an infinite number of positive eigenvalues

μ1 < μ2 < · · · < μk < μk+1 < · · · , (1.5)

and each eigenvalue corresponding an essential unique eigenfunction ψk which has exactly
k − 1 simple zeros in (0, 1) and is positive near 0. Fortunately, Elias [6] developed a theory on
the eigenvalue problem

Ly + λ̂h(t)y = 0,
(Liy

)

(a) = 0, i ∈ {i1, . . . , ik},
(Ljy

)

(b) = 0, j ∈ {

j1, . . . , jn−k
}

,

(1.6)

where

L0y = ρ0y,

Liy = ρi
(Li−1y

)′
, i = 1, . . . , n,

Ly = Lny,

(1.7)
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and ρi ∈ Cn−i[a, b] with ρi > 0 (i = 0, 1, . . . , n) on [a, b]. L0y, . . . ,Ln−1y are called the quasi-
derivatives of y(t). To apply Elias’s theory, we have to prove that (1.4) can be rewritten to the
form of (1.6), that is, the linear operator

L[u] := u′′′′ +Mu (1.8)

has a factorization of the form

L[u] = l4

(

l3
(

l2
(

l1(l0u)
′)′
)′)′

(1.9)

on [0, 1], where li ∈ C4−i[0, 1] with li > 0 on [0, 1], and u(0) = u(1) = u′(0) = u′(1) = 0 if and
only if

(l0u)(0) = (l0u)(1) = (l1u)(0) = (l1u)(1) = 0. (1.10)

This can be achieved under (H1) by using disconjugacy theory in [7].
The rest of paper is arranged as follows: in Section 2, we state some disconjugacy

theory which can be used in this paper, and then show that (H1) implies the equation

L[u] = 0 (1.11)

is disconjugacy on [0, 1], moreover, we establish some preliminary properties on the
eigenvalues and eigenfunctions of the generalized eigenvalue problem (1.4). Finally in
Section 3, we state and prove our main result.

Remark 1.1. For other results on the existence and multiplicity of positive solutions and
nodal solutions for boundary value problems of ordinary differential equations based on
bifurcation techniques, see Ma [8–12], An and Ma [13], Yang [14] and their references.

2. Preliminary Results

Let

L
[

y
]

= y(n) + p1(x)y(n−1) + · · · + pn(x)y = 0 (2.1)

be nth-order linear differential equation whose coefficients pk(·) (k = 1, . . . , n) are continuous
on an interval I.

Definition 2.1 (see [7, Definition 0.2, page 2]). Equation (2.1) is said to be disconjugate on an
interval I if no nontrivial solution has n zeros on I, multiple zeros being counted according
to their multiplicity.
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Lemma 2.2 (see [7, Theorem 0.7, page 3]). Equation (2.1) is disconjugate on a compact interval I
if and only if there exists a basis of solutions y0, . . . , yn−1 such that

Wk := Wk

(

y0, . . . , yk−1
)

=

∣

∣

∣

∣

∣

∣

∣

∣

y0 · · · yk−1
...

...
y
(k−1)
0 · · · y

(k−1)
k−1

∣

∣

∣

∣

∣

∣

∣

∣

> 0 (k = 1, . . . , n) (2.2)

on I. A disconjugate operator L[y] = y(n) + p1(x)y(n−1) + · · · + pn(x)y can be written as

L
[

y
] ≡ ρnD

(

ρ(n−1) · · ·D
(

ρ1D
(

ρ0y
)) · · · ), D ≡ d

dx
, (2.3)

where ρ0 ∈ Cn−k(I) (k = 0, 1, . . . , n) and

ρ0 =
1
W1

, ρ1 =
W2

1

W2
, ρk =

W2
k

Wk−1 · Wk+1
, k = 2, . . . , n − 1, (2.4)

and ρ0ρ1 · · · ρn ≡ 1.

Lemma 2.3 (see [7, Theorem 0.13, page 9]). Green’s functionG(x, δ) of the disconjugate Equation
(2.3) and the two-point boundary value conditions

y(i)(a) = 0, i = 0, . . . , k − 1,

y(i)(b) = 0, i = 0, . . . , n − k − 1
(2.5)

satisfies

(−1)n−kG(x, δ) > 0, ∀(x, δ) ∈ (a, b) × (a, b). (2.6)

Now using Lemmas 2.2 and 2.3, we will prove some preliminary results.

Theorem 2.4. Let (H1) hold. Then

(i) L[u] = 0 is disconjugate on [0, 1], and L[u] has a factorization

L[u] = ρ4

(

ρ3

(

ρ2
(

ρ1
(

ρ0u
)′)′)′)′

, (2.7)

where ρk ∈ C4−k[0, 1] with ρk > 0 (k = 0, 1, 2, 3, 4).

(ii) u(0) = u(1) = u′(0) = u′(1) = 0 if and only if

(L0u)(0) = (L1u)(0) = (L0u)(1) = (L1u)(1) = 0, (2.8)
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where

L0u = ρ0u,

Liu = ρi(Li−1u)′, i = 1, 2, 3, 4.
(2.9)

Proof. We divide the proof into three cases.

Case 1. M = 0. The case is obvious.

Case 2. M ∈ (−π4, 0).
In the case, take

u0(t) = e−mt, u1(t) = emt, u2(t) = − sinm(t + σ), u3(t) = cosm(t + σ), (2.10)

where m = 4
√−M, σ is a positive constant. Clearly, m ∈ (0, π) and then

sinm(t + σ) > 0, t ∈ [0, 1]. (2.11)

It is easy to check that u0(t), u1(t), u2(t), u3(t) form a basis of solutions of L[u] = 0. By simple
computation, we have

W1 = e−mt, W2 = 2m, W3 = 4m3 sinm(t + σ), W4 = 8m6. (2.12)

Clearly, Wk > 0, (k = 1, 2, 3, 4) on [0, 1].

By Lemma 2.2, L[u] = 0 is disconjugate on [0, 1], and L[u] has a factorization

u′′′′ +Mu =
2m3

sinm(t + σ)

(

sin2m(t + σ)
m

(

emt

m sinm(t + σ)

(

1
2me2mt

(

emtu
)′
)′)′)′

, (2.13)

and accordingly

L0u = ρ0u = emtu,

L1u = ρ1(L0u)′ =
mu + u′

2memt
.

(2.14)

Using (2.14), we conclude that u(0) = u(1) = u′(0) = u′(1) = 0 is equivalent to (2.8).

Case 3. M ∈ (0, π4/64).
In the case, take

u0(t) = e−mt cosmt, u1(t) = e−mt sinmt, u2(t) = emt cosmt, u3(t) = emt sinmt,
(2.15)

where m = (
√
2/2) 4

√
M.
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It is easy to check that u0(t), u1(t), u2(t), u3(t) form a basis of solutions of L[u] = 0. By
simple computation, we have

W1 =
cosmt

emt
, W2 =

m

e2mt
, W3 =

4a3(cosmt − sinmt)
emt

, W4 = 32m6. (2.16)

From M ∈ (0, π4/64) and m = (
√
2/2) 4

√
M, we have 0 < m < π/4, so Wk > 0, (k = 1, 2, 3, 4)

on [0, 1].

By Lemma 2.2, L[u] = 0 is disconjugate on [0, 1], and L[u] has a factorization

u′′′′ +Mu

=
8m3emt

cosmt − sinmt

×
⎛

⎝

(cosmt − sinmt)2

2m

(

1
4me2mt cosmt(cosmt − sinmt)

(

cos2mt

m

(

emt

cosmt
u

)′)′)′⎞

⎠

′

,

(2.17)

and accordingly

L0u = ρ0u =
emt

cosmt
u,

L1u = ρ1(L0u)′ = emt(cosmt + sinmt)u +
emt cosmt

m
u′.

(2.18)

Using (2.18), we conclude that u(0) = u(1) = u′(0) = u′(1) = 0 is equivalent to (2.8).
This completes the proof of the theorem.

Theorem 2.5. Let (H1) hold and ˜h satisfy (H2). Then

(i) Equation (1.4) has an infinite number of positive eigenvalues

μ1 < μ2 < · · · < μk < μk+1 < · · · . (2.19)

(ii) μk → ∞ as k → ∞.

(iii) To each eigenvalue there corresponding an essential unique eigenfunction ψk which has
exactly k − 1 simple zeros in (0, 1) and is positive near 0.

(iv) Given an arbitrary subinterval of [0, 1], then an eigenfunction which belongs to a
sufficiently large eigenvalue change its sign in that subinterval.

(v) For each k ∈ N, the algebraic multiplicity of μk is 1.

Proof. (i)–(iv) are immediate consequences of Elias [6, Theorems 1–5] and Theorem 2.4. we
only prove (v).
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Let

̂Lu := u′′′′ +Mu, u ∈ D
(

̂L
)

(2.20)

with

D
(

̂L
)

:=
{

u ∈ C4[0, 1] | u(0) = u(1) = u′(0) = u′(1) = 0
}

. (2.21)

To show (v), it is enough to prove

ker
(

̂L − μkh(·)
)2

= ker
(

̂L − μkh(·)
)

. (2.22)

Clearly

ker
(

̂L − μkh(·)
)2 ⊇ ker

(

̂L − μkh(·)
)

. (2.23)

Suppose on the contrary that the algebraic multiplicity of μk is greater than 1. Then

there exists u ∈ ker(̂L − μkh(·))
2 \ ker(̂L − μkh(·)), and subsequently

̂Lu − μkh(x)u = qψk (2.24)

for some q /= 0. Multiplying both sides of (2.24) by ψk(x) and integrating from 0 to 1, we
deduce that

0 = q

∫1

0

[

ψk(x)
]2
dx, (2.25)

which is a contradiction!

Theorem 2.6 (Maximum principle). Let (H1) hold. Let e ∈ C[0, 1] with e ≥ 0 on [0, 1] and e /≡ 0
in [0, 1]. If u ∈ C4 [0, 1] satisfies

u′′′′ +Mu = e(t),

u(0) = u(1) = u′(0) = u′(1) = 0.
(2.26)

Then u > 0 on (0, 1).

Proof. When M ∈ (−π4, π4/64), the homogeneous problem

u′′′′ +Mu = 0,

u(0) = u(1) = u′(0) = u′(1) = 0
(2.27)
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has only trivial solution. So the boundary value problem (2.26) has a unique solution which
may be represented in the form

u(t) =
∫1

0
G(t, s)e(s)ds, (2.28)

where G(t, s) is Green’s function.
By Theorem 2.4 and Lemma 2.3 (take n = 4, k = 2), we have

(−1)4−2G(t, s) > 0, ∀(t, s) ∈ (0, 1) × (0, 1), (2.29)

that is, G(t, s) > 0, for all (t, s) ∈ (0, 1) × (0, 1).
Using (2.28), when e ≥ 0 on [0, 1] with e /≡ 0 in [0, 1], then u > 0 on (0, 1).

3. Statement of the Results

Theorem 3.1. Let (H1), (H2), and (H3) hold. Assume that for some k ∈ N,

λ >
μk

f0
. (3.1)

Then there are at least 2k − 1 nontrivial solutions of the problem (1.2). In fact, there exist solutions
w1, . . . , wk, such that for 1 ≤ j ≤ k, wj has exactly j − 1 simple zeros on the open interval (0, 1) and
w′′

j (0) < 0 and there exist solutions z2, . . . , zk, such that for 2 ≤ j ≤ k, zj has exactly j − 1 simple
zeros on the open interval (0, 1) and z′′j (0) > 0.

Let Y = C[0, 1] with the norm ‖u‖∞ = maxt∈[0,1]|u(t)|. Let

E =
{

u ∈ C2[0, 1] | u(0) = u(1) = u′(0) = u′(1) = 0
}

(3.2)

with the norm ‖u‖E = max{‖u‖∞, ‖u′‖∞, ‖u′′‖∞}. Then ̂L−1 : Y → E is completely continuous, here
̂L is given as in (2.20).

Let ζ, ξ ∈ C(R,R) be such that

f(u) = f0u + ζ(u), f(u) = f+∞u+ + ξ(u), (3.3)

here u+ = max{u, 0}. Clearly

lim
|u|→ 0

ζ(u)
u

= 0, lim
|u|→∞

ξ(u)
u

= 0. (3.4)

Let

˜ξ(u) = max
0≤|s|≤u

|ξ(s)|, (3.5)
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then ˜ξ is nondecreasing and

lim
u→∞

˜ξ(u)
u

= 0. (3.6)

Let us consider

̂Lu = λh(x)f0u + λh(x)ζ(u) (3.7)

as a bifurcation problem from the trivial solution u ≡ 0.
Equation (3.7) can be converted to the equivalent equation

u(x) = λ̂L−1[h(·)f0u(·)
]

(x) + λ̂L−1[h(·)ζ(u(·))](x). (3.8)

Further we note that ‖̂L−1[h(·)ζ(u(·))]‖E = o(‖u‖E) for u near 0 in E.
In what follows, we use the terminology of Rabinowitz [15].
Let E = R × E under the product topology. Let S+

k denote the set of function in E which
have exactly k − 1 interior nodal (i.e., nondegenerate) zeros in (0, 1) and are positive near t = 0,
set S−

k
= −S+

k
, and Sk = S+

k
∪ S−

k
. They are disjoint and open in E. Finally, let Φ±

k
= R × S±

k
and

Φk = R × Sk.
The results of Rabinowitz [13] for (3.8) can be stated as follows: for each integer k ≥ 1, ν =

{+,−}, there exists a continuum Cν
k
⊆ Φν

k
of solutions of (3.8), joining (μk/f0, 0) to infinity in Φν

k
.

Moreover, Cν
k \ (μk/f0, 0) ⊂ Φν

k.
Notice that we have used the fact that if u is a nontrivial solution of (3.7), then all zeros of u

on (0, 1) are simply under (H1), (H2), and (H3).
In fact, (3.7) can be rewritten to

̂Lu = λ̂h(t)u, (3.9)

where

̂h(t) =

⎧

⎪

⎨

⎪

⎩

h(t)
f(u(t))
u(t)

, u(t)/= 0,

h(t)f0, u(t) = 0,
(3.10)

clearly ̂h(t) satisfies (H2). So Theorem 2.5(iii) yields that all zeros of u on (0, 1) are simple.

Proof of Theorem 3.1. We only need to show that

C−
j ∩ ({λ × E})/= ∅, j = 1, 2, . . . , k,

C+
j ∩ ({λ × E})/= ∅, j = 2, . . . , k.

(3.11)
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Suppose on the contrary that

Cι
i ∩ ({λ × E}) = ∅, for some (i, ι) ∈ Γ, (3.12)

where

Γ :=
{(

j, ν
) | j ∈ {2, . . . , k} as ν = +, j ∈ {1, 2, . . . , k} as ν = −}. (3.13)

Since Cι
i joins (ηi/f0, 0) to infinity inΦν

i and (λ, u) = (0, 0) is the unique solutions of (3.7)λ=0 in
E, there exists a sequence {(χm, um)} ⊂ Cι

i such that χm ∈ (0, λ) and ‖um‖E → ∞ as m → ∞.
We may assume that χm → χ ∈ [0, λ] as m → ∞. Let vm = um/‖um‖E, m ≥ 1. From the fact

̂Lum(x) = χm

[

h(x)f+∞
]

(um)+(x) + χmh(x)ξ(um)(x), (3.14)

we have that

vm(x) = χm
̂L−1([h(·)f+∞

]

(vm)+
)

(x) + χm
̂L−1

[

h(·)ξ(um)(x)
‖um‖E

]

(x). (3.15)

Furthermore, since ̂L−1|E : E → E is completely continuous, we may assume that there exist
v ∈ E with ‖v‖E = 1 such that ‖vm − v‖E → 0 asm → ∞.

Since

|ξ(um)|
‖u‖E

≤ ξ(‖um‖∞)
‖u‖E

≤ ξ(‖um‖E)
‖u‖E

, (3.16)

we have from (3.15) and (3.6) that

v = χ̂L−1[h(·)f+∞
]

v+, (3.17)

that is,

v′′′′ +Mv = χh(x)f+∞v+,

v(0) = v(1) = v′′(0) = v′′(1) = 0.
(3.18)

By (H2), (H3), and (3.17) and the fact that ‖v‖E = 1, we conclude that χh(x)f+∞v+ /≡ 0, and
consequently

χ > 0, v+ /≡ 0. (3.19)

By Theorem 2.6, we know that v(x) > 0 in (0, 1). This means χf+∞ is the first eigenvalue of
̂Lu = ηh(t)u and v is the corresponding eigenfunction. Hence v ∈ S+

1 . Since S+
1 is open and

‖vm − v‖E → 0, we have that vm ∈ S+
1 for m large. But this contradict the assumption that

(χm, vm) ∈ Cι
i and (i, ι) ∈ Γ, so (3.12) is wrong, which completes the proof.
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