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An infinite plane problem with a circular boundary under the screw dislocation is solved by
using a new method. The angle-based fundamental solution for screw dislocation is expanded into
degenerate kernel. Our method can explain why the image screw dislocation is required. Besides,
the location of the image point can be obtained easily by using degenerate kernel after satisfying
boundary conditions. Even though the image concept is required, the location of image point can
be determined straightforwardly through the degenerate kernel instead of the method of reciprocal
radii. Finally, two examples are demonstrated to verify the validity of the present method.

1. Introduction

The dislocation theory is essential for understanding many physical and mechanical
properties of crystalline solids. Many researchers investigated the dislocation problems in
the past years. Smith [1] successfully solved the problem of the interaction between a screw
dislocation and a circular or elliptic inclusion contained within an infinite body subject
to a uniform applied shear stress at infinity by using the complex-variable function and
circle theorem. Dundurs [2] solved the screw dislocation with circular inclusion problem by
using the image technique. Later, Sendeckyj [3] employed the complex-variable function in
conjunction with the inverse point method to solve the problem of the screw dislocation near
an arbitrary number of circular inclusions. Almost all above problems were solved by using
the complex-variable technique. Its extension to three-dimensional cases may be limited. A
more general approach is nontrivial for further investigation.
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Figure 1: Method of reciprocal radii.

In the potential theory, it is well known that the image method can solve potential
problems when the fundamental solution is known. The image point was found in a semi-
inverse method a priori through the reciprocal radii in the Sommerfeld’s book [4] as shown
in Figure 1. Sommerfeld and Greenberg [5] both utilized the concept of reciprocal radii of
Thomson [6] to derive the Poisson integral formula. It is important to find where the location
of image point is. However, we do not find a natural and logical way about how to determine
the location of image point in the literature until an alternative way proposed by Chen
and Wu [7]. Chen and Wu derived the location of image point for a source singularity in
a straightforward way through the use of degenerate kernel and proved an alterative way
to derive the Poisson integral formula. The fundamental solutions of source singularity are
expanded into degenerate kernels for constructing the Green’s function. Since the degenerate
kernel separates the source and field points for the closed-form fundamental solution, it plays
an important role in studying the image location [8, 9]. To determine the location of image
point for screw dislocation in a straightforward way is the main concern of the present paper.

In this paper, we will introduce the degenerate (or so-called separable) kernel for the
angle-based fundamental solution (ψ) for the screw dislocation instead of radial-basis one
(ln r) for the source singularity. By employing the degenerate kernel, the closed-form Green’s
function is expanded into the degenerate form. Also, the location of image point is found in
a straightforward way. The two-dimensional Laplace exterior problems are solved. Finally,
two examples were given to demonstrate the validity of the present method.

2. Degenerate (Separable) Kernel for the Angle-Based
Fundamental Solution

It is well known that the fundamental solution of two-dimension Laplace problem with a
concentrated source is ln(r), where r is the distance between the field point x and the source
point s as shown in Figure 2. The strength of the fundamental solution is −2π instead of unity.
Here, we give the screw dislocation to replace the concentrated source and then the angle-
based fundamental solution ψ is used to substitute the radial-based one as shown in Figure 2.
In order to fully capture circular geometry, we utilize the polar coordinates to replace the
Cartesian coordinates. Therefore, the location of the screw dislocation s and the position of
field point x are expressed as (R, θ) and (ρ, φ), respectively, in the polar coordinate system.
The position vector of screw dislocation point s can be written as complex form, zs = Reiθ.
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Figure 2: Sketch of the concentrated source and the screw dislocation.

Similarly, the field point x can be expressed by zx = ρeiφ in the complex plane as shown in
Figure 2. By decomposing the ln(zx − zs) into real and imaginary parts, we have

ln(zx − zs) = ln
(
reiψ

)
= ln r + iψ. (2.1)

The real part (ln r) is the fundamental solution of the source singularity while the imaginary
part (ψ) denotes the fundamental solution of the screw dislocation. For the exterior case (R <
ρ), (2.1) can be expanded as follows:

ln(zx − zs) = ln(zx) + ln
(

1 − zs
zx

)

= ln
(
ρeiφ

)
−

∞∑
m=1

1
m

(
zs
zx

)m

= ln ρ + iφ −
∞∑

m=1

1
m

(
Reiθ

ρeiφ

)m

= ln ρ + iφ −
∞∑

m=1

1
m

(
R

ρ

)m[
cosm

(
θ − φ

)
+ i sinm

(
θ − φ

)]
.

(2.2)

Thus, the degenerate form for the fundamental solution of the screw dislocation, ψ(s, x), can
be expressed as

ψ(s, x) = φ −
∞∑

m=1

1
m

(
R

ρ

)m

sinm
(
θ − φ

)
, ρ > R. (2.3)
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Similarly, we have

ψ(s, x) = θ + π +
∞∑

m=1

1
m

( ρ

R

)m

sinm
(
θ − φ

)
, ρ < R, (2.4)

for the interior case. In Figure 2, the range of ψ(s, x) is defined between 0 and 2π . To match the
physical meaning and mathematical requirement, we modify the range of interest between
−π and π . Thus, the fundamental solution of the screw dislocation ψ(s, x) is expressed by

ψ(s, x) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

ψI
(
R, θ; ρ, φ

)
= θ +

∞∑
m=1

1
m

( ρ

R

)m

sinm
(
θ − φ

)
, ρ < R,

ψE
(
R, θ; ρ, φ

)
= φ − π −

∞∑
m=1

1
m

(
R

ρ

)m

sinm
(
θ − φ

)
, ρ > R,

(2.5)

where the superscripts I and E denote the interior and exterior cases, respectively. It is noted
that the denominator in (2.5) involves the larger argument to ensure the series convergence.
The displacement contour of the screw dislocation in the four quadrants by using (2.5) is
shown in Figures 3(a)–3(d). When the screw dislocation locates at the four quadrants, there
are certain areas falling outside the range between −π and π . We subtract 2π , where the
value is greater than π to ensure the value in the range. Similarly, we add 2π , where the
value is smaller than −π . When the response falls in the defined range, Figure 4 shows
the displacement contour for the screw dislocation. To the authors’ best knowledge, the
degenerate kernel for the angle-based fundamental solution was not found in the literature.

3. 2D Exterior Problem

For the problem of an infinite plane problem with a circular boundary under the screw
dislocation as shown in Figure 5(a), the function of displacement field satisfies

∇2UG(x) = 0, x ∈ Ω,

UG

(
ρ, φ

)
|φ=2π −UG

(
ρ, φ

)
|φ=0 = b, ρ > R,

(3.1)

where Ω is the domain of interest and b is the Burger’s vector which is equal to 2π in this
paper. The boundary condition on the circular boundary is the Dirichlet type

UG(x)|x∈B= UG

(
ρ, φ

)
|ρ=a = 0, (3.2)

where a is the radius of the circular boundary and B is the circular boundary. By employing
the image method, the image point is located outside the domain and the solution can be
represented as follows:

UG

(
x; s, s′

)
= ψ(s, x) + ψ

(
s′, x

)
+ c, (3.3)
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(a) Screw dislocation in the first quadrant without
modification (R = 1.5, θ = π/4)
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(b) Screw dislocation in the second quadrant with-
out modification (R = 1.5, θ = 3π/4)
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(c) Screw dislocation in the third quadrant without
modification (R = 1.5, θ = 5π/4)

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

−1
−1.5 −2

−2.5

3

3

2.5

2

6.5

4.5

1 1.
50.5

0

6

0.5

0

3−0.5

5.5

−2

3.5
4

5

(d) Screw dislocation in the forth quadrant without
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Figure 3: Screw dislocation in (a) the first, (b) the second, (c) the third, and (d) the forth quadrant without
modification.

where s′ is the location of image point, c is a free constant, and

ψ(s, x) = θ +
∞∑

m=1

1
m

( ρ

R

)m

sinm
(
θ − φ

)
, ρ < R,

ψ
(
s′, x

)
= φ − π −

∞∑
m=1

1
m

(
R′

ρ

)m

sinm
(
θ′ − φ

)
, ρ > R′.

(3.4)
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Figure 4: Screw dislocation in the first quadrant after modification (R = 1.5, θ = π/4).
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Figure 5: 2D exterior problem (a) Dirichlet boundary condition and (b) Neumann boundary condition.

In order to match the boundary condition and the Burger’s vector, first the sum of series is
independent of φ. Therefore, we choose the collinear points s and s′, that is, θ = θ′ and we
have

∞∑
m=1

1
m

( a

R

)m
sinm

(
θ − φ

)
−

∞∑
m=1

1
m

(
R′

a

)m

sinm
(
θ − φ

)
= 0. (3.5)
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Finally, we can obtain the location of image point

R′

a
=

a

R
=⇒ R′ =

ρ2

R
=

a2

R
, (3.6)

ψ(s, x) + ψ
(
s′, x

)
= θ + φ − π. (3.7)

Second, we found that c is equal to (−θ − φ + π) and the solution UG(x; s, s′) automatically
matches the boundary condition and Burger’s vector. The displacement field of the closed-
form Green’s function can be obtained as below

UG

(
x; s, s′

)
= ψ(s, x) + ψ

(
s′, x

)
− θ − φ + π. (3.8)

For the domain (a < ρ < R) as shown in Figure 6(a), the Green’s function is expanded into

UG

(
x; s, s′

)
= ψ(s, x) + ψ

(
s′, x

)
− θ − φ + π

= θ +
∞∑

m=1

1
m

( ρ

R

)m

sinm
(
θ − φ

)

+ φ − π −
∞∑

m=1

1
m

(
a2

ρR

)m

sinm
(
θ − φ

)
− θ − φ + π

=
∞∑

m=1

1
m

[( ρ

R

)m

−
(

a2

ρR

)m]
sinm

(
θ − φ

)
, a < ρ < R.

(3.9)

Similarly, the Green’s function in the other region (R < ρ < ∞) is shown in Figure 6(b) and is
expanded into

UG

(
x; s, s′

)
= ψ(s, x) + ψ

(
s′, x

)
− θ − φ + π

= φ − π −
∞∑

m=1

1
m

(
R

ρ

)m

sinm
(
θ − φ

)

+ φ − π −
∞∑

m=1

1
m

(
a2

ρR

)m

sinm
(
θ − φ

)
− θ − φ + π

= φ − θ − π −
∞∑

m=1

1
m

[(
R

ρ

)m

+

(
a2

ρR

)m]
sinm

(
θ − φ

)
, R < ρ < ∞.

(3.10)
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Figure 6: Green’s function of (a) the inner domain (a < ρ < R) and (b) the outer domain (R < ρ < ∞) for
the exterior problem.

For comparison, the closed-form solution of Smith’s solution is expressed in terms of
functions of complex variables

F(z) =
μEb

2πi
log(z − z0) +

μEb

2πi
log

(
a2

z
− z0

)
,

UG(x) =
1
μE

Re[F(z)],

(3.11)

where F(z) and μE denote the complex function and shear modulus, respectively, z0 denotes
the conjugate of the position vector of the screw dislocation, and Re[·] denotes the real part.
Figures 7(a) and 7(b) show the contour of displacement field by using the Smith’s method
[1] and the present approach, respectively. Good agreement is made.

According to the successful experience of the Dirichlet boundary condition for the
exterior problem, we extend our approach to the Neumann boundary condition, as shown in
Figure 5(b),

∂UG(x)
∂nx

∣∣∣∣
x∈B

=
∂UG

(
ρ, φ

)

∂ρ

∣∣∣∣∣
ρ=a

= 0. (3.12)
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Figure 7: Displacement contour (Dirichlet boundary condition) by using (a) the Smith’s method [1] and
(b) the present method (M = 50).
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Figure 8: Displacement contour (Neumann boundary condition) by using (a) the Smith’s method [1] and
(b) the present method (M = 50).

In a similar way, we have the closed-form Green’s function for the Neumann boundary
condition as

UG

(
x; s, s′

)
= ψ(s, x) − ψ

(
s′, x

)
+ φ − π, (3.13)
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and the series form is expressed into two parts. For the domain (a < ρ < R) as shown in
Figure 6(a), the Green’s function is expanded into

UG

(
x; s, s′

)
= ψ(s, x) − ψ

(
s′, x

)
+ φ − π

= θ +
∞∑

m=1

1
m

( ρ

R

)m

sinm
(
θ − φ

)

− φ + π +
∞∑

m=1

1
m

(
a2

ρR

)m

sinm
(
θ − φ

)
+ φ − π

= θ +
∞∑

m=1

1
m

[( ρ

R

)m

+

(
a2

ρR

)m]
sinm

(
θ − φ

)
, a < ρ < R.

(3.14)

For the other domain as shown in Figure 6(b), we have

UG

(
x; s, s′

)
= ψ(s, x) − ψ

(
s′, x

)
+ φ − π

= φ − π −
∞∑

m=1

1
m

(
R

ρ

)m

sinm
(
θ − φ

)

− φ + π +
∞∑

m=1

1
m

(
a2

ρR

)m

sinm
(
θ − φ

)
+ φ − π

= φ − π −
∞∑

m=1

1
m

[(
R

ρ

)m

−
(

a2

ρR

)m]
sinm

(
θ − φ

)
, R < ρ < ∞.

(3.15)

For comparison, the closed-form solution of Smith’s solution is expressed in terms of
functions of complex variable

F(z) =
μEb

2πi
log(z − z0) −

μEb

2πi
log

(
a2

z
− z0

)
,

UG(x) =
1
μE

Re[F(z)].

(3.16)

Figures 8(a) and 8(b) show the contour of displacement field by using the Smith’s method
[1] and the present approach, respectively. It is found that the result of the present approach
is acceptable. Based on the image method, it is a straightforward, logical, and natural way
to find that the location of image point is (a2/R). We summarize the result of our approach
for the screw dislocation and compare with those of Chen and Wu [7] for the source case in
Tables 1 and 2.
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4. Conclusions

For the screw dislocation problem with circular boundaries, we have proposed a natural
approach to construct the screw dislocation solution by using the degenerate kernel. The
angle-based fundamental solution for screw dislocation was derived in terms of degenerate
kernel in this paper. Based on this expression, the image location can be determined instead of
using reciprocal radius. Two examples, including an infinite plane with a circular hole subject
to the Dirichlet and Neumann boundary conditions, were used to demonstrate the validity
of the present formulation.
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