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We investigate a multidimensional nonisentropic radiation hydrodynamics model. We study the
local existence and the convergence of the nonisentropic radiation hydrodynamics equations via
the non-relativistic limit. The local existence of smooth solutions to both systems is obtained. For
well-prepared initial data, the convergence of the limit is rigorously justified by an analysis of
asymptotic expansion, an energy method, and an iterative scheme. We also establish uniform a
priori estimates with respect to ε.

1. Introduction

In this paper, we study a system of PDEs describing radiation-driven perfect compressible
flows, in particular in astrophysics (cf. [1–4]). Assuming that the radiative temperature and
the fluid temperature are equal, and that the gas is radiatively opaque so that the equilibrium
diffusion will be dealt with, and the mean free path of photons is much smaller than the
typical length of the flow, then, we can write the equations of radiation hydrodynamics
without radiative heat diffusivity in R

d, describing the conservation of mass, momentum
and energy, as (see [2, 3, 5])

∂tρ + div
(
ρu
)
= 0,

∂t
(
ρu
)
+ div

(
ρu ⊗ u

)
+∇

(
p +

1
3
εθ4

)
= 0,

∂tE + div
[(

E + p +
1
3
εθ4

)
u
]
= 0,

(1.1)
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for (x, t) ∈ R
3 × [0, T), T > 0,where ρ,u = (u1, . . . , ud)

T , p, and θ denote the density, velocity,
thermal pressure, and absolute temperature, respectively, ε = 8π5k4/15h3c3 > 0 is a radiation
constant, and c is the light speed, and

E =
1
2
ρu2 + ρe + εθ4 (1.2)

is the total energy, e = e(ρ, θ) is the internal energy, and u2 =
∑d

i=1 u
2
i is the square of the

macroscopic velocity.
From (1.1) and (1.2), we see that the system includes both gas and radiative

contributions to flow dynamics. The quantities (1/3)εθ4 and εθ4 represent the radiative
pressure and radiative energy density, respectively. To complete system (1.1), one needs
the equation of state for the pressure p = p(ρ, θ). In this paper, for the purpose of our test
problems, we will limit our study to the polytropic ideal gases, namely: p = Rρe = (γ − 1)ρe
with γ > 1 being the specific heat ratio and e = cV θwith cV being the specific heat; we assume
cV = 1 without loss of generality.

We point out that if one assumes ε → 0 in (1.1), then system (1.1) reduces to the usual
inviscid Euler equations:

∂tρ
0 + div

(
ρ0u0

)
= 0,

∂t
(
ρ0u0

)
+ div

(
ρ0u0 ⊗ u0

)
+∇p0 = 0,

∂tE
0 + div

[(
E0 + p0

)
u0
]
= 0,

(1.3)

which are nonisentropic and compressible Euler equations.
The aim of this paper is to justify rigorously the local existence of smooth solutions of

system (1.1) and the convergence of system (1.1) to this formal limit equations (1.3).
Concerning the non-relativistic limit c → ∞, that is, ε → 0, there are only partial

results. Indeed, we know that the phenomenon of non-relativistic is important in many
physical situations involving various nonequilibrium processes. For example, important
examples occur in inviscid radiation hydrodynamics [6], in quantummechanics [7], in Klein-
Gordon-Maxwell system [8], in Vlasov-Poisson system [9], in Euler equations [10], in Euler-
Maxwell equations [11, 12], and so on.

In this paper, we are interested in the nonrelativistic limit ε → 0 in the problem
(1.1) for the radiation hydrodynamics equations. We prove the existence of smooth solutions
to the problem (1.1) and their convergence to the solutions of the compressible and
nonisentropic Euler equations in a time interval independent of ε. For this propose, we use
themethod of iteration scheme and classical energymethod. The convergence of the radiation
hydrodynamics equations to the compressible and nonisentropic Euler equations is achieved
through the energy estimates for error equations derived from (1.1) and it’s formal limit
equations (1.3).

The remainder of this paper is arranged as follows: In the next section, we give the
local smooth solutions to both system (1.1) and (1.3). Section 3 is devoted to justify the
convergence of (1.1) to (1.3). By formal analysis, we show that the leading profiles of the
density, velocity, and temperature with respect to ε satisfy a compressible nonisentropic
Euler equations, and their next order profiles satisfy the corresponding linearized equations.
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The Cauchy problem for this nonisentropic Euler equations is solved in this section. The final
part is devoted to rigorously justifying the asymptotic expansion developed in Section 3 and
obtaining the convergence of solutions to the multidimensional compressible nonisentropic
Euler system in a time interval independent of ε.

Notations and Preliminary Results

(1) Throughout this paper, ∇ = ∇x is the gradient, α = (α1, . . . , αd) and β are multi-
indeices, andHs(Rd) denotes the standard Sobolev’s space inR

d, which is defined by Fourier
transform, namely, f ∈ Hs(Rd) if and only if

∥
∥f

∥
∥2
s = (2π)d

∑

k∈Zd

(
1 + |k|2

)s∣
∣(Ff)(k)∣∣2 < +∞, (1.4)

where (Ff)(k) = ∫
Rd f(x)e−ikxdx is the Fourier transform of f ∈ Hs(Rd).

(2) Also, we need the following basic Moser-type calculus inequalities (see,
Klainerman and Majda [13, 14]): for f, g, v ∈ Hs and any nonnegative multi-index α, |α| ≤ s,

∥∥Dα
x(fg)

∥∥
L2 ≤ Cs

(∥∥f
∥∥
L∞
∥∥Ds

xg
∥∥
L2 +

∥∥g
∥∥
L∞
∥∥Ds

xf
∥∥
L2

)
, s ≥ 0, (1.5)

∥∥Dα
x(fg) − fDα

xg
∥∥
L2 ≤ Cs

(∥∥Dxf
∥∥
L∞

∥∥∥Ds−1
x g

∥∥∥
L2

+
∥∥g

∥∥
L∞
∥∥Ds

xf
∥∥
L2

)
, s ≥ 1, (1.6)

‖Ds
xA(v)‖L2 ≤ Cs

s∑

j=1

‖Ds
xA(v)‖L∞(1 + ‖∇v‖L∞)s−1‖Ds

xv‖L2 , s ≥ 1. (1.7)

(3) (Sobolev’s inequality). For s > d/2,

∥∥f
∥∥
L∞ ≤ Cs

∥∥f
∥∥
s. (1.8)

(4) If s > d/2, then for f, g ∈ Hs and |α| ≤ s,

∥∥Dα
x(fg)

∥∥
L2 ≤ Cs

∥∥f
∥∥
s

∥∥g
∥∥
s. (1.9)

2. The Local Existence

In this section, we give our main result about local existence. For this purpose, we first rewrite
the system (1.1) as a symmetric hyperbolic system of first order. Then, we prove the local
existence and uniqueness of smooth solutions to the Cauchy problem for (1.1).
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For smooth solutions, the system (1.1) can be rewritten as follows:

∂tρ + div
(
ρu
)
= 0,

∂tu + (u · ∇)u +
Rθ

ρ
∇ρ +

(

R +
4εθ3

3ρ

)

∇θ = 0,

∂tθ + (u · ∇)θ +

(

Rθ +
(4/3 − 4R)εθ4

ρ + 4εθ4

)

divu = 0.

(2.1)

In fact, (2.1) is a non-relativistic, non-isotropic, and compressible Euler equations.
For convenience, we introduce the following two functions:

f1
(
ρ, θ

)
=

4θ3

3ρ
,

f2
(
ρ, θ

)
=

(4/3 − 4R)θ4

ρ + 4εθ4
.

(2.2)

Then, (2.1) can be rewriten as follows:

∂tρ + div
(
ρu
)
= 0,

∂tu + (u · ∇)u +
Rθ

ρ
∇ρ +

(
R + f1ε

)∇θ = 0,

∂tθ + (u · ∇)θ +
(
Rθ + f2ε

)
divu = 0.

(2.3)

Denote the vector and matrix

V =
(
ρ,u, θ

)T
, Ãj(V ) = ujI(d+2)×(d+2) +

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

0 ρeTj 0

Rθ

ρ
ej 0

(
R + f1ε

)
ej

0
(
Rθ + f2ε

)
eTj 0

⎞

⎟⎟⎟⎟
⎟⎟⎟
⎠

, (2.4)

where (e1, . . . , ed) is the canonical basis of Rd and yi denotes the ith component of y ∈ R
d.

Thus, we can rewrite the system (2.3) as follows:

∂tV +
d∑

j=1

Ãj(V )∂xjV = 0. (2.5)

We will study the Cauchy problem for (2.5) together with the initial data

V (x, 0) = V0(x), x ∈ R
d. (2.6)
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It is not difficult to see that the equations of V in (2.5) are symmetrizable and
hyperbolic. If we introduce the (d + 2) × (d + 2) matrix

A0(V ) =

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎜
⎝

ρ−1 0 0

0
ρ

Rθ
0

0 0
ρ
(
R + f1ε

)

Rθ
(
Rθ + f2ε

)

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎟
⎠

, (2.7)

which is positive definite for ε 
 1, thenAj(V ) = A0(V )Ãj(V ) are symmetric for all 1 ≤ j ≤ d.
Note that for smooth solutions, (2.3) is equivalent to that of (2.5).

Noticing the above facts and using the standard iteration techniques of local existence
theory for symmetrizable hyperbolic system (see [15]), we have the following.

Theorem 2.1. Assume that V0 ∈ Hs, s > d/2+1, V0(x) ∈ G1,G1 ⊂⊂ G = {V : ρ, θ ≥ C1 > 0}, and
C1 is a positive constant. Then there exists a time interval [0, T] with T > 0, such that (2.5) and (2.6)
have a unique solution V (x, t) ∈ C1(Rd×[0, T]),with V (x, t) ∈ G2, G2 ⊂⊂ G for (x, t) ∈ R

d×[0, T].
Furthermore, V ∈ C([0, T],Hs) ∩ C1([0, T],Hs−1), and T depends on ε, ‖V0‖s and G1.

3. Asymptotic Analysis

3.1. Formal Asymptotic Expansions

Let (ρε,uε, θε) be the smooth solution to the system (2.3). In this section, we are going to
study the formal expansions of (ρε,uε, θε) as ε → 0. To this end, we assume that initial data
(ρε0,u

ε
0, θ

ε
0) have the asymptotic expansion with respect to ε:

ρε0(x) =
m∑

j=0

εjρj(x) + εm+1ρεm+1(x),

uε
0(x) =

m∑

j=0

εjuj(x) + εm+1uε
m+1(x),

θε
0(x) =

m∑

j=0

εjθj(x) + εm+1θε
m+1(x).

(3.1)

Then, we take the following ansatz:

ρε(x, t) =
∑

j≥0
εjρj(x, t),

uε(x, t) =
∑

j≥0
εjuj(x, t),

θε(x, t) =
∑

j≥0
εjθj(x, t),

(3.2)
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in terms of ε for the solutions to the system (2.3). Substituting the expansion (3.2) into the
system (2.3), we have the following.

(1) The leading terms (p0,u0, θ0) satisfy the following problem:

∂tρ
0 + div

(
ρ0u0

)
= 0,

∂tu0 +
(
u0 · ∇

)
u0 +

Rθ0

ρ0
∇ρ0 + R∇θ0 = 0,

∂tθ
0 + Rθ0 divu0 +

(
u0 · ∇

)
θ0 = 0,

(
ρ0,u0, θ0

)
(t = 0) =

(
ρ0,u0, θ0

)
.

(3.3)

These are nonisentropic and compressible Euler equations of ideal fluids. In fact, (3.3) is
equivalent to (1.3).

(2) For any j ≥ 1, the profiles (ρj ,uj , θj) satisfy the following problem for linearized
equations:

∂tρ
j +

j∑

k=0

div
(
ρkuj−k

)
= 0,

∂tuj +
j∑

k=0

(
uk · ∇

)
uj−k + R

(
θj∇ ln ρ0 + θ0∇

(
ln′ρ0ρj

)
+∇θj

)
+ g

j−1
1 = 0,

∂tθ
j +

j∑

k=0

(
uk · ∇

)
θj−k + R

j∑

k=0

θk divuj−k + g
j−1
2 = 0,

(
ρj ,uj , θj

)
(t = 0) =

(
ρj ,uj , θj

)
,

(3.4)

where g0
i = 0 (i = 1, 2) for j ≥ 1. In fact, gj−1

i (i = 1, 2) depends only on ({ρk, uk, θk}k≤j−1) and
can be obtained from the following relation:

g
j−1
1 =

R

j!
dj

dεj

⎡

⎣

⎛

⎝

⎛

⎝θ0 +
∑

j≥1
εjθj

⎞

⎠∇ ln

⎛

⎝ρ0 +
∑

j≥1
εjρj

⎞

⎠

⎞

⎠ + f1

⎛

⎝ρ0 +
∑

j≥1
εjρj , θ0 +

∑

j≥1
εjθj

⎞

⎠ε

⎤

⎦

∣∣∣∣∣∣
ε=0

− R
(
θj∇ ln ρ0 + θ0∇

(
ln’ρ0ρj

))
,

g
j−1
2 =

1
j!

dj

dεj

⎡

⎣f2

⎛

⎝ρ0 +
∑

j≥1
εjρj , θ0 +

∑

j≥1
εjθj

⎞

⎠div

⎛

⎝u0 +
∑

j≥1
εjuj

⎞

⎠ε

⎤

⎦

∣∣∣∣∣∣
ε=0

.

(3.5)
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3.2. Determination of Formal Expansions

3.2.1. Preliminary

From (3.4), we know that once (ρ0,u0, θ0) are solved from the problem (3.3), (ρ1,u1, θ1) are
solutions to the following problem for a linearized equations:

∂tρ
1 + div

(
ρ0u1 + ρ1u0

)
= 0,

∂tu1 +
(
u0 · ∇

)
u1 +

(
u1 · ∇

)
u0 + R

(
θ1∇ ln ρ0 + θ0∇ln′ρ0ρ1 +∇θ1

)
+ f0

1 = 0,

∂tθ
1 +

(
u0 · ∇

)
θ1 +

(
u1 · ∇

)
θ0 + Rθ0 divu1 + Rθ1 divu0 + f0

2 divu
0 + f0

3

(
u0 · ∇

)
θ0 = 0,

(
ρ1,u1, θ1

)
(t = 0) =

(
ρ1,u1, θ1

)
,

(3.6)

where

(
f0
1 , f

0
2

)
=
(
f1, f2

)|(ρ,θ)=(ρ0,θ0). (3.7)

Inductively, suppose that (pk,uk, θk)k≤j−1 are solved already for some j ≥ 2, from (3.4), we
know that (pj ,uj , θj) satisfy the following linear problem:

∂tρ
j +

j∑

k=0

div
(
ρkuj−k

)
= 0,

∂tuj +
j∑

k=0

(
uk · ∇

)
uj−k + R

(
θj∇ ln ρ0 + θ0∇

(
ln′ρ0ρj

)
+∇θj

)
= −gj−1

1 ,

∂tθ
j + R

j∑

k=0

θk divuj−k +
j∑

k=0

(
uk · ∇

)
θj−k = −gj−1

2 ,

(
ρj ,uj , θj

)
(t = 0) =

(
ρj ,uj , θj

)
.

(3.8)

Thus, in order to determine the profiles (ρε,uε, θε),we require to solve the nonlinear problem
(3.3) for (ρ0,u0, θ0) and the linear system (3.8).

3.2.2. Existence and Uniqueness of Solution (ρ0,u0, θ0)

Obviously, (3.3) are nonisentropic and compressible Euler equations. Thus, we recall
the following the classical result on the existence of sufficiently regular solutions of the
compressible Euler equations, see [15].
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Proposition 3.1. Assume that (ρ0,u0, θ0) ∈ Hs+1 ∩L∞(Rd) with ρ0, θ0 ≥ C1 > 0 and s > d/2+ 1.
Then, there is a finite time T ∈ (0,∞), depending on the Hs and L∞ norms of the initial data, such
that the Cauchy problem (3.3) has a unique bounded smooth solution (ρ,u, θ) ∈ C([0, T];Hs+1) ∩
C1([0, T];Hs).

3.2.3. Existence and Uniqueness of Solution (ρj,uj , θj) for j ≥ 1

Now, let us briefly describe the solvability of (ρj ,uj , θj) for any j ≥ 1 from the problem (3.3)
and (3.8) provided that we have known (ρk,uk, θk)k≤j−1 already. Thus, (ρ

j ,uj , θj) satisfy the
following linear system:

∂tρ
j + div

(
ρ0uj + ρju0

)
= −

j−1∑

k=0

div
(
ρkuj−k

)
,

∂tuj +
(
u0 · ∇

)
uj +

(
uj · ∇

)
u0 + R

(
θj∇ ln ρ0 + θ0∇

(
ln′ρ0ρj

)
+∇θj

)
= G

j−1
1 ,

∂tθ
j + R

(
θ0 divuj + θj divu0

)
+
(
u0 · ∇

)
θj +

(
uj · ∇

)
θ0 = G

j−1
2 ,

(
ρj ,uj , θj

)
(t = 0) =

(
ρj ,uj , θj

)
,

(3.9)

where

G
j−1
1 = −gj−1

1 −
j−1∑

k=0

(
uk · ∇

)
uj−k,

G
j−1
2 = −gj−1

2 − R
j−1∑

k=0

θk divuj−k −
j−1∑

k=0

(
uk · ∇

)
θj−k.

(3.10)

It is not difficult to see that the system (3.9) can be rewritten as a symmetrizable
hyperbolic system. Thus, by the standard existence theory of local smooth solutions of
symmetrizable hyperbolic equations (see [15]), we have

Proposition 3.2. Let T0 ∈ (0, T], and assume that (ρj ,uj , θj) ∈ Hs ∩ L∞, s > d/2 + 1. Then, there
exists a time interval [0, T0], such that (3.9) or (3.8) has a unique smooth solution (ρj ,uj , θj) ∈
∩1
i=0C

i([0, T0],Hs−i(Rd)).

Remark 3.3. In particular, if the initial data is C∞, the solution of (3.9) or (3.8) belongs to
C∞([0, T0] × R

d).

4. Convergence to Compressible Euler Equations

In this section, we are devoted to prove the convergence of system (2.3) to compressible Euler
equations.
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4.1. Derivation of Error Equations

For any fixed integers m ≥ 1 and s0 > d/2 + 2, set

ρεa,m(x, t) =
m∑

j=0

εjρj(x, t),

uε
a,m(x, t) =

m∑

j=0

εjuj(x, t),

θε
a,m(x, t) =

m∑

j=0

εjθj(x, t),

(4.1)

with (ρj ,uj , θj) being given by Proposition 3.2. From the asymptotic analysis of Section 3.1,
we know that (ρεa,m,u

ε
a,m, θ

ε
a,m) satisfy the following problem:

∂tρ
ε
a,m + div

(
ρεa,mu

ε
a,m

)
= Rε

ρ,

∂tuε
a,m +

(
uε
a,m · ∇)uε

a,m +
Rθε

a,m

ρεa,m
∇ρεa,m +

(
R + f1a,mε

)∇θε
a,m = Rε

u,

∂tθ
ε
a,m +

(
Rθε

a,m + f2a,mε
)
divuε

a,m +
(
uε
a,m · ∇)θε

a,m = Rε
θ,

(
ρεa,m,u

ε
a,m, θ

ε
a,m

)|t=0 =
m∑

j=0

εj
(
ρj ,uj , θj

)
(x, 0),

(4.2)

where

(
f1a,m, f2a,m

)
=
(
f1, f2

)(
ρεa,m, θ

ε
a,m

)
, (4.3)

and the remainders Rε
ρ, R

ε
u, and Rε

θ
satisfy

sup
0≤t≤T0

∥∥∥(Rε
ρ, R

ε
u, R

ε
θ)
∥∥∥
Hs0

< Mεm, (4.4)

for some constant M > 0 independent of ε.
Now, we let (ρε,uε, θε) be the smooth solution to the system (2.3) and denote

(Nε,Uε,Θε) =
(
ρε − ρεa,m,u

ε − uε
a,m, θ

ε − θε
a,m

)
. (4.5)
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Obviously, (Nε,Uε,Θε) satisfy the following problem:

∂tN
ε + div

(
Nε(Uε + uε

a,m

)
+ ρεa,mU

ε) = −Rε
ρ,

∂tU
ε +

((
Uε + uε

a,m

) · ∇)Uε +
R
(
Θε + θε

a,m

)

Nε + ρεa,m
∇Nε +

(
R + fε

1

)∇Θε + (Uε · ∇)uε
a,m

+
Rρεa,mΘ

ε − RNεθε
a,m

ρεa,m
(
Nε + ρεa,m

) ∇ρεa,m +
(
fε
1 − f1a,m

)∇θε
a,mε = −Rε

u,

∂tΘε +
(
R
(
Θε + θε

a,m

)
+ fε

2 ε
)
divUε +

(
Uε + uε

a,m

) · ∇Θε

+
(
RΘε +

(
fε
2 − f2a,mε

))
divuε

a,m + (Uε · ∇)θε
a,m = −Rε

θ,

(Nε,Uε,Θε)|t=0 =
(
Nε

0 , U
ε
0,Θ

ε
0

)
,

(4.6)

where

(
fε
1 , f

ε
2

)
=
(
f1, f2

)(
Nε + ρεa,m,Θ

ε + θε
a,m

)
,

(
Nε

0 , U
ε
0,Θ

ε
0

)
=
(
ρε0 − ρεa,m(x, 0),u

ε
0 − uε

a,m(x, 0), θ
ε
0 − θε

a,m(x, 0)
)
.

(4.7)

Set

V ε = (Nε,Uε,Θε)T ,

Ãj(V ε)=
(
Uε+ uε

a,m

)
I(d+2)×(d+2)+

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
(
Nε + ρεa,m

)
eTj 0

R
(
Θε + θε

a,m

)

Nε + ρεa,m
ej 0

(
R + fε

1 ε
)
ej

0
[
R
(
Θε + θε

a,m

)
+ fε

2 ε
]
eTj 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

H1(V ε) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Nε divuε
a,m +Uε · ∇ρεa,m

(Uε · ∇)uε
a,m +

Rρεa,mΘ
ε − RNεθε

a,m

ρ
(
Nε + ρεa,m

) ∇ρεa,m

RΘε divuε
a,m +Uε · ∇θε

a,m

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

H2(V ε) =

⎛

⎜⎜⎜
⎝

0
(
fε
1 − f1a,m

)∇θε
a,m

(
fε
2 − f2a,mε

)
divuε

a,m

⎞

⎟⎟⎟
⎠

, Rc = −

⎛

⎜⎜⎜
⎝

Rε
ρ

Rε
u

Rε
θ

⎞

⎟⎟⎟
⎠

,

V ε|t=0 =
(
Nε

0 , U
ε
0,Θ

ε
0

)
.

(4.8)
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Thus, the problem (4.6) for the unknown V ε can be rewritten as

∂tV
ε +

3∑

j=1

Aj(V ε)∂xjV
ε +H1(V ε) = −H2(V ε)ε + Rε,

V ε|t=0 = V ε
0 =

(
Nε

0 , U
ε
0,Θ

ε
0

)
.

(4.9)

It is easy to see that the equations of V ε in (4.6) are symmetrizable and hyperbolic if
we introduce

A0(V ε) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜⎜
⎝

R
(
Nε + ρεa,m

)2 0 0

0
1

Θc + θε
a,m

Id×d 0

0 0
R + fε

1 ε(
Θε + θε

a,m

)(
R
(
Θε + θε

a,m

)
+ fε

2 ε
)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟⎟
⎠

, (4.10)

which is positively definite. When Nε + ρεa,m,Θ
ε + θε

a,m ≥ C > 0 for ε 
 1, then Ãj(V ε) =
A0(V ε)Aj(V c) are symmetric for all 1 ≤ j ≤ d.

4.2. Proof of Convergence

Obviously, the existence and uniqueness of smooth solutions of (2.3) are equivalent to that of
(4.6) or (4.9). Then, in order to rigorously justify the convergence of (2.3) to (1.3), it suffices
to obtain their uniform estimates with respect to the light speed c. This will be done by using
iteration techniques for the symmetrizable hyperbolic problem.

More amply, we solve the nonlinear problem (4.9) by the following iteration for linear
problems (cf. [15]):

∂tV
ε,k+1 +

d∑

j=1

Aj

(
V ε,k

)
∂xjV

ε,k+1 +H1

(
V ε,k

)
= −H2

(
V ε,k

)
c−3 + Rε,

V ε,k+1|t=0 = V ε
0 ,

(4.11)

with

V ε,0(x, t) = V ε
0 (x). (4.12)

To study the problem (4.9) and (4.11), we introduce the Sobolev’s norms:

‖V (t)‖l =
⎛

⎝
∑

|α|≤l
‖∂αxV (t)‖2L2(Rd)

⎞

⎠

1/2

, ‖V (t)‖l,T = sup
0≤t≤T

‖V (t)‖l, l ∈ N
∗. (4.13)

The key point for proving the convergence as ε → 0 is the following a priori estimate.
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Lemma 4.1. Let s and l be two integers such that d/2 + 1 < l ≤ s. Assume that

∥
∥V ε

0

∥
∥
l ≤ M1ε

m, (4.14)

for some constant M1 > 0 independent of ε. Then, there exist constants M2 > 0,M3 > 0, ε0 > 0, and
T1 ∈ (0, T0], such that for all ε ≤ ε0 the solutions V ε,k of (4.11) satisfy

∥
∥
∥V ε,k

∥
∥
∥
l,T1

≤ M2ε
m, ∀k ∈ N, (4.15)

∥
∥
∥∂tV ε,k

∥
∥
∥
l−1,T1

≤ M3ε
m, ∀k ∈ N. (4.16)

Proof. Let α ∈ N
d with |α| ≤ l. We define V ε,k

α by V ε,k
α = ∂αxV

ε,k; thus, it is not difficult to know
that α ∈ N

d satisfies the following problem:

A0

(
V ε,k

)
∂tV

ε,k+1
α +

d∑

j=1

A0

(
V ε,k

)
Ãj

(
V ε,k

)
∂xjV

ε,k+1
α = Rε,k

α ,

V ε,k+1
α |t=0 = ∂αxV

ε
0 ,

(4.17)

where Rε,k
α is defined by

Rε,k
α = A0

(
V ε,k

)
∂αx

(
−H1

(
V ε,k

)
−H2

(
V ε,k

)
ε + Rc

)

+
d∑

j=1

A0

(
V ε,k

)(
Aj

(
V ε,k

)
V ε,k+1
α − ∂αx

(
Aj

(
V ε,k

)
V ε,k+1

))
.

(4.18)

Estimates (4.15)-(4.16) are obviously true for k = 0 with any T1 > 0. By induction on
k, assume (4.15)-(4.16) hold for some k ≥ 1 where M2 > 0 and T1 > 0 are to b fixed, and we
want to obtain (4.15) for k + 1, that is:

∥∥∥V ε,k+1
∥∥∥
l,T1

≤ M2ε
m, (4.19)

which implies, together with (4.11)1, that

‖∂tV ε,k+1‖l−1,T1 ≤ M3ε
m. (4.20)

In what follows we let Mi (i ≥ 4) be various positive constants independent of ε, k ∈ N,M2,
and M3.
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Equation (4.15) implies that the matrix A0(V ε,k) is positively definite, uniformly with
respect to ε, k ∈ N,M2, and

∥
∥
∥V ε,k

∥
∥
∥
l,T1

≤ 1,
∥
∥
∥∂tV ε,k

∥
∥
∥
l−1,T1

≤ 1, (4.21)

for all ε ≤ ε0 with some ε0 > 0. Because l > d/2 + 1, we obtain

divAj

(
V ε,k

)
= ∂tA0

(
V ε,k

)
+

d∑

j=1

∂xjAj

(
V ε,k

)
, (4.22)

satisfying

∥
∥∥divAj(V ε,k)

∥
∥∥
L∞(Rd×[0,T1])

≤ M4. (4.23)

Employing the classical energy estimate of symmetric hyperbolic equations to the
problem (4.17)1, we can obtain

sup
0≤t≤T1

∥∥∥V ε,k+1
α

∥∥∥
L2(Rd)

≤ M5e
M5T1

(
∥∥∂αxV

ε
0

∥∥
L2(Rd) +

∫T1

0

∥∥∥Rε,k
α (τ)

∥∥∥
L2(Rd)

dτ

)

. (4.24)

By the definition of Rε,k
α in (4.18), the classical Moser-type inequality (1.5), (1.7), and

Sobolev’s embedding lemma with l > d/2 + 1, we deduce that

∫T1

0

∥∥∥Rε,k
α (τ)

∥∥∥
L2(Rd)

dτ ≤ C(M2)T1
(
εm +

∥∥∥V ε,k+1
∥∥∥
l,T1

)
. (4.25)

Here the constant C(M2) > 0 may depend on M2. Now, substituting (4.25) into (4.24) and
using (4.14), one gets

∥
∥∥V ε,k+1

α

∥∥∥
L2(Rd)

≤ M5e
M5T1(M1 + C(M2)T1)εm +M5e

M5T1C(M2)T1
∥∥∥V ε,k+1

α

∥∥∥
L2(Rd)

. (4.26)

Now, we choose T1 > 0 such that

eM5T1 ≤ 2, C(M2)T1 ≤ 1, M5e
M5T1C(M2)T1 ≤ 1

2
(4.27)

Then
∥∥∥V c,k+1

∥∥∥
l,T1

≤ M2ε
m, (4.28)

withM2 = 4M5(M1 + 1). The proof of Lemma 4.1 is complete.

Returning to the problem (2.3) and (4.6), we conclude the following.
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Theorem 4.2. For any fixed integers s > d/2 + 1, suppose that

∥
∥
∥
∥
∥
∥
(ρε0,u

ε
0, θ

ε
0) −

m∑

j=0

εj(ρj ,uj , θj)

∥
∥
∥
∥
∥
∥
s

≤ Mεm. (4.29)

Then the solution of (2.3) satisfies

∥
∥
∥
∥
∥
∥
(ρε,uε, θε) −

m∑

j=0

εj(ρj ,uj , θj)

∥
∥
∥
∥
∥
∥
s,T1

≤ Mεm, (4.30)

whereM > 0 is a constant independent of ε.

Proof. First, the uniform estimates (4.15)-(4.16), together with (4.11), yield the bound of
the sequence {V ε,k}k∈N in L∞([0, T1],Hs(Rd)) ∩ W1,∞([0, T1], and Hs−1(Rd)). Then Aubin’s
lemma implies that {V ε,k}k∈N is compact in C([0, T1], C1(Rd)). Hence, up to a subsequence,
{V ε,k}k∈N convergence to some V ε in the space C([0, T1], C1(Rd)) as k → ∞. Combining
this with the bound results (4.15)-(4.16), we have V ε ∈ C([0, T1],Hs(Rd)) ∩ Lip([0, T1], and
Hs−1(Rd)). Furthermore, a similar argument as in [15] (see Theorem 2.1(b)) gives V ε ∈
C1([0, T1],Hs−1(Rd)). Passing to the limit k → ∞ in the system (4.11) shows that V ε is a
classical solution to the problem (4.6). The uniqueness implies the convergence of the whole
sequence {V ε,k}k∈N to V ε.

Finally, the estimate (4.30) can be easily derived from the estimate (4.24). This ends
the proof of Theorem 4.2.
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