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We study the existence and nonexistence of solutions for the singular quasilinear problem
−div(|x|−ap |∇u|p−2∇u) = h(x)f(u)+λH(x)g(u), x ∈ �N , u(x) > 0, x ∈ �N , lim|x|→∞u(x) = 0, where
1 < p < N, 0 ≤ a < (N − p)/p and f(u) and g(u) behave like um and un with 0 < m ≤ p − 1 < n at
the origin. We obtain the existence by the upper and lower solution method and the nonexistence
by the test function method.

1. Introduction

In this paper, we study through the upper and lower solution method and the test function
method the existence and nonexistence of solution to the singular quasilinear elliptic problem

−div
(
|x|−ap|∇u|p−2∇u

)
= h(x)f(u) + λH(x)g(u), x ∈ �N ,

u(x) > 0, x ∈ �N , lim
|x|→∞

u(x) = 0
(1.1)

with 1 < p < N, 0 ≤ a < (N − p)/p, λ ≥ 0. h(x),H(x) : �N → (0,∞) are the locally Hölder
continuous functions, not identically zero and f(u) and g(u) are locally Lipschitz continuous
functions.

The study of this type of equation in (1.1) is motivated by its various applications,
for instance, in fluid mechanics, in Newtonian fluids, in flow through porous media, and in
glaciology; see [1]. The equation in (1.1) involves singularities not only in the nonlinearities
but also in the differential operator.
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Many authors studied this kind of problem for the case a = 0; see [2–7]. In these
works, the nonlinearities have sublinear and suplinear growth at infinity, and they behave
like a function uk (k < p − 1, or k ≥ p − 1) at the origin. Roughly speaking, in this case we
say that the nonlinearities are concave and convex or “slow diffusion and fast diffusion”;
see [8].

When a = 0, f(u) = um, and g(u) = un, m < p − 1 < n, by using the lower and upper
solution method, Santos in [5] finds a real number λ0 > 0, such that the problem (1.1) has at
least one solution if 0 ≤ λ < λ0.

For a, λ /= 0, the existence and multiplicity of solution of singular elliptic equation like
(1.1) in a bounded domainΩwith the zero Dirichlet data have been widely studied by many
authors, for example, the authors [9–13] and references therein. Assunção et al. in [14] studied
the multiplicity of solution for the singular equations in (1.1) with h(x) = α|x|−bm, H(x) =
β|x|−dq , f(u) = |u|m−2u, and g(u) = |u|q−2u in �

N . Similar consideration can be found in
[15–20] and references therein. We note that the variation method is widely used in the above
references.

Recently, Chen et al. in [21, 22], by using a variational approach, got some existence
of solution for (1.1) with λ = 0 and f(u) = uq, q > p − 1. For the case q < p − 1, λ ≥ 0, the
problem for the existence of solution for (1.1) is still open. It seems difficult to consider the
case q < p − 1 by variational method.

The main aim of this work is to study the existence and nonexistence of solution for
(1.1), where f(u) is sublinear and g(u) is suplinear. We will use the upper and lower solution
method. To the best of our knowledge, there is little information on upper and lower solution
method for the problem (1.1). So it is necessary to establish this technique in unbounded
domain. To obtain the existence, the assumption M∞ < ∞ (see (2.17) below) is essential. By
this, an upper solution for (1.1) is obtained.

We also obtain a sufficient condition on h(x), H(x) to guarantee the nonexistence of
nontrivial solution for the problem (2.21). (see Theorem 2.5 below). It must be particularly
pointed out that our primary interest is in the mixed case in which 0 < m ≤ p − 1 < n with
H(x) satisfying

H∞ =
∫∞

0

(
s1−N+ap

∫ s

0
tN−1H(t)dt

)1/(p−1)
ds < ∞, H(t) = max

|x|=t
H(x), (1.2)

while h(x) satisfies

h∞ =
∫∞

0

(
s1−N+ap

∫ s

0
tN−1h(t)dt

)1/(p−1)
ds = ∞, h(t) = max

|x|=t
h(x). (1.3)

This paper is organized as follows. In Section 2, we state the main results and present
some preliminaries which will be used in what follows. We also introduce the precise
hypotheses under which our problem is studied. In Section 3, we give the proof of some
lemmas and the existence. The proof of nonexistence is given in Section 4.
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2. Preliminaries and Main Results

Let us now introduce some weighted Sobolev spaces and their norms. Let Ω be a bounded
domain in �N with smooth boundary ∂Ω. If r ∈ �1 and p ≥ 1, we define Lp(Ω, |x|−r) as being
the subspace of Lp(Ω) of the Lebesgue measurable function u : Ω → �

1 , satisfying

‖u‖p,r := ‖u‖Lp(Ω,|x|−r) =
(∫

Ω
|x|−r |u|pdx

)1/p

< ∞. (2.1)

If 1 < p < N and −∞ < a < (N − p)/p, we define W1,p(Ω, |x|−ap) (resp.,W1,p
0 (Ω, |x|−ap)

as being the closure of C∞(Ω) (resp., C∞
0 (Ω)) with respect to the norm defined by

‖u‖ :=
(∫

Ω
|x|−ap|∇u|pdx

)1/p

. (2.2)

For the weighted Sobolev space W1,p(Ω, |x|−ap), we have the following compact
imbedding theorem which is an extension of the classical Rellich-Kondrachov compact
theorem.

Theorem 2.1 ((compact imbedding theorem) [13]). Suppose that Ω ⊂ �
N is an open bounded

domain with C1 boundary and 0 ∈ Ω, 1 < p < N, −∞ < a < (N − p)/p. Then, the imbedding
W1,p(Ω, |x|−ap) ↪→ Lq(Ω, |x|−r) is compact if 1 ≤ q < Np/(N − p), r < (1 + a)q +N(1 − q/p).

We now consider the existence of positive solutions for problem (1.1). Our main tool
will be the upper and lower solution method. This method, in the bounded domain situation,
has been used by many authors, for instance, [10, 12, 13]. But for the unbounded domain, we
need to establish this method and then to construct an upper solution and a lower solution
for (1.1). We now give the definitions of upper and lower solutions.

Definition 2.2 (see [10, 12]). A function u ∈ W1,p(�N , |x|−ap) ∩ L∞(�N ) is said to be a weak
lower solution of the equation

−div
(
|x|−ap|∇u|p−2∇u

)
= F(x, u), x ∈ �N (2.3)

if

−div
(
|x|−ap∣∣∇u

∣∣p−2∇u
)
≤ F

(
x, u

)
, x ∈ �N (2.4)

or

∫

�N

|x|−ap
∣∣∇u

∣∣p−2∇u∇φdx ≤
∫

�N

F
(
x, u

)
φdx, (2.5)

for any φ ∈ C1
0(�

N ), φ ≥ 0.
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Similarly, a function u ∈ W1,p(�N , |x|−ap)∩L∞(�N ) is said to be a weak upper solution
of (2.3) if

−div
(
|x|−ap|∇u|p−2∇u

)
≥ F(x, u), x ∈ �N (2.6)

or

∫

�N

|x|−ap|∇u|p−2∇u∇φdx ≥
∫

�N

F(x, u)φdx, (2.7)

for any φ ∈ C1
0(�

N ) and φ ≥ 0 in �N .
A function u ∈ W1,p(�N , |x|−ap) ∩ L∞(�N ) is said to be a weak solution of (2.3) if and

only if u is a weak lower solution and weak upper solution of (2.3).
A function v ∈ W1,p(Ω, |x|−ap) ∩ L∞(Ω) is said to be less than or equal to w ∈

W1,p(Ω, |x|−ap) ∩ L∞(Ω) on ∂Ω if max{0, v −w} ∈ W
1,p
0 (Ω, |x|−ap).

If 1 < p < N and −∞ < a < (N − p)/p, we define the weighted Sobolev space
W1,p(�N , |x|−ap) as being the closure of C∞

0 (�N ) with respect to the norm ‖ · ‖ defined by

‖u‖ =
(∫

�N

|x|−ap|∇u|pdx
)1/p

. (2.8)

The following lemma will be basic in our approach.

Lemma 2.3. Let F(x, u) be Lipschitz continuous and nondecreasing in u and locally Hölder
continuous in x. Moreover, assume that there exist the functions u, u ∈ W1,p(�N , |x|−ap) ∩ L∞(�N )
such that

−div
(
|x|−ap∣∣∇u

∣∣p−2∇u
)
≤ F

(
x, u

)
, x ∈ �N ,

−div
(
|x|−ap|∇u|p−2∇u

)
≥ F(x, u), x ∈ �N ,

u(x) ≤ u(x), a.e. in �N .

(2.9)

Then, there exist a minimal weak solution V0(x) and a maximal weak solution U0(x) of (2.3)
satisfying

u(x) ≤ V0(x) ≤ U0(x) ≤ u(x), x ∈ �N (2.10)

and V0(x), U0(x) ∈ W1,p(�N , |x|−ap) ∩ L∞(�N ).
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Proof. Denote Bk = {x ∈ �
N | |x| < k}, k = 1, 2, . . .. Let u, u be a pair of upper and lower

solutions of (2.3) with u(x) ≤ u(x), a.e. in �N . We consider the boundary value problem

−div
(
|x|−ap|∇u|p−2∇u

)
= F(x, u), x ∈ Bk,

u(x) = u(x), x ∈ ∂Bk.

(2.11)

By Theorem 1.1 in [10], one concludes that there exists uk(x) ∈ W1,p(Bk, |x|−ap) ∩
L∞(Bk) which is a weak solution of (2.11) with u(x) ≤ uk(x) ≤ u(x) a.e. in Bk for k = 1, 2, . . ..

We define its extension by

Uk(x) =

⎧
⎨
⎩
uk(x), x ∈ Bk,

uk(x) = u(x), x ∈ Bc
k = �N \ Bk.

(2.12)

Similarly, let vk(x) be a weak solution of the boundary value problem

−div
(
|x|−ap|∇vk|p−2∇vk

)
= F(x, vk), x ∈ Bk,

vk(x) = u(x), x ∈ ∂Bk,

(2.13)

and its extension is defined by

Vk(x) =

⎧
⎨
⎩
vk(x), x ∈ Bk,

vk(x) = u(x), x ∈ Bc
k
.

(2.14)

Since u, u ∈ W1,p(�N , |x|−ap) ∩ L∞(�N ), we have Vk(x), Uk(x) ∈ W1,p(�N , |x|−ap) ∩
L∞(�N ). By Theorem 2.4 in [12], we have

u(x) ≤ Vk(x) ≤ Vk+1(x) ≤ Uk+1(x) ≤ Uk(x) ≤ u(x), a.e in �N (2.15)

for k = 1, 2, . . .. In view of (2.15), the pointwise limits

V0(x) = lim
k→∞

Vk(x), U0(x) = lim
k→∞

Uk(x) (2.16)

exist and u(x) ≤ V0(x) ≤ U0(x) ≤ u(x) in �N .
Similar to the proof Theorem 1.1 in [10] and the proof of Theorem 7.5.1 in [23], it

is not difficult to get from Theorem 2.1 that U0(x) is the maximal weak solution and V0(x)
the minimal solution of (2.3), which satisfies (2.10) and V0, U0 ∈ W1,p(�N , |x|−ap) ∩ L∞(�N ).
This ends the proof of Lemma 2.3.
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Our main results read as follows.

Theorem 2.4 (existence). Let 1 < p < N, 0 ≤ a < (N − p)/p. Assume the following.

(A1) The nonnegative functions f(u), g(u) are Lipschitz continuous and nondecreasing, f(0) =
g(0) = 0. Additionally, supt≥0t

−mf(t) < ∞ and supt≥0t
−ng(t) < ∞ with 0 < m < p − 1 <

n.

(A2) The nonnegative functions h(x), H(x) are locally Hölder continuous. Let M(r) =
max|x|=r{h(x),H(x)}. If

M∞ =
∫∞

0

(
s1−N+ap

∫ s

0
tN−1M(t)dt

)1/(p−1)
ds < ∞, (2.17)

then there exists λ0 > 0, such that λ ∈ [0, λ0), and the problem (1.1) admits a weak solution u(x) ∈
W1,p(�N , |x|−ap) ∩ L∞(�N ).

Theorem 2.5 (nonexistence). Let 1 < p < N, 0 ≤ a < (N − p)/p. Assume that

(A3) 0 < m ≤ p − 1 < n;

(A4) there exist α1, α2 ≥ 0 such that

q = α1 + α2 > p − 1,
α1

n
+
α2

m
= 1; (2.18)

(A5) the functions h(x),H(x) > 0 in �N satisfy

lim sup
R→∞

(B1(R))
−α1(p−1)/nq(b1(R))

−α2(p−1)/mqRσ1 < ∞, (2.19)

where σ1 = N − p(1 + a) −N(p − 1)/q and

B1(R) = inf
ΩR

H(x), b1(R) = inf
ΩR

h(x), ΩR =
{
x ∈ �N | R ≤ |x| ≤

√
2R

}
, R ≥ 1. (2.20)

Then the problem

−div
(
|x|−ap|∇u|p−2∇u

)
= h(x)um +H(x)un, x ∈ �N ,

u(x) ≥ 0, x ∈ �N

(2.21)

has no nontrivial solution u(x) ∈ W1,p(�N , |x|−ap).
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Remark 2.6. If assumption (2.19) holds, then

A∞ =
∫∞

0

(
s1−N+ap

∫ s

0
tN−1(B1(t))λ1(b1(t))λ2dt

)1/(p−1)
ds = ∞, (2.22)

with λ1 = α1/n, λ2 = α2/m.

In fact, for this case, there exist t0 ≥ 1 and C0 > 0 such that

(B1(t))λ1(b1(t))λ2 ≥ C0t
σ1q/(p−1) = C0t

−N+(q/(p−1))(N−p(1+a)) (2.23)

for t ≥ t0. Therefore,

A∞ ≥
∫∞

t0

(
s1−N+ap

∫ s

0
tN−1(B1(t))

λ1(b1(t))
λ2dt

)1/(p−1)
ds

≥ C1

∫∞

t0

s(1−N+ap+q(N−p(1+a))/(p−1))/(p−1)ds = ∞.

(2.24)

So, condition (2.19) implies (2.22).

3. Proof of Existence

Before proofing the existence, we present some preliminary lemmas which will be useful in
what follows.

Lemma 3.1. Suppose that ρ(x) ≥ 0, /≡ 0 is local Hölder continuous and satisfies

ρ∞ =
∫∞

0

(
s1−N+ap

∫ s

0
tN−1ρ(t)dt

)1/(p−1)
ds < ∞. (3.1)

Then the problem

−div
(
|x|−ap|∇u|p−2∇u

)
= ρ(x), x ∈ �N ,

u(x) > 0, x ∈ �N , lim
|x|→∞

u(x) = 0
(3.2)

has a weak solution u(x) ∈ W1,p(�N , |x|−ap) ∩ L∞(�N ), where ρ(t) = max|x|=tρ(x).
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Proof. Let ρ(t) = min|x|=tρ(x). Then ρ(t) ≤ ρ(t). Denote

V (|x|) = V (r) =
∫∞

r

(
s1−N+ap

∫ s

0
tN−1ρ(t)dt

)1/(p−1)
ds, r = |x| ≥ 0,

U(|x|) = U(r) =
∫∞

r

(
s1−N+ap

∫ s

0
tN−1ρ(t)dt

)1/(p−1)
ds, r = |x| ≥ 0.

(3.3)

Obviously, lim|x|→∞V (|x|) = lim|x|→∞U(|x|) = 0 and V (|x|) ≤ U(|x|). It is easy to verify
that

−div
(
|x|−ap|∇V |p−2∇V

)
= ρ(x), x ∈ �N ,

−div
(
|x|−ap|∇U|p−2∇U

)
= ρ(x), x ∈ �N .

(3.4)

This shows that V (|x|) (resp., U(|x|)) is a lower (resp., upper) solution of (3.2). Then
by Lemma 2.3, there exists a weak solution u(x) for problem (3.2) satisfying u(x) ∈
W1,p(�N , |x|−ap) ∩ L∞(�N ), and

V (|x|) ≤ u(x) ≤ U(|x|), x ∈ �N . (3.5)

Lemma 3.2. Let N ≥ 3. If

(1)

∫∞

1

(
t1+apρ(t)

)1/(p−1)
dt < ∞, if 1 < p ≤ 2, N > 2 + ap, (3.6)

(2)

∫∞

0
t(N(p−2)+1+ap)/(p−1)ρ(t)dt < ∞, if p > 2, N > p(1 + a), (3.7)

one has ρ∞ < ∞.
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Proof. (1) Since 1 < p ≤ 2, 1/(p − 1) ≥ 1. By the Hölder inequality, we obtain

ρ∞ =
∫∞

0

(
s1−N+ap

∫ s

0
tN−1ρ(t)dt

)1/(p−1)
ds

≤
∫∞

0
s(1−N+ap)/(p−1)

[(∫ s

0

(
tN−1ρ(t)

)1/(p−1)
dt

)p−1(∫ s

0
dt

)2−p]1/(p−1)
ds

=
∫∞

0
s(3−N+ap−p)/(p−1)

∫ s

0

(
tN−1ρ(t)

)1/(p−1)
dt ds

=
∫∞

0
t(N−1)/(p−1)(ρ(t))1/(p−1)

∫∞

t

s(3−N+ap−p)/(p−1)ds dt

=
p − 1

N − 2 − ap

∫∞

0

(
t1+apρ(t)

)1/(p−1)
dt < ∞.

(3.8)

(2) If p > 2 and N > p(a + 1), we take p′ = N − (N − p(a + 1))/(p − 1) and then
p′ ∈ (p(1 + a),N).

Note that

∫1

0

(
s1−N+ap

∫ s

0
tN−1ρ(t)dt

)1/(p−1)
ds ≤

(∫1

0
ρ(t)dt

)1/(p−1)
< ∞,

∫∞

1

(
s1−N+ap

∫ s

0
tN−1ρ(t)dt

)1/(p−1)
ds ≤

∫∞

1
s(ap+1−p

′)/(p−1)
(∫ s

0
tp

′−1ρ(t)dt
)1/(p−1)

ds

≤
(
p−1)2(

p−2)(N−p(a+1))
(∫∞

0
t(N(p−2)+1+ap)/(p−1)ρ(t)dt

)1/(p−1)

< ∞.

(3.9)

This implies ρ∞ < ∞ and ends the proof of Lemma 3.2.

Corollary 3.3. If ρ(t) = max|x|=tρ(x) satisfies the conditions in Lemma 3.2, then the problem (3.2)
admits a solution u(x) ∈ W1,p(�N , |x|−ap) ∩ L∞(�N ).

Lemma 3.4. Suppose that f(t) ≥ 0 is nondecreasing and supt≥0t
−mf(t) < ∞ with m < p − 1.

Additionally, let the function h(x) ≥ 0 be locally Hölder continuous and satisfy

h∞ =
∫∞

0

(
s1−N+ap

∫ s

0
tN−1h(t)dt

)1/(p−1)
ds < ∞, (3.10)
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where h(t) = max|x|=th(x). Then the problem

−div
(
|x|−ap|∇u|p−2∇u

)
= h(x)f(u), x ∈ �N ,

u(x) > 0, x ∈ �N , lim
|x|→∞

u(x) = 0
(3.11)

has a weak solution u(x) ∈ W1,p(�N , |x|−ap) ∩ L∞(�N ).

Proof. We first consider the problem

−div
(
|x|−ap|∇u|p−2∇u

)
= h(x), x ∈ �N ,

u(x) > 0, x ∈ �N , lim
|x|→∞

u(x) = 0.
(3.12)

By Lemma 3.1, there is a solutionwh(x) for (3.12) satisfyingwh(x) ∈ W1,p(�N , |x|−ap)∩
L∞(�N ). In order to get the existence of solution for (3.11), we chose a pair of upper-lower
solution of the equation in (3.11) by means of wh(x).

Let t > 0. It is easy to verify that uh = twh is an upper solution of

−div
(
|x|−ap|∇u|p−2∇u

)
= h(x)f(u), x ∈ �N (3.13)

if and only if

−div
(
|x|−ap|∇uh|p−2∇uh

)
≥ h(x)f(uh), x ∈ �N (3.14)

or

tp−1 ≥ f(twh), x ∈ �N . (3.15)

By the assumption on f(u), we know that there exists c0 > 0, such that f(t) ≤ c0tm. So,
c0tm‖wh‖m∞ ≥ f(t‖wh‖∞) ≥ f(twh). Then we take t0 = (c0‖wh‖m∞)1/(p−1−m) so that uh = twh (t >
t0) is an upper solution of (3.13).

We now construct a lower solution of (3.13). Consider the boundary value problem

−div
(
|x|−ap|∇v|p−2∇v

)
= h(x)f(v), x ∈ Bk,

v > 0, x ∈ Bk, v = 0, x ∈ ∂Bk

(3.16)

for k = 1, 2, . . ..
By Theorem 3.1 in [12], there exists a solution vk ∈ W1,p(Bk, |x|−ap)∩L∞(Bk) for (3.16).

We define an extension by vk(x) = 0 for |x| ≥ k. Then, by Theorem 2.4 in [12] and Dı́az-Saá’s
inequality in [24], we get

v1(x) ≤ v2(x) ≤ · · · ≤ vk(x) ≤ vk+1(x) ≤ · · · ≤ uh(x), x ∈ Bk. (3.17)
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Setting v(x) = limk→∞vk(x) and performing some standard computations, we see that v ∈
W1,p(�N , |x|−ap) ∩ L∞(�N ),

−div
(
|x|−ap|∇v|p−2∇v

)
= h(x)f(v), x ∈ �N ,

v(x) > 0, x ∈ �N , lim
|x|→∞

v(x) = 0,
(3.18)

and v(x) ≤ uh(x) in �N . Then, our result follows from Lemma 2.3.

We now give the proof of Theorem 2.4.

Proof of Theorem 2.4. Let uM ∈ W1,p(�N , |x|−ap) ∩ L∞(�N ) be a solution of the problem

−div
(
|x|−ap|∇u|p−2∇u

)
= M(x), x ∈ �N ,

u > 0, x ∈ �N , lim
|x|→∞

u(x) = 0,
(3.19)

where M(x) = max{h(x),H(x)}. We see that w = tuM (t > 0) is an upper solution of the
equation

−div
(
|x|−ap|∇u|p−2∇u

)
= M(x)

(
f(u) + λg(u)

)
, x ∈ �N (3.20)

if and only if

−div
(
|x|−ap|∇w|p−2∇w

)
≥ M(x)

(
f(w) + λg(w)

)
, x ∈ �N (3.21)

or

tp−1 ≥ f(tuM) + λg(tuM), x ∈ �N . (3.22)

Since

sup
t≥0

t−mf(t) < ∞, sup
t≥0

t−ng(t) < ∞, (3.23)

we have a constant c0 > 0, such that

f(t) ≤ c0t
m, g(t) ≤ c0t

n, ∀t ≥ 0. (3.24)

Denote

φ(t) =
tp−1 − c0tm‖uM‖m∞

c0tn‖uM‖n∞
. (3.25)
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Since m < p − 1 < n, we have limt→ 0+φ(t) = −∞, limt→∞φ(t) = 0 and there exist t0 > 0,
such that φ′(t) > 0 for 0 ≤ t < t0 and φ′(t) < 0 for t > t0. Then φ(t0) = maxt>0φ(t). A simple
computation shows that

t0 =
(
c0(n −m)
n − p + 1

‖uM‖m∞
)1/(p−1−m)

. (3.26)

Thus

λ0 = φ(t0) = c
(m−n)/(p−1−m)
0 ‖uM‖(m−n)(p−1)/(p−1−m)

∞

[
p − 1 −m

n − p + 1

][
n −m

n − p + 1

](m−n)/(p−1−m)

> 0.

(3.27)

Hence, for any 0 < λ < λ0, there exists a unique tλ > 0, such that λ = φ(tλ). That is

t
p−1
λ

= c0t
m
λ ‖uM‖m∞ + c0λt

n
λ‖uM‖n∞ ≥ f(tλuM) + λg(tλuM). (3.28)

Now defining w = tλuM, we get

−div
(
|x|−ap|∇w|p−2∇w

)
= t

p−1
λ

(
−div

(
|x|−ap|∇uM|p−2∇uM

))

= M(x)tp−1λ

= M(x)
(
tmλ ‖uM‖m∞ + λtnλ‖uM‖n∞

)

≥ M(x)
(
f(w) + λg(w)

)
.

(3.29)

This shows that w is an upper solution of (3.20). Noting that

M(x)
(
f(w) + λg(w)

) ≥ h(x)f(w) + λH(x)g(w), (3.30)

we know that w is an upper solution of (1.1). Let v be a solution of (3.11). Obviously, v is a
lower solution of (1.1). We now show that v(x) ≤ w(x) in �N .

Since φ′(t) < 0 for t > t0 and φ(t) → 0 as t → +∞, then for any λ ∈ (0, λ0), there exist
tλ > 0, such that λ = φ(tλ). Without loss of generality, let tλ > t0.

From the proof of Lemma 3.4 and the definition of uM(x), we have uh(x) = twh(x) ≤
tuM(x) for t > t0. Further, by (3.17), we get vk(x) ≤ tλuM(x) = w(x). Letting k → +∞, we
obtain v(x) ≤ w(x) in RN .

By Lemma 2.3, there exists a solution u ∈ W1,p(�N , |x|−ap) ∩ L∞(�N ) for the problem
(1.1). We then complete the proof of Theorem 2.4.

Remark 3.5. The nonlinear term F(x, u) = h(x)f(u) + λH(x)g(u) can be regarded as a
perturbation of the nonlinear term h(x)f(u).
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4. Proof of Nonexistence

In order to prove the nonexistence of nontrivial solution of the problem (2.21), we use the
test function method, which has been used in [25] and references therein. Some modification
has been made in our proof. The proof is based on argument by contradiction which involves
a priori estimate for a nonnegative solution of (2.21) by carefully choosing the special test
function and scaling argument.

Proof of Theorem 2.5. Let φ0(s) ∈ C1
0[0,∞) be defined by

φ0(s) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1, 0 ≤ s < 1,

(l − k)−1
(
l(2 − s)k − k(2 − s)l

)
, 1 ≤ s ≤ 2,

0, s > 2,

(4.1)

and put φ(x) = φ0(R−2|x|2), by which the parameters l > k > 2 will be determined later. It is
not difficult to verify that 0 ≤ φ0(s) ≤ 1 and |φ′

0(s)| ≤ β0φ
1−1/k
0 (s), where β0 = k(l/(l − k))1/k.

Suppose that u(x) is a solution to problem (2.21). Without loss of generality, we can
assume that u(x) > 0 in �N (otherwise, we consider uε = u + ε and let ε ↓ 0). Let α < 0 be a
parameter (α will also be chosen below).

By the Young inequality, we get

h(x)um +H(x)un ≥ Hα1/n(x)hα2/m(x)uq ≡ Hλ1(x)hλ2(x)uq, (4.2)

where α1, α2, and q satisfy (2.18) and λ1 = α1/n, λ2 = α2/m.
Multiplying the equation in (2.21) by uαφ and integrating by parts, we obtain

∫

�N

Hλ1hλ2uq+αφdx ≤ α

∫

�N

|x|−apuα−1|∇u|pφdx +
∫

�N

|x|−apuα|∇u|p−1∣∣∇φ
∣∣dx. (4.3)

Then applying the Young inequality with parameter ε > 0, we have

∫

�N

Hλ1hλ2uq+αφdx + βε

∫

�N

|x|−ap|∇u|puα−1φdx ≤ Cε

∫

�N

|x|−apup+α−1∣∣∇φ
∣∣pφ1−pdx, (4.4)

where βε = |α| − ε > 0.
Similarly, let us multiply the equation in (2.21) by φ and integrate by parts:

∫

�N

Hλ1hλ2uqφdx ≤
∫

ΩR

|x|−ap|∇u|p−1∣∣∇φ
∣∣dx

≤
(∫

ΩR

|x|−ap|∇u|puα−1φdx

)(p−1)/p(∫

ΩR

|x|−ap∣∣∇φ
∣∣pφ1−pu(1−α)(p−1)dx

)1/p

.

(4.5)
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By (4.4),

∫

�N

|x|−ap|∇u|puα−1φdx ≤ C

∫

ΩR

|x|−ap∣∣∇φ
∣∣pφ1−pup+α−1dx. (4.6)

Now, we apply the Hölder inequality to the integral on the right-hand side of (4.6):

∫

ΩR

|x|−ap∣∣∇φ
∣∣pφ1−pup+α−1dx

≤
(∫

ΩR

Hλ1hλ2uqφdx

)1/λ(∫

ΩR

|x|−apλ′∣∣∇φ
∣∣pλ′φ1−pλ′

(
Hλ1hλ2

)1−λ′
dx

)1/λ′ (4.7)

with λ = q/(p + α − 1) > 1, λ′ = q/(q − p − α + 1) and ΩR = {x ∈ �N | R ≤ |x| ≤
√
2R}.

Since q > p − 1, we chose α < 0 so small that q > (p − 1)(1 − α). Then, we have

∫

ΩR

|x|−ap∣∣∇φ
∣∣pφ1−pu(1−α)(p−1)dx

≤
(∫

ΩR

Hλ1hλ2uqφdx

)1/μ(∫

ΩR

|x|−apμ′ |∇φ|pμ′
φ1−pμ′(

Hλ1hλ2
)1−μ′

dx

)1/μ′ (4.8)

with μ = q/(1 − α)(p − 1) > 1, μ′ = q/(q − (1 − α)(p − 1)).
Since φ(x) = φ0(R−2|x|2), |∇φ(x)| ≤ C0R−1φ1−1/k

0 (|ξ|) = C0R−1φ1−1/k
0 with x = Rξ. Then

we get

∫

ΩR

|x|−apλ′∣∣∇φ
∣∣pλ′φ1−pλ′

(
Hλ1hλ2

)1−λ′
dx

≤ CRN−(1+a)pλ′ (B1(R))λ1(1−λ
′)(b1(R))λ2(1−λ

′)
∫

Ω1

φ
(1−1/k)pλ′
0 (|ξ|)φ1−pλ′

0 (|ξ|)dξ,
∫

ΩR

|x|−apμ′∣∣∇xφ
∣∣pμ′

φ1−pμ′
H1−μ′

dx

≤ CRN−(1+a)pμ′
(B1(R))λ1(1−μ

′)(b1(R))λ2(1−μ
′)
∫

Ω1

φ
(1−1/k)pμ′

0 (|ξ|)φ1−pμ′

0 (|ξ|)dξ,

(4.9)

where B1(R) = infΩRH(x) and b1(R) = infΩRh(x).
Let k > max{pλ′, pμ′}. Then,

∫

Ω1

φ
(1−1/k)pλ′
0 (|ξ|)φ1−pλ′

0 (|ξ|)dξ ≤
∫

Ω1

φ0(|ξ|)dξ ≤ |Ω1|. (4.10)
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Similarly,

∫

Ω1

φ
(1−1/k)pμ′

0 (|ξ|)φ1−pμ′

0 (|ξ|)dξ ≤ |Ω1|. (4.11)

Then it follows from (4.5)–(4.11) that

(∫

�N

Hλ1hλ2uqφdx

)1−s
≤ CRσ1(B1(R))σ2(b1(R))

σ3 (4.12)

with s = (p − 1)/pλ + 1/pμ = (p − 1)/q < 1 and

σ1 =
p − 1
pλ′

(
N − (1 + a)pλ′) + 1

pμ′
(
N − (1 + a)pμ′) = N − p(1 + a) − N

(
p − 1

)

q
,

σ2 =
λ1
(
p − 1

)

pλ′
(
1 − λ′) + λ1

pμ′
(
1 − μ′) = −λ1

(
p − 1

)

q
,

σ3 =
λ2
(
p − 1

)

pλ′
(
1 − λ′) + λ2

pμ′
(
1 − μ′) = −λ2

(
p − 1

)

q
.

(4.13)

If lim supR→∞R
σ1(B1(R))

σ2(b1(R))
σ3 = 0, it follows from (4.12) that

∫

�N

Hλ1hλ2uqdx = 0. (4.14)

This implies that u(x) = 0, a.e. in �N . That is, u is a trivial solution for (2.21).
If lim supR→∞R

σ1(B1(R))σ2(b1(R))σ3 = C1 < ∞, then (4.12) gives that

∫

�N

Hλ1hλ2uqdx < ∞,

lim
R→∞

∫

ΩR

Hλ1hλ2uqdx = 0.

(4.15)

By (4.5), we derive

∫

BR

Hλ1hλ2uqdx ≤
∫

B2R

Hλ1hλ2uqφdx

≤
(∫

ΩR

|x|−ap|∇u|puα−1φdx

)(p−1)/p(∫

ΩR

|x|−ap∣∣∇φ
∣∣pφ1−pu(1−α)(p−1)dx

)1/p

.

(4.16)
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Reasoning as in the first part of the proof, we infer that

∫

BR

Hλ1hλ2uqdx ≤ CRσ1 (B1(R))σ2(b1(R))σ3
(∫

ΩR

Hλ1hλ2uqφdx

)(p−1)/q

≤ CC1

(∫

ΩR

Hλ1hλ2uqφdx

)(p−1)/q
.

(4.17)

Letting R → ∞ in (4.17), we obtain (4.14). Thus, u = 0, a.e. in �N . Then the proof of
Theorem 2.5 is completed.
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