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We study the existence and multiplicity of positive solutions for the following Dirichlet equations:
−Δu + u = λa(x)|u|q−2u + b(x)|u|p−2u in Ω, u = 0 on ∂Ω, where λ > 0, 1 < q < 2 < p < 2∗(2∗ =
2N/(N − 2) if N ≥ 3; 2∗ = ∞ if N = 1, 2), Ω is a smooth unbounded domain in �N , a(x), b(x)
satisfy suitable conditions, and a(x) maybe change sign in Ω.

1. Introduction and Main Results

In this paper, we deal with the existence and multiplicity of positive solutions for the
following semilinear elliptic equation:

−Δu + u = λa(x)|u|q−2u + b(x)|u|p−2u in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(Eλa,b)

where λ > 0, 1 < q < 2 < p < 2∗ (2∗ = 2N/(N − 2) if N ≥ 3, 2∗ = ∞ if N = 1, 2), Ω ⊂ �N is an
unbounded domain, and a, b are measurable functions and satisfy the following conditions:

(A1) a ∈ C(Ω) ∩ Lq∗(Ω) (q∗ = p/(p − q)) with a+ = max{a, 0}/≡ 0 in Ω.

(B1) b ∈ C(Ω) ∩ L∞(Ω) and b+ = max{b, 0}/≡ 0 in Ω.
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Semilinear elliptic equations with concave-convex nonlinearities in bounded domains
are widely studied. For example, Ambrosetti et al. [1] considered the following equation:

−Δu = λuq−1 + up−1 in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(Eλ)

where λ > 0, 1 < q < 2 < p < 2∗. They proved that there exists λ0 > 0 such that (Eλ) admits at
least two positive solutions for all λ ∈ (0, λ0) and has one positive solution for λ = λ0 and no
positive solution for λ > λ0. Actually, Adimurthi et al. [2], Damascelli et al. [3], Ouyang and
Shi [4], and Tang [5] proved that there exists λ0 > 0 such that (Eλ) in the unit ball BN(0; 1)
has exactly two positive solutions for λ ∈ (0, λ0) and has exactly one positive solution for
λ = λ0 and no positive solution exists for λ > λ0. For more general results of (Eλ) (involving
sign-changing weights) in bounded domains, see Ambrosetti et al. [6], Garcia Azorero et al.
[7], Brown and Wu [8], Brown and Zhang [9], Cao and Zhong [10], de Figueiredo et al. [11],
and their references. However, little has been done for this type of problem in unbounded
domains. For Ω = �

N , we are only aware of the works [12–15] which studied the existence
of solutions for some related concave-convex elliptic problems (not involving sign-changing
weights).

Wu in [16] has studied the multiplicity of positive solutions for the following equation
involving sign-changing weights:

−Δu + u = fλ(x)uq−1 + gμ(x)up−1 in �N ,

u > 0 in �N ,

u ∈ H1
(
�
N
)
,

(Efλ,gμ)

where 1 < q < 2 < p < 2∗, the parameters λ, μ ≥ 0. He also assumed that fλ(x) = λf+(x)+f−(x)
is sign-changing and gμ(x) = a(x) + μb(x), where a and b satisfy suitable conditions, and
proved (Efλ,gμ) has at least four positive solutions.

WhenΩ = Ω′ ×� (Ω′ ⊂ �N−1 ,N ≥ 2) is an infinite strip domain, Wu in [17] considered
(Eλa,b) (not involving sign-changing weights) assuming that 0 /≤ a ∈ L2/(2−q)(Ω), 0 ≤ b ∈
C(Ω) satisfies lim|xN |→∞b(x′, xN) = 1 in Ω and there exist δ > 0 and 0 < C0 < 1 such that

b(x′, xN) ≥ 1 − C0e−2
√

1+θ1+δ|xN | for all x = (x′, xN) ∈ Ω, where θ1 is the first eigenvalue of the
Dirichlet problem −Δ in Ω′. The author proved that there exists a positive constant Λ0 such
that for λ ∈ (0,Λ0), (Eλa,b) possesses at least two positive solutions.

Miotto and Miyagaki in [18] have studied (Eλa,b) in Ω = Ω′ ×�, under the assumption
that a ∈ Lγ/(γ−q)(Ω) (q < γ ≤ 2∗) with a+ /≡ 0 and a− is bounded and has a compact support
in Ω and 0 ≤ b ∈ L∞(Ω) satisfies lim|xN |→∞b(x′, xN) = 1 and there exists C0 > 0 such that

b(x′, xN) ≥ 1 − C0e−2
√

1+θ1|xN | for all x = (x′, xN) ∈ Ω, where θ1 is the first eigenvalue of the
Dirichlet problem −Δ inΩ′. It was obtained there existence of Λ0 > 0 such that for λ ∈ (0,Λ0),
(Eλa,b) possesses at least two positive solutions.

In a recent work [19], Hsu and Lin have studied (Eλa,b) in �N under the assumptions
(A1)-(A2), (B1), and (Ωb). They proved that there exists a constant Λ0 > 0 such that for



Boundary Value Problems 3

λ ∈ (0, (q/2)Λ0), (Eλa,b) possesses at least two positive solutions. The main aim of this paper
is to study (Eλa,b) on the general unbounded domains (see the condition (Ωb)) and extend
the results of [19] to more general unbounded domains. We will apply arguments similar
to those used in [20] and prove the existence and multiplicity of positive solutions by using
Ekeland’s variational principle [21].

Set

Λ0 =

(
2 − q(

p − q
)‖b+‖L∞

)(2−q)/(p−2)(
p − 2(

p − q
)‖a+‖Lq∗

)
Sp(Ω)(p(2−q)/2(p−2))+q/2 > 0, (1.1)

where ‖b+‖L∞ = supx∈Ωb
+(x), ‖a+‖Lq∗ = (

∫
Ω |a+|q∗dx)1/q∗ , and Sp(Ω) is the best Sobolev

constant for the imbedding of H1
0(Ω) into Lp(Ω). Now, we state the first main result about

the existence of positive solution of (Eλa,b).

Theorem 1.1. Assume that (A1) and (B1) hold. If λ ∈ (0,Λ0), then (Eλa,b) admits at least one
positive solution.

Associated with (Eλa,b), we consider the energy functional Jλa,b in H1
0(Ω):

Jλa,b(u) =
1
2
‖u‖2H1 − λ

q

∫

Ω
a(x)|u|qdx − 1

p

∫

Ω
b(x)|u|pdx, (1.2)

where ‖u‖H1 = (
∫
Ω(∇u|2 + u2)dx)1/2. By Rabinowitz [22, Proposition B.10], Jλa,b ∈

C1(H1
0(Ω),�). It is well known that the solutions of (Eλa,b) are the critical points of the energy

functional Jλa,b inH1
0(Ω).

Under the assumptions (A1), (B1), and λ > 0, (Eλa,b) can be regarded as a perturbation
problem of the following semilinear elliptic equation:

−Δu + u = b(x)up−1 in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(Eb)

where b(x) ∈ C(Ω) ∩ L∞(Ω) and b(x) > 0 for all x ∈ Ω. We denote by Sb
p(Ω) the best constant

which is given by

Sb
p(Ω) = inf

u∈H1
0 (Ω)\{0}

‖u‖2H1

(∫
Ω b(x)|u|pdx)2/p

. (1.3)
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A typical approach for solving problem of this kind is to use the following Minimax method:

αb
Γ(Ω) = inf

γ∈Γ(Ω)
max
t∈[0,1]

Jb0
(
γ(t)

)
, (1.4)

where

Γ(Ω) =
{
γ ∈ C

(
[0, 1],H1

0(Ω)
)
: γ(0) = 0, γ(1) = e

}
, (1.5)

Jb0 (e) = 0 and e /= 0. By the Mountain Pass Lemma due to Ambrosetti and Rabinowitz [23],
we called the nonzero critical point u ∈ H1

0(Ω) of Jb0 a ground state solution of (Eb) in Ω if
Jb0 (u) = αb

Γ(Ω). We remark that the ground state solutions of (Eb) in Ω can also be obtained
by the Nehari minimization problem

αb
0(Ω) = inf

v∈Mb
0(Ω)

Jb0 (v), (1.6)

where Mb
0(Ω) = {u ∈ H1

0(Ω) \ {0} : ‖u‖2
H1 =

∫
Ω b(x)|u|pdx}. Note that Mb

0(Ω) contains every
nonzero solution of (Eb) in Ω,

αb
Γ(Ω) = αb

0(Ω) =
p − 2
2p

Sb
p(Ω)p/(p−2) > 0 (1.7)

(see Willem [24]), and if b(x) ≡ b∞ > 0 is a constant, then Jb0 and αb
0(Ω) replace J0 and α∞

0 (Ω),
respectively.

The existence of ground state solutions of (Eb) is affected by the shape of the domain
Ω and b(x) that satisfies some suitable conditions and has been the focus of a great deal of
research in recent years. By the Rellich compactness theorem and the Minimax method, it is
easy to obtain a ground state solution for (Eb) in bounded domains. WhenΩ is an unbounded
domain and b(x) ≡ b∞, the existence of ground state solutions has been established by several
authors under various conditions. We mention, in particular, results by Berestycki and Lions
[25], Lien et al. [26], Chen andWang [27], and Del Pino and Felmer [28, 29]. In [25], Ω = �N .
Actually, Kwong [30] proved that the positive solution of (Eb) in �N is unique. In [26], for Ω
is a periodic domain. In [26, 27], the domain Ω is required to satisfy

(Ω1) Ω = Ω1 ∪Ω2, where Ω1, Ω2 are domains in �N and Ω1 ∩Ω2 is bounded;

(Ω2) α∞
0 (Ω) < min{α∞

0 (Ω1), α∞
0 (Ω2)}.

In [28, 29] for 1 ≤ l ≤ N − 1, �N = �
l × �N−l . For a point x ∈ �N , we have x = (y, z),

where y ∈ �l and z ∈ �N−l. Let y ∈ �l , we denote byΩy ⊂ �N−l the projection ofΩ onto �N−l ,
that is,

Ωy =
{
z ∈ �N−l :

(
y, z

) ∈ Ω
}
. (1.8)
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The domain Ω satisfies the following conditions:

(Ω3) Ω is a smooth subset of �N and the projectionsΩy are bounded uniformly in y ∈ �l ;

(Ω4) there exists a nonempty closed set D ⊂ �N−l such that D ⊂ Ωy for all y ∈ �l ;

(Ω5) for each δ > 0, there exists R0 > 0 such that

Ωy ⊂
{
z ∈ �N−l : dist(z,D) < δ

}
(1.9)

for all |y| ≥ R0.
When b(x)/≡ b∞ and b(x) ∈ C(Ω) ∩ L∞(Ω), the existence of ground state solutions

of (Eb) has been established by the condition b(x) ≥ b∞ and the existence of ground state
solutions of limit equation

−Δu + u = b∞up−1 in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

(Eb∞ )

In order to get the second positive solution of (Eλa,b), we need some additional
assumptions for a(x), b(x), and Ω. We assume the following conditions on a(x), b(x), and
Ω:

(Ωb) b(x) > 0 for all x ∈ Ω and (Eb) in Ω has a ground state solution w0 such that
Jb0 (w0) = αb

0(Ω).

(A2)
∫
Ω a(x)|w0|qdx > 0 wherew0 is a positive ground state solution of (Eb) in Ω.

Theorem 1.2. Assume that (A1)-(A2), (B1), and (Ωb) hold. If λ ∈ (0, (q/2)Λ0), (Eλa,b) admits at
least two positive solutions.

Throughout this paper, (A1) and (B1) will be assumed. H1
0(Ω) denotes the standard

Sobolev space, whose norm ‖·‖H1 is induced by the standard inner product. The dual space of
H1

0(Ω)will be denoted byH−1(Ω). 〈·, ·〉 denote the usual scalar product inH1
0(Ω). We denote

the norm in Ls(Ω) by ‖ · ‖Ls for 1 ≤ s ≤ ∞. on(1) denotes on(1) → 0 as n → ∞. C, Ci will
denote various positive constants, the exact values of which are not important. This paper is
organized as follows. In Section 2, we give some properties of Nehari manifold. In Sections 3
and 4, we complete proofs of Theorems 1.1 and 1.2.

2. Nehari Manifold

In this section, we will give some properties of Nehari manifold. As the energy functional
Jλa,b is not bounded below on H1

0(Ω), it is useful to consider the functional on the Nehari
manifold

Mλa,b(Ω) =
{
u ∈ H1

0(Ω) \ {0} : 〈(Jλa,b)′(u), u
〉
= 0

}
. (2.1)
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Thus, u ∈ Mλa,b(Ω) if and only if

〈
(Jλa,b)′(u), u

〉
= ‖u‖2H1 − λ

∫

Ω
a(x)|u|qdx −

∫

Ω
b(x)|u|pdx = 0. (2.2)

Note that Mλa,b(Ω) contains every nonzero solution of (Eλa,b). Moreover, we have the
following results.

Lemma 2.1. The energy functional Jλa,b is coercive and bounded below onMλa,b(Ω).

Proof. If u ∈ Mλa,b(Ω), then by (A1), (2.2), Hölder and Sobolev inequalities

Jλa,b(u) =
p − 2
2p

‖u‖2H1 − λ

(
p − q

pq

)∫

Ω
a(x)|u|qdx (2.3)

≥ p − 2
2p

‖u‖2H1 − λ

(
p − q

pq

)
Sp(Ω)−q/2‖a+‖Lq∗ ‖u‖q

H1 . (2.4)

Thus, Jλa,b is coercive and bounded below on Mλa,b(Ω).

Define

ψλa,b(u) =
〈
(Jλa,b)′(u), u

〉
. (2.5)

Then for u ∈ Mλa,b(Ω),

〈(
ψλa,b

)′(u), u
〉
= 2‖u‖2H1 − λq

∫

Ω
a(x)|u|qdx − p

∫

Ω
b(x)|u|pdx

=
(
2 − q

)‖u‖2H1 −
(
p − q

) ∫

Ω
b(x)|u|pdx

(2.6)

= λ
(
p − q

) ∫

Ω
a(x)|u|qdx − (

p − 2
)‖u‖2H1 . (2.7)

Similar to the method used in Tarantello [20], we split Mλa,b(Ω) into three parts:

M+
λa,b(Ω) =

{
u ∈ Mλa,b(Ω) :

〈(
ψλa,b

)′(u), u
〉
> 0

}
,

M0
λa,b(Ω) =

{
u ∈ Mλa,b(Ω) :

〈(
ψλa,b

)′(u), u
〉
= 0

}
,

M−
λa,b(Ω) =

{
u ∈ Mλa,b(Ω) :

〈(
ψλa,b

)′(u), u
〉
< 0

}
.

(2.8)

Then, we have the following results.
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Lemma 2.2. Assume that uλ is a local minimizer for Jλa,b on Mλa,b(Ω) and uλ /∈M0
λa,b

(Ω). Then
(Jλa,b)′(uλ) = 0 in H−1(Ω).

Proof. Our proof is almost the same as that in Brown and Zhang [9, Theorem 2.3] (or see
Binding et al. [31]).

Lemma 2.3. We have the following.

(i) If u ∈ M+
λa,b(Ω) ∪M0

λa,b(Ω), then
∫
Ω a(x)|u|qdx > 0;

(ii) If u ∈ M−
λa,b

(Ω), then
∫
Ω b(x)|u|pdx > 0.

Proof. The proof is immediate from (2.6) and (2.7).

Moreover, we have the following result.

Lemma 2.4. If λ ∈ (0,Λ0), thenM0
λa,b

(Ω) = ∅ where Λ0 is the same as in (1.1).

Proof. Suppose the contrary. Then there exists λ ∈ (0,Λ0) such that M0
λa,b

(Ω)/= ∅. Then for
u ∈ M0

λa,b
(Ω) by (2.6) and Sobolev inequality, we have

2 − q

p − q
‖u‖2H1 =

∫

Ω
b(x)|u|pdx ≤ ‖b+‖L∞Sp(Ω)−p/2‖u‖p

H1 (2.9)

and so

‖u‖H1≥
(

2 − q(
p − q

)‖b+‖L∞

)1/(p−2)
Sp(Ω)p/2(p−2). (2.10)

Similarly, using (2.7) and Hölder and Sobolev inequalities, we have

‖u‖2H1 = λ
p − q

p − 2

∫

Ω
a(x)|u|qdx ≤ λ

p − q

p − 2
‖a+‖Lq∗Sp(Ω)−q/2‖u‖q

H1 , (2.11)

which implies

‖u‖H1 ≤
(
λ
p − q

p − 2
‖a+‖Lq∗

)1/(2−q)
Sp(Ω)−q/2(2−q). (2.12)

Hence, we must have

λ ≥
(

2 − q(
p − q

)‖b+‖L∞

)(2−q)/(p−2)(
p − 2(

p − q
)‖a+‖Lq∗

)
Sp(Ω)(p(2−q)/2(p−2))+q/2 = Λ0, (2.13)

which is a contradiction. This completes the proof.
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For each u ∈ H1
0(Ω) with

∫
Ω b(x)|u|pdx > 0, we write

tmax(u) =

( (
2 − q

)‖u‖2H1(
p − q

) ∫
Ω b(x)|u|p dx

)1/(p−2)
> 0. (2.14)

Then the following lemma holds.

Lemma 2.5. Let λ ∈ (0,Λ0). For each u ∈ H1
0(Ω) with

∫
Ω b(x)|u|pdx > 0, we have the following.

(i) If
∫
Ω a(x)|u|qdx ≤ 0, then there is a unique t− = t−(u) > tmax(u) such that t−u ∈ M−

λa,b
(Ω)

and

Jλa,b
(
t−u

)
= sup

t≥0
Jλa,b(tu). (2.15)

(ii) If
∫
Ω a(x)|u|qdx > 0, then there are unique

0 < t+ = t+(u) < tmax(u) < t− = t−(u) (2.16)

such that t+u ∈ M+
λa,b

(Ω), t−u ∈ M−
λa,b

(Ω), and

Jλa,b(t+u) = inf
0≤t≤tmax(u)

Jλa,b(tu), Jλa,b
(
t−u

)
= sup

t≥0
Jλa,b(tu). (2.17)

Proof. The proof is almost the same as that in Wu [32, Lemma 5] and is omitted here.

3. Proof of Theorem 1.1

First, we remark that it follows Lemma 2.4 that

Mλa,b(Ω) = M+
λa,b(Ω) ∪M−

λa,b(Ω) (3.1)

for all λ ∈ (0,Λ0). Furthermore, by Lemma 2.5 it follows that M+
λa,b

(Ω) and M−
λa,b

(Ω) are
nonempty, and by Lemma 2.1 we may define

αλa,b = inf
u∈Mλa,b(Ω)

Jλa,b(u);α+
λa,b = inf

u∈M+
λa,b(Ω)

Jλa,b(u);α−
λa,b = inf

u∈M−
λa,b

(Ω)
Jλa,b(u). (3.2)

Then we get the following result.

Theorem 3.1. We have the following.

(i) If λ ∈ (0,Λ0), then we have α+
λa,b

< 0.

(ii) If λ ∈ (0, (q/2)Λ0), then α−
λa,b

> d0 for some d0 > 0.

In particular, for each λ ∈ (0, (q/2)Λ0), we have α+
λa,b

= αλa,b.
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Proof. (i) Let u ∈ M+
λa,b

(Ω). By (2.6),

2 − q

p − q
‖u‖2H1 >

∫

Ω
b(x)|u|pdx (3.3)

and so

Jλ(u) =
(
1
2
− 1
q

)
‖u‖2H1 +

(
1
q
− 1
p

)∫

Ω
b(x)|u|pdx <

[(
1
2
− 1
q

)
+
(
1
q
− 1
p

)(
2 − q

p − q

)]
‖u‖2H1

= −
(
p − 2

)(
2 − q

)

2pq
‖u‖2H1 < 0.

(3.4)

Therefore, α+
λa,b

< 0.
(ii) Let u ∈ M−

λa,b
(Ω). By (2.6),

2 − q

p − q
‖u‖2H1 <

∫

Ω
b(x)|u|pdx. (3.5)

Moreover, by (B1) and Sobolev inequality theorem,

∫

Ω
b(x)|u|pdx ≤ ‖b+‖L∞Sp(Ω)−p/2‖u‖p

H1 . (3.6)

This implies

‖u‖H1 >

(
2 − q(

p − q
)‖b+‖L∞

)1/(p−2)
Sp(Ω)p/2(p−2) ∀ u ∈ M−

λa,b(Ω). (3.7)

By (2.4) and (3.7), we have

Jλa,b(u)

≥ ‖u‖q
H1

[
p − 2
2p

‖u‖2−q
H1 − λ

(
p − q

pq

)
Sp(Ω)−q/2‖a+‖Lq∗

]

>

(
2 − q(

p − q
)‖b+‖L∞

)q/(p−2)
Sp(Ω)pq/2(p−2)

×
⎡
⎣p − 2

2p
Sp(Ω)p(2−q)/2(p−2)

(
2 − q(

p − q
)‖b+‖L∞

)(2−q)/(p−2)
− λ

(
p − q

pq

)
Sp(Ω)−q/2‖a+‖Lq∗

⎤
⎦.

(3.8)
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Thus, if λ ∈ (0, (q/2)Λ0), then

Jλa,b(u) > d0 ∀ u ∈ M−
λa,b(Ω), (3.9)

for some positive constant d0. This completes the proof.

We define the Palais-Smale (simply by (PS)) sequences, (PS)-values, and (PS)-
conditions in H1

0(Ω) for Jλa,b as follows.

Definition 3.2. (i) For c ∈ �, a sequence {un} is a (PS)c-sequence in H1
0(Ω) for Jλa,b if Jλa,b(un) =

c + on(1) and (Jλa,b)′(un) = on(1) strongly in H−1(Ω) as n → ∞.
(ii) c ∈ � is a (PS)-value in H1

0(Ω) for Jλa,b if there exists a (PS)c-sequence in H1
0(Ω) for

Jλa,b.
(iii) Jλa,b satisfies the (PS)c-condition in H1

0(Ω) if any (PS)c-sequence {un} in H1
0(Ω) for

Jλa,b contains a convergent subsequence.

Now, we use the Ekeland variational principle [21] to get the following results.

Proposition 3.3. (i) If λ ∈ (0,Λ0), then there exists a (PS)αλa,b
-sequence {un} ⊂ Mλa,b(Ω) inH1

0(Ω)
for Jλa,b.

(ii) If λ ∈ (0, (q/2)Λ0), then there exists a (PS)α−
λa,b

-sequence {un} ⊂ M−
λa,b

(Ω) inH1
0(Ω) for

Jλa,b.

Proof. The proof is almost the same as that in Wu [32, Proposition 9].

Now, we establish the existence of a local minimum for Jλa,b onM+
λa,b(Ω).

Theorem 3.4. Assume (A1) and (B1) hold. If λ ∈ (0,Λ0), then Jλa,b has a minimizer uλ inM+
λa,b

(Ω)
and it satisfies the following.

(i) Jλa,b(uλ) = αλa,b = α+
λa,b.

(ii) uλ is a positive solution of (Eλa,b) in Ω.

(iii) ‖uλ‖H1 → 0 as λ → 0+.

Proof. By Proposition 3.3(i), there is a minimizing sequence {un} for Jλa,b on Mλa,b(Ω) such
that

Jλa,b(un) = αλa,b + on(1), (Jλa,b)′(un) = on(1) in H−1(Ω). (3.10)

Since Jλ is coercive on Mλa,b(Ω) (see Lemma 2.1), we get that {un} is bounded in H1
0(Ω).

Going if necessary to a subsequence, we can assume that there exists uλ ∈ H1
0(Ω) such that

un ⇀ uλ weakly in H1
0(Ω),

un −→ uλ almost every where in Ω,

un −→ uλ strongly in Ls
loc(Ω) ∀ 1 ≤ s < 2∗.

(3.11)

By (A1), Egorov theorem, and Hölder inequality, we have

λ

∫

Ω
a(x)|un|qdx = λ

∫

Ω
a(x)|uλ|qdx + on(1) as n −→ ∞. (3.12)
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First, we claim that uλ is a nonzero solution of (Eλa,b). By (3.10) and (3.11), it is easy to see
that uλ is a solution of (Eλa,b). From un ∈ Mλa,b(Ω) and (2.3), we deduce that

λ

∫

Ω
a(x)|un|qdx =

q
(
p − 2

)

2
(
p − q

)‖un‖2H1 −
pq

p − q
Jλa,b(un). (3.13)

Let n → ∞ in (3.13); by (3.10), (3.12), and αλa,b < 0, we get

λ

∫

Ω
a(x)|uλ|qdx ≥ − pq

p − q
αλa,b > 0. (3.14)

Thus, uλ ∈ Mλa,b(Ω) is a nonzero solution of (Eλa,b). Now we prove that un → uλ strongly in
H1

0(Ω) and Jλa,b(uλ) = αλa,b. By (3.13), if u ∈ Mλa,b(Ω), then

Jλa,b(u) =
p − 2
2p

‖u‖2H1 −
p − q

pq
λ

∫

Ω
a(x)|u|qdx. (3.15)

In order to prove that Jλa,b(uλ) = αλa,b, it suffices to recall that un, uλ ∈ Mλa,b(Ω), by (3.15)
and by applying Fatou’s lemma to get

αλa,b ≤ Jλa,b(uλ) =
p − 2
2p

‖uλ‖2H1 −
p − q

pq
λ

∫

Ω
a(x)|uλ|qdx

≤ lim inf
n→∞

(
p − 2
2p

‖un‖2H1 −
p − q

pq
λ

∫

Ω
a(x)|un|qdx

)

≤ lim inf
n→∞

Jλa,b(un) = αλa,b.

(3.16)

This implies that Jλa,b(uλ) = αλa,b and limn→∞‖un‖2H1 = ‖uλ‖2H1 . Let vn = un − uλ; then by
Brézis and Lieb, lemma [33] implies that

‖un‖2H1 = ‖un‖2H1 − ‖uλ‖2H1 + on(1). (3.17)

Therefore, un → uλ strongly inH1
0(Ω). Moreover, we have uλ ∈ M+

λa,b
(Ω). On the contrary, if

uλ ∈ M−
λa,b(Ω), then by Lemma 2.5, there are unique t+0 and t−0 such that t+0uλ ∈ M+

λa,b(Ω) and
t−0uλ ∈ M−

λa,b
(Ω). In particular, we have t+0 < t−0 = 1. Since

d

dt
Jλa,b

(
t+0uλ

)
= 0,

d2

dt2
Jλa,b

(
t+0uλ

)
> 0, (3.18)
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there exists t+0 < t ≤ t−0 such that Jλa,b(t+0uλ) < Jλa,b(tuλ). By Lemma 2.5,

Jλa,b
(
t+0uλ

)
< Jλa,b

(
tuλ

)
≤ Jλa,b

(
t−0uλ

)
= Jλa,b(uλ), (3.19)

which is a contradiction. Since Jλa,b(uλ) = Jλa,b(|uλ|) and |uλ| ∈ M+
λa,b

(Ω), by Lemma 2.2 we
may assume that uλ is a nonzero nonnegative solution of (Eλa,b). By Harnack inequality [34],
we deduce that uλ > 0 in Ω. Finally, by (2.3) and Hölder and Sobolev inequalities,

‖uλ‖2−qH1 < λ
p − q

p − 2
‖a+‖Lq∗Sp(Ω)−q/2 (3.20)

and so ‖uλ‖H1 → 0 as λ → 0+.

Now, we begin the proof of Theorem 1.1. By Theorem 3.4, we obtain that (Eλa,b) has a
positive solution uλ inH1

0(Ω).

4. Proof of Theorem 1.2

In this section, we will establish the existence of the second positive solution of (Eλa,b) by
proving that Jλa,b satisfies the (PS)α−

λa,b
-condition.

Lemma 4.1. Assume that (A1) and (B1) hold. If {un} ⊂ H1
0(Ω) is a (PS)c-sequence for Jλa,b, then

{un} is bounded in H1
0(Ω).

Proof. We argue by contradiction. Assume that ‖un‖H1 → ∞. Let ûn = un/‖un‖H1 . We may
assume that ûn ⇀ û weakly in H1

0(Ω). This implies that ûn → û strongly in Ls
loc(Ω) for all

1 ≤ s < 2∗. By (A1), Egorov theorem, and Hölder inequality, we have

λ

q

∫

Ω
a(x)|ûn|qdx =

λ

q

∫

Ω
a(x)|û|qdx + on(1). (4.1)

Since {un} is a (PS)c-sequence for Jλa,b and ‖un‖H1 → ∞, there hold

1
2
‖ûn‖2H1 −

λ‖un‖q−2H1

q

∫

Ω
a(x)|ûn|qdx − ‖un‖p−2H1

p

∫

Ω
b(x)|ûn|pdx = on(1), (4.2)

‖ûn‖2H1 − λ‖un‖q−2H1

∫

Ω
a(x)|ûn|qdx − ‖un‖p−2H1

∫

Ω
b(x)|ûn|pdx = on(1). (4.3)

From (4.1)–(4.3), we can deduce that

‖ûn‖2H1 =
2
(
p − q

)

q
(
p − 2

)‖un‖q−2λ
∫

Ω
a(x)|û|qdx + on(1). (4.4)



Boundary Value Problems 13

Since 1 < q < 2 and ‖un‖H1 → ∞, (4.4) implies

‖ûn‖2H1 −→ 0 as n −→ ∞, (4.5)

which contradicts with the fact that ‖ûn‖H1 = 1 for all n.

We assume the condition (Ωb) holds and recall

Sb
p(Ω) = inf

u∈H1
0 (Ω)\{0}

‖u‖2H1

(∫
Ω b(x)|u|pdx)2/p

. (4.6)

Lemma 4.2. Assume that (A1), (B1), and (Ωb) hold. If {un} ⊂ H1
0(Ω) is a (PS)c-sequence for Jλa,b

with c ∈ (0, αb
0(Ω)), then there exists a subsequence of {un} converging weakly to a nonzero solution

of (Eλa,b).

Proof. Let {un} ⊂ H1
0(Ω) be a (PS)c-sequence for Jλa,b with c ∈ (0, αb

0(Ω)). We know from
Lemma 4.1 that {un} is bounded in H1

0(Ω), and then there exist a subsequence of {un} (still
denoted by {un}) and u0 ∈ H1

0(Ω) such that

un ⇀ u0 weakly in H1
0(Ω),

un −→ u0 almost every where in Ω,

un −→ u0 strongly in Ls
loc(Ω) ∀ 1 ≤ s < 2∗.

(4.7)

It is easy to see that (Jλa,b)′(u0) = 0, and by (A1), Egorov theorem, and Hölder inequality, we
have

λ

∫

Ω
a(x)|un|qdx = λ

∫

Ω
a(x)|u0|qdx + on(1). (4.8)

Next we verify that u0 /≡ 0. Arguing by contradiction, we assume u0 ≡ 0. Setting

l = lim
n→∞

∫

Ω
b(x)|un|pdx. (4.9)

Since (Jλa,b)′(un) = on(1) and {un} is bounded, then by (4.8), we can deduce that

0 = lim
n→∞

〈
(Jλa,b)′(un), un

〉
= lim

n→∞

(
‖un‖2H1 −

∫

Ω
b(x)|un|pdx

)
= lim

n→∞
‖un‖2H1 − l, (4.10)
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that is,

lim
n→∞

‖un‖2H1 = l. (4.11)

If l = 0, then we get c = limn→∞Jλa,b(un) = 0, which contradicts with c > 0. Thus we
conclude that l > 0. Furthermore, by the definition of Sb

p(Ω) we obtain

‖un‖2H1 ≥ Sb
p(Ω)

(∫

Ω
b(x)|un|pdx

)2/p

. (4.12)

Then as n → ∞ we have

l = lim
n→∞

‖un‖2H1 ≥ Sb
p(Ω)l2/p, (4.13)

which implies that

l ≥ Sb
p(Ω)p/(p−2). (4.14)

Hence, from (1.7) and (4.8)–(4.14) we get,

c = lim
n→∞

Jλa,b(un) =
1
2
lim
n→∞

‖un‖2H1 − λ

q
lim
n→∞

∫

Ω
a(x)|un|qdx − 1

p
lim
n→∞

∫

Ω
b(x)|un|pdx

=
(
1
2
− 1
p

)
l ≥ p − 2

2p
Sb
p(Ω)p/(p−2) = αb

0(Ω).

(4.15)

This is a contradiction to c < αb
0(Ω). Therefore u0 is a nonzero solution of (Eλa,b).

Lemma 4.3. Assume that (A1)-(A2), (B1), and (Ωb) hold. Let w0 be a positive ground state solution
of (Eb); then

(i) supt≥0Jλa,b(tw0) < αb
0(Ω) for all λ > 0;

(ii) α−
λa,b

< αb
0(Ω) for all λ ∈ (0,Λ0).

Proof. (i) First, we consider the functional Q : H1
0(Ω) → � defined by

Q(u) =
1
2
‖u‖2H1 − 1

p

∫

Ω
b(x)|u|pdx ∀ u ∈ H1

0(Ω). (4.16)
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Then, from (1.3) and (1.7), we conclude that

sup
t≥0

Q(tw0) =
p − 2
2p

⎛
⎝ ‖w0‖2H1

(∫
Ω b(x)|w0|pdx

)2/p

⎞
⎠

p/(p−2)

=
p − 2
2p

Sb
p(Ω)p/(p−2) = αb

0(Ω), (4.17)

where the following fact has been used:

sup
t≥0

(
t2

2
A − tp

p
B

)
=

p − 2
2p

(
A

B2/p

)p/(p−2)
where A,B > 0. (4.18)

Using the definitions of Jλa,b,w0 and b(x) > 0 for all x ∈ Ω, for any λ > 0, we have

Jλa,b(tw0) −→ −∞ as t −→ ∞. (4.19)

From this we know that there exists t0 > 0 such that

sup
t≥0

Jλa,b(tw0) = sup
0≤t≤t0

Jλa,b(tw0). (4.20)

By the continuity of Jλa,b(tw0) as a function of t ≥ 0 and Jλa,b(0) = 0, we can find some
t1 ∈ (0, t0) such that

sup
0≤t≤t1

Jλa,b(tw0) < αb
0(Ω). (4.21)

Thus, we only need to show that

sup
t1≤t≤t0

Jλa,b(tw0) < αb
0(Ω). (4.22)

To this end, by (A2) and (4.17), we have

sup
t1≤t≤t0

Jλa,b(tw0) ≤ sup
t≥0

Q(tw0) −
t
q

1

q

∫

Ω
a(x)|w0|qdx < αb

0(Ω). (4.23)

Hence (i) holds.
(ii) By (A1), (A2), and the definition of w0, we have

∫

Ω
b(x)|w0|pdx > 0,

∫

Ω
a(x)|w0|qdx > 0. (4.24)
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Combining this with lemma 2.5(ii), from the definition of α−
λa,b

and part (i), for all λ ∈ (0,Λ0),
we obtain that there exists t0 > 0 such that t0w0 ∈ M−

λa,b(Ω) and

α−
λa,b ≤ Jλa,b(t0w0) ≤ sup

t≥0
Jλa,b(tw0) < αb

0(Ω). (4.25)

Therefore, (ii) holds.

Now, we establish the existence of a local minimum of Jλ on M−
λa,b

(Ω).

Theorem 4.4. Assume that (A1)-(A2), (B1), and (Ωb) hold. If λ ∈ (0, (q/2)Λ0), then Jλa,b has a
minimizerUλ in M−

λa,b
(Ω) and it satisfies the following.

(i) Jλa,b(Uλ) = α−
λa,b

.

(ii) Uλ is a positive solution of (Eλa,b) in Ω.

Proof. If λ ∈ (0, (q/2)Λ0), then by Theorem 3.1(ii), Proposition 3.3(ii), and Lemma 4.3(ii),
there exists a (PS)α−

λa,b
-sequence {un} ⊂ M−

λa,b
(Ω) in H1

0(Ω) for Jλa,b with α−
λa,b

∈ (0, αb
0(Ω)).

From Lemma 4.2, there exist a subsequence still denoted by {un} and a nonzero solution
Uλ ∈ H1

0(Ω) of (Eλa,b) such that un ⇀ Uλ weakly in H1
0(Ω). Now we prove that un → Uλ

strongly inH1
0(Ω) and Jλa,b(Uλ) = α−

λa,b
. By (3.15), if u ∈ Mλa,b(Ω), then

Jλa,b(u) =
p − 2
2p

‖u‖2H1 −
p − q

pq
λ

∫

Ω
a(x)|u|qdx. (4.26)

First, we prove thatUλ ∈ M−
λa,b

(Ω). On the contrary, ifUλ ∈ M+
λa,b

(Ω), then byM−
λa,b

(Ω) being
closed in H1

0(Ω), we have ‖Uλ‖2H1 < lim infn→∞‖un‖2H1 . From Lemma 2.3(i) and b(x) > 0 for
all x ∈ Ω, we get

∫

Ω
a(x)|Uλ|qdx > 0,

∫

Ω
b(x)|Uλ|pdx > 0. (4.27)

By Lemma 2.5(ii), there exists a unique t−λ such that t−λUλ ∈ M−
λa,b(Ω). Since un ∈ M−

λa,b(Ω),
Jλa,b(un) ≥ Jλa,b(tun) for all t ≥ 0 and by (4.26), we have

α−
λa,b ≤ Jλa,b

(
t−λUλ

)
< lim

n→∞
Jλa,b

(
t−λun

) ≤ lim
n→∞

Jλa,b(un) = α−
λa,b (4.28)

and this is a contradiction. In order to prove that Jλa,b(Uλ) = α−
λa,b, it suffices to recall that un,

Uλ ∈ M−
λa,b for all n, by (4.26) and applying Fatou’s lemma to get

α−
λa,b ≤ Jλa,b(Uλ) =

p − 2
2p

‖Uλ‖2H1 −
p − q

pq
λ

∫

Ω
a(x)|Uλ|qdx

≤ lim inf
n→∞

(
p − 2
2p

‖un‖2H1 −
p − q

pq
λ

∫

Ω
a(x)|un|qdx

)

≤ lim inf
n→∞

Jλa,b(un) = α−
λa,b.

(4.29)
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This implies that Jλa,b(Uλ) = α−
λa,b

and limn→∞‖un‖2H1 = ‖Uλ‖2H1 . Let vn = un − Uλ; then by
Brézis and Lieb, lemma [33] implies that

‖vn‖2H1= ‖un‖2H1 − ‖Uλ‖2H1 + on(1). (4.30)

Therefore, un → Uλ strongly in H1
0(Ω).

Since Jλa,b(Uλ) = Jλa,b(|Uλ|) and |Uλ| ∈ M−
λa,b

(Ω), by Lemma 2.2 we may assume that
Uλ is a nonzero nonnegative solution of (Eλa,b). Finally, By the Harnack inequality [34] we
deduce that Uλ > 0 in Ω.

Now, we complete the proof of Theorem 1.2: by Theorems 3.4, 4.4, we obtain that
(Eλa,b) has two positive solutions uλ and Uλ such that uλ ∈ M+

λa,b
(Ω), Uλ ∈ M−

λa,b
(Ω). Since

M+
λa,b

(Ω) ∩M−
λa,b

(Ω) = ∅, this implies that uλ and Uλ are distinct.
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