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By employing upper and lower solutions method together with maximal principle, we establish a
necessary and sufficient condition for the existence of pseudo-C3[0, 1] as well as C2[0, 1] positive
solutions for fourth-order singular p-Laplacian differential equations with integral boundary
conditions. Our nonlinearity f may be singular at t = 0, t = 1, and u = 0. The dual results for
the other integral boundary condition are also given.

1. Introduction

In this paper, we consider the existence of positive solutions for the following nonlinear
fourth-order singular p-Laplacian differential equations with integral boundary conditions:

(
ϕp

(
x′′(t)

))′′ = f(t, x(t), x(t)), 0 < t < 1,

x(0) =
∫1

0
g(s)x(s)ds, x(1) = 0,

ϕp

(
x′′(0)

)
= ϕp

(
x′′(1)

)
=
∫1

0
h(s)ϕp

(
x′′(s)

)
ds,

(1.1)
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where ϕp(t) = |t|p−2 · t, p ≥ 2, ϕq = ϕ−1
p , 1/p + 1/q = 1, f ∈ C(J × R+ × R+,R

+), J = (0, 1),

R+ = (0,+∞), R+ = [0,+∞), I = [0, 1], and g, h ∈ L1[0, 1] is nonnegative. Let σ1 =
∫1
0 (1 −

s)g(s)ds, σ2 =
∫1
0 h(s)ds. Throughout this paper, we always assume that 0 ≤ ∫1

0 g(s)ds < 1,
0 <

∫1
0 h(s)ds < 1 and nonlinear term f satisfies the following hypothesis:

(H) f(t, u, v) : J × R+ × R+ → R
+ is continuous, nondecreasing on u and nonincreasing

on v for each fixed t ∈ J , and there exists a real number b ∈ R
+ such that, for any

r ∈ J ,

f(t, u, rv) ≤ r−bf(t, u, v), ∀(t, u, v) ∈ J × R+ × R+, (1.2)

there exists a function ξ : [1,+∞) → R+, ξ(l) < l and ξ(l)/l2 is integrable on (1,+∞)
such that

f(t, lu, v) ≤ ξ(l)f(t, u, v), ∀(t, u, v) ∈ J × R+ × R+, l ∈ [1,+∞). (1.3)

Remark 1.1. Condition (H) is used to discuss the existence and uniqueness of smooth positive
solutions in [1].

(i) Inequality (1.2) implies that

f(t, u, cv) ≥ c−bf(t, u, v), if c ≥ 1. (1.4)

Conversely, (1.4) implies (1.2).

(ii) Inequality (1.3) implies that

f(t, cu, v) ≥
(
ξ
(
c−1

))−1
f(t, u, v), if 0 < c < 1. (1.5)

Conversely, (1.5) implies (1.3).

Remark 1.2. Typical functions that satisfy condition (H) are those taking the form f(t, u, v)
=
∑n

i=1 ai(t)uλi +
∑m

j=1 bj(t)u
−μj , where ai, bj ∈ C(0, 1), 0 < λi < 1, μj > 0 (i = 1, 2, . . . , m;

j = 1, 2, . . . , m).

Remark 1.3. It follows from (1.2) and (1.3) that

f(t, u, u) ≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ξ
(u
v

)
f(t, v, v), if u ≥ v ≥ 0,

(v
u

)b
f(t, v, v), if v ≥ u ≥ 0.

(1.6)
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Boundary value problems with integral boundary conditions arise in variety of
different areas of applied mathematics and physics. For example, heat conduction, chemical
engineering, underground water flow, thermoelasticity, and plasma physics can be reduced
to nonlocal problems with integral boundary conditions. They include two point, three point,
and nonlocal boundary value problems (see [2–5]) as special cases and have attracted much
attention of many researchers, such as Gallardo, Karakostas, Tsamatos, Lomtatidze, Malaguti,
Yang, Zhang, and Feng (see [6–13], e.g.). For more information about the general theory of
integral equations and their relation to boundary value problems, the reader is referred to the
book by Corduneanu [14] and Agarwal and O’Regan [15].

Recently, Zhang et al. [13] studied the existence and nonexistence of symmetric
positive solutions for the following nonlinear fourth-order boundary value problems:

(
ϕp

(
x′′(t)

))′′ = ω(t)f(t, x(t)), 0 < t < 1,

x(0) = x(1) =
∫1

0
g(s)x(s)ds,

ϕp

(
x′′(0)

)
= ϕp

(
x′′(1)

)
=
∫1

0
h(s)ϕp

(
x′′(s)

)
ds,

(1.7)

where ϕp(t) = |t|p−2 · t, p > 1, ϕq = φ−1
p , 1/p + 1/q = 1, ω ∈ L[0, 1] is nonnegative, symmetric

on the interval [0, 1], f : [0, 1] × [0,+∞) → [0,+∞) is continuous, and g, h ∈ L1[0, 1] are
nonnegative, symmetric on [0, 1].

To seek necessary and sufficient conditions for the existence of solutions to the
ordinary differential equations is important and interesting, but difficult. Professors Wei
[16, 17], Du and Zhao [18], Graef and Kong [19], Zhang and Liu [20], and others have
done much excellent work under some suitable conditions in this direction. To the author’s
knowledge, there are no necessary and sufficient conditions available in the literature for the
existence of solutions for integral boundary value problem (1.1). Motivated by above papers,
the purpose of this paper is to fill this gap. It is worth pointing out that the nonlinearity
f(t, u, v) permits singularity not only at t = 0, 1 but also at v = 0. By singularity, we mean that
the function f is allowed to be unbounded at the points t = 0, 1 and v = 0.

2. Preliminaries and Several Lemmas

A function x(t) ∈ C2[0, 1] and ϕp(x′′(t)) ∈ C2(0, 1) is called a C2[0, 1] (positive) solution of
BVP (1.1) if it satisfies (1.1) (x(t) > 0 for t ∈ (0, 1)). A C2[0, 1] (positive) solution of (1.1) is
called a psuedo-C3[0, 1] (positive) solution if ϕp(x′′(t)) ∈ C1[0, 1] (x(t) > 0, −x′′(t) > 0 for
t ∈ (0, 1)). Denote that

E =
{
x : x ∈ C2[0, 1], and ϕp

(
x′′(t)

) ∈ C2(0, 1)
}
. (2.1)



4 Boundary Value Problems

Definition 2.1. A function α(t) ∈ E is called a lower solution of BVP (1.1) if α(t) satisfies

(
ϕp

(
α′′(t)

))′′ ≤ f(t, α(t), α(t)), 0 < t < 1,

α(0) −
∫1

0
g(s)α(s)ds ≤ 0, α(1) ≤ 0,

−
[

ϕp

(
α′′(0)

) −
∫1

0
h(s)ϕp

(
α′′(s)

)
ds

]

≤ 0,

−
[

ϕp

(
α′′(1)

) −
∫1

0
h(s)ϕp

(
α′′(s)

)
ds

]

≤ 0.

(2.2)

Definition 2.2. A function β(t) ∈ E is called an upper solution of BVP (1.1) if β(t) satisfies

(
ϕp

(
β′′(t)

))′′ ≥ f
(
t, β(t), β(t)

)
, 0 < t < 1,

β(0) −
∫1

0
g(s)β(s)ds ≥ 0, β(1) ≥ 0,

−
[

ϕp

(
β′′(0)

) −
∫1

0
h(s)ϕp

(
β′′(s)

)
ds

]

≥ 0,

−
[

ϕp

(
β′′(1)

) −
∫1

0
h(s)ϕp

(
β′′(s)

)
ds

]

≥ 0.

(2.3)

Suppose that 0 < ak < bk < 1, and

Fk =

{

x : x ∈ C2[ak, bk], ϕp

(
x′′(t)

) ∈ C2(ak, bk), x(ak) −
∫bk

ak

g(s)x(s)ds ≥ 0, x(bk) ≥ 0,

−
[

ϕp

(
x′′(ak)

) −
∫bk

ak

h(s)ϕp

(
x′′(s)

)
ds

]

≥ 0,−
[

ϕp

(
x′′(bk)

) −
∫bk

ak

h(s)ϕp

(
x′′(s)

)
ds

]

≥ 0

}

.

(2.4)

To prove the main results, we need the following maximum principle.

Lemma 2.3 (Maximum principle). If x ∈ Fk, such that [ϕp(x′′(t))]′′ ≥ 0, t ∈ (ak, bk), then
x(t) ≥ 0, −x′′(t) ≥ 0, t ∈ [ak, bk].
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Proof. Set

−x′′(t) = y(t), t ∈ [ak, bk], (2.5)
[
ϕp

(
x′′(t)

)]′′ = σ(t), t ∈ (ak, bk), (2.6)

x(ak) −
∫bk

ak

g(s)x(s)ds = r1, x(bk) = r2, (2.7)

−
[

ϕp

(
x′′(ak)

) −
∫bk

ak

h(s)ϕp

(
x′′(s)

)
ds

]

= r3, (2.8)

−
[

ϕp

(
x′′(bk)

) −
∫bk

ak

h(s)ϕp

(
x′′(s)

)
ds

]

= r4, (2.9)

then ri ≥ 0, i = 1, 2, 3, 4, σ(t) ≥ 0, t ∈ (ak, bk) and

−ϕp

(
y
)′′(t) = σ(t), t ∈ (ak, bk),

ϕp

(
y
)
(ak) −

∫bk

ak

h(s)ϕp

(
y(s)

)
ds = r3,

ϕp

(
y
)
(bk) −

∫bk

ak

h(s)ϕp

(
y(s)

)
ds = r4.

(2.10)

Let

ϕp

(
y
)
(t) = z(t), (2.11)

then

−z′′(t) = σ(t), t ∈ (ak, bk), (2.12)

z(ak) −
∫bk

ak

h(s)z(s)ds = r3, z(bk) −
∫bk

ak

h(s)z(s)ds = r4. (2.13)

By integration of (2.12), we have

z′(t) = z′(ak) −
∫ t

ak

σ(s)ds. (2.14)

Integrating again, we get

z(t) = z(ak) + z′(ak)(t − ak) −
∫ t

ak

(t − s)σ(s)ds. (2.15)
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Let t = bk in (2.15), we obtain that

z′(ak) =
r4 − r3
bk − ak

+
1

bk − ak

∫bk

ak

(bk − s)σ(s)ds. (2.16)

Substituting (2.13) and (2.16) into (2.15), we obtain that

z(t) = r3 +
r4 − r3
bk − ak

(t − ak) +
∫bk

ak

Gk(t, s)σ(s)ds +
∫bk

ak

h(s)z(s)ds, (2.17)

where

Gk(t, s) =
1

bk − ak

⎧
⎨

⎩

(bk − t)(s − ak), 0 ≤ s ≤ t ≤ 1,

(bk − s)(t − ak), 0 ≤ t ≤ s ≤ 1.
(2.18)

Notice that

∫bk

ak

h(s)z(s)ds =
∫bk

ak

h(s)

[

r3 +
r4 − r3
bk − ak

(s − ak) +
∫bk

ak

Gk(s, τ)σ(τ)dτ +
∫bk

ak

h(s)z(s)ds

]

ds

= r3

∫bk

ak

h(s)ds +
r4 − r3
bk − ak

∫bk

ak

(s − ak)h(s)ds +
∫bk

ak

h(s)

[∫bk

ak

Gk(s, τ)σ(τ)dτ

]

ds

+
∫bk

ak

h(s)ds ·
∫bk

ak

h(s)z(s)ds,

(2.19)

therefore,

∫bk

ak

h(s)z(s)ds =
1

1 − ∫bk
ak
h(s)ds

[

r3

∫bk

ak

h(s)ds +
r4 − r3
bk − ak

∫bk

ak

(s − ak)h(s)ds

+
∫bk

ak

h(s)

(∫bk

ak

Gk(s, τ)σ(τ)dτ

)

ds

]

.

(2.20)
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Substituting (2.20) into (2.17), we have

z(t) = r3 +
r4 − r3
bk − ak

(t − ak) +
1

1 − ∫bk
ak
h(s)ds

∫bk

ak

h(s)

[∫bk

ak

Gk(s, τ)σ(τ)dτ

]

ds

+
1

1 − ∫bk
ak
h(s)ds

[

r3

∫bk

ak

h(s)ds +
r4 − r3
bk − ak

∫bk

ak

(s − ak)h(s)ds

]

+
∫bk

ak

Gk(t, s)σ(s)ds

=
bk − t

bk − ak
r3 +

t − ak

bk − ak
r4 +

1
1 − σ2k

[∫bk

ak

bk − s

bk − ak
h(s)dsr3 +

∫bk

ak

s − ak

bk − ak
h(s)dsr4

]

+
∫bk

ak

Kk(t, s)σ(s)ds

=

[
bk − t

bk − ak
+

1
1 − σ2k

∫bk

ak

bk − s

bk − ak
h(s)ds

]

r3 +

[
t − ak

bk − ak
+

1
1 − σ2k

∫bk

ak

s − ak

bk − ak
h(s)ds

]

r4

+
∫bk

ak

Kk(t, s)σ(s)ds,

(2.21)

where

Kk(t, s) = Gk(t, s) +
1

1 − σ2k

∫bk

ak

Gk(s, τ)h(τ)dτ, σ2k =
∫bk

ak

h(s)ds. (2.22)

Obviously, Gk(t, s) ≥ 0, Kk(t, s) ≥ 0, σ2k ≥ 0. From (2.21), it is easily seen that z(t) ≥ 0 for
t ∈ [ak, bk]. By (2.11), we know that ϕp(y)(t) ≥ 0, that is, y(t) ≥ 0. Thus, we have proved that
−x′′(t) ≥ 0, t ∈ [ak, bk]. Similarly, the solution of (2.5) and (2.7) can be expressed by

x(t) =

[
bk − t

bk − ak
+

bk − t

(1 − σ1k)(bk − ak)

∫bk

ak

g(s)
bk − s

bk − ak

]

r1

+

[
t − ak

bk − ak
+

bk − t

(1 − σ1k)(bk − ak)

∫bk

ak

g(s)
s − ak

bk − ak

]

r2 +
∫bk

ak

Hk(t, s)y(s)ds,

(2.23)

where

Hk(t, s) = Gk(t, s) +
bk − t

1 − σ1k

∫bk

ak

Gk(s, τ)g(τ)dτ, σ1k =
1

bk − ak

∫bk

ak

g(s)(bk − s)ds. (2.24)

By (2.23), we can get that x(t) ≥ 0, t ∈ [ak, bk].
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Lemma 2.4. Suppose that (H) holds. Let x(t) be a C2[0, 1] positive solution of BVP (1.1). Then there
exist two constants 0 < I1 < I2 such that

I1(1 − t) ≤ x(t) ≤ I2(1 − t), t ∈ [0, 1]. (2.25)

Proof. Assume that x(t) is a C2[0, 1] positive solution of BVP (1.1). Then x(t) can be stated as

x(t) =
∫1

0
G(t, s)

(−x′′(s)
)
ds +

1 − t

1 − σ1

∫∫1

0
G(τ, s)g(τ)

(−x′′(s)
)
dτ ds, (2.26)

where

G(t, s) =

⎧
⎨

⎩

t(1 − s), 0 ≤ t ≤ s ≤ 1,

s(1 − t), 0 ≤ s ≤ t ≤ 1.
(2.27)

It is easy to see that

x(0) =
1

1 − σ1

∫∫1

0
G(τ, s)g(τ)

(−x′′(s)
)
dτ ds > 0. (2.28)

By (2.26), for 0 ≤ t ≤ 1, we have that

x(t) ≥ 1 − t

1 − σ1

∫∫1

0
G(τ, s)g(τ)

(−x′′(s)
)
dτ ds = (1 − t)x(0) ≥ 0. (2.29)

From (2.26) and (2.27), we get that

0 ≤ x(t) ≤ (1 − t)

[∫1

0
s
(−x′′(s)

)
ds +

1
1 − σ1

∫∫1

0
G(τ, s)g(τ)

(−x′′(s)
)
dτ ds

]

. (2.30)

Setting

I1 = x(0), I2 =
∫1

0
s
(−x′′(s)

)
ds +

1
1 − σ1

∫∫1

0
G(τ, s)g(τ)

(−x′′(s)
)
dτ ds, (2.31)

then from (2.29) and (2.30), we have (2.25).

Lemma 2.5. Suppose that (H) holds. And assume that there exist lower and upper solutions of BVP
(1.1), respectively, α(t) and β(t), such that α(t), β(t) ∈ E, 0 ≤ α(t) ≤ β(t) for t ∈ (0, 1), α(1) =
β(1) = 0. Then BVP (1.1) has at least one C2[0, 1] positive solution x(t) such that α(t) ≤ x(t) ≤ β(t),
t ∈ [0, 1]. If, in addition, there exists F(t) ∈ L1[0, 1] such that

∣∣f(t, x, x)
∣∣ ≤ F(t), for α(t) ≤ x(t) ≤ β(t), (2.32)
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then the solution x(t) of BVP (1.1) is a pseudo-C3[0, 1] positive solution.

Proof. For each k, for all x(t) ∈ Ek = {x : x ∈ C2[ak, bk], and ϕp(x′′(t)) ∈ C2(ak, bk)}, we
defined an auxiliary function

Fk(x)(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f(t, α(t), α(t)), if x(t) ≤ α(t),

f(t, x(t), x(t)), if α(t) ≤ x(t) ≤ β(t),

f
(
t, β(t), β(t)

)
, if x(t) ≥ β(t).

(2.33)

By condition (H), we have that Fk : Ek → [0,+∞) is continuous.
Let {ak}, {bk} be sequences satisfying 0 < · · · < ak+1 < ak < · · · < a1 < b1 < · · · < bk <

bk+1 < · · · < 1, ak → 0 and bk → 1 as k → ∞, and let {rki}, i = 1, 2, 3, be sequences satisfying

α(ak) −
∫bk

ak

g(s)α(s)ds ≤ rk1 ≤ β(ak) −
∫bk

ak

g(s)β(s)ds,

α(bk) ≤ rk2 ≤ β(bk), rk1 −→ 0, rk2 −→ 0, as k −→ ∞,

−
[

ϕp

(
α′′(ak)

) −
∫bk

ak

h(s)ϕp

(
α′′(s)

)
ds

]

≤ rk3 ≤ −
[

ϕp

(
β′′(ak)

) −
∫bk

ak

h(s)ϕp

(
β′′(s)

)
ds

]

,

−
[

ϕp

(
α′′(bk)

) −
∫1

0
h(s)ϕp

(
α′′(s)

)
ds

]

≤ rk4 ≤ −
[

ϕp

(
β′′(bk)

) −
∫bk

ak

h(s)ϕp

(
β′′(s)

)
ds

]

,

rk3 −→ 0, rk4 −→ 0, as k −→ ∞.

(2.34)

For each k, consider the following nonsingular problem:

(
ϕp

(
x′′(t)

))′′ = Fk(x)(t), t ∈ [ak, bk],

x(ak) −
∫bk

ak

g(s)x(s)ds = rk1, x(bk) = rk2,

−
[

ϕp

(
x′′(ak)

) −
∫bk

ak

h(s)ϕp

(
x′′(s)

)
ds

]

= rk3,

−
[

ϕp

(
x′′(bk)

) −
∫bk

ak

h(s)ϕp

(
x′′(s)

)
ds

]

= rk4.

(2.35)
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For convenience, we define linear operators as follows:

Bkx(t) =

[
bk − t

bk − ak
+

1
1 − σ2k

∫bk

ak

bk − s

bk − ak
h(s)ds

]

r3

+

[
t

bk − ak
+

1
1 − σ2k

∫bk

ak

s − ak

bk − ak
h(s)ds

]

r4 +
∫bk

ak

Kk(t, s)x(s)ds,

Akx(t) =

[
bk − t

bk − ak
+

bk − t

(1 − σ1k)(bk − ak)

∫bk

ak

g(s)
bk − s

bk − ak

]

r1

+

[
t − ak

bk − ak
+

bk − t

(1 − σ1k)(bk − ak)

∫bk

ak

g(s)
s − ak

bk − ak

]

r2 +
∫bk

ak

Hk(t, s)x(s)ds.

(2.36)

By the proof of Lemma 2.3, x(t) is a solution of problem (2.35) if and only if it is the
fixed point of the following operator equation:

x(t) =
[
Ak

(
ϕ−1
p (BkFk)

)]
x(t). (2.37)

By (2.33), it is easy to verify that Ak(ϕ−1
p (BkFk)) : Ek → Ek is continuous and Fk(Ek) is

a bounded set. Moreover, by the continuity of Gk(t, s), we can show that Ak(ϕ−1
p (Bk)) is a

compact operator and Ak(ϕ−1
p (Bk))(Ek) is a relatively compact set. So, Ak(ϕ−1

p (BkFk)) : Ek →
Ek is a completely continuous operator. In addition, x ∈ Ek is a solution of (2.35) if and
only if x is a fixed point of operator Ak(ϕ−1

p (BkFk))x = x. Using the Shauder’s fixed point
theorem, we assert that Ak(ϕ−1

p (BkFk)) has at least one fixed point xk ∈ C2[ak, bk], by xk(t) =
Ak(ϕ−1

p (BkFk))xk(t), we can get ϕp(xk′′) ∈ C2[ak, bk].
We claim that

α(t) ≤ xk(t) ≤ β(t), t ∈ [ak, bk]. (2.38)

From this it follows that

(
ϕp

(
x′′
k(t)

))′′ = f(t, xk(t), xk(t)), t ∈ [ak, bk]. (2.39)

Indeed, suppose by contradiction that xk(t)/≤β(t) on [ak, bk]. By the definition of Fk, we have

Fk(xk)(t) = f
(
t, β(t), β(t)

)
, t ∈ [ak, bk]. (2.40)

Therefore,

(
ϕp

(
x′′
k(t)

))′′ = f
(
t, β(t), β(t)

)
, t ∈ [ak, bk]. (2.41)
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On the other hand, since β(t) is an upper solution of (1.1), we also have

(
ϕp

(
β′′(t)

))′′ ≥ f
(
t, β(t), β(t)

)
, t ∈ [ak, bk]. (2.42)

Then setting

z(t) = ϕp

(−β′′(t)) − ϕp

(−x′′
k(t)

)
, t ∈ [ak, bk]. (2.43)

By (2.41) and (2.42), we obtain that

−z′′(t) ≥ 0, t ∈ (ak, bk), x ∈ C2[ak, bk],

z(ak) −
∫bk

ak

h(s)z(s)ds ≥ 0, z(bk) −
∫bk

ak

h(s)z(s)ds ≥ 0.
(2.44)

By Lemma 2.3, we can conclude that

z(t) ≥ 0, t ∈ [ak, bk]. (2.45)

Hence,

−[β′′(t) − x′′
k(t)

] ≥ 0, t ∈ [ak, bk]. (2.46)

Set

u(t) = β(t) − xk(t), t ∈ [ak, bk]. (2.47)

Then

−u′′(t) ≥ 0, t ∈ (ak, bk), x ∈ C2[ak, bk],

u(ak) −
∫bk

ak

g(s)u(s)ds ≥ 0, u(bk) ≥ 0.
(2.48)

By Lemma 2.3, we can conclude that

u(t) ≥ 0, t ∈ [ak, bk], (2.49)

which contradicts the assumption that xk(t)/≤β(t). Therefore, xk(t)/≤β(t) is impossible.
Similarly, we can show that α(t) ≤ xk(t). So, we have shown that (2.38) holds.
Using the method of [21] and Theorem 3.2 in [22], we can obtain that there is a C2[0, 1]

positive solution ω(t) of (1.1) such that α(t) ≤ ω(t) ≤ β(t), and a subsequence of {xk(t)}
converging to ω(t) on any compact subintervals of (0, 1).

In addition, if (2.32) holds, then |[ϕp(x′′(t))]′′| ≤ F(t). Hence, [ϕp(x′′(t))]′′ is absolutely
integrable on [0, 1]. This implies that x(t) is a pseudo-C3[0, 1] positive solution of (1.1).
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3. The Main Results

Theorem 3.1. Suppose that (H) holds, then a necessary and sufficient condition for BVP (1.1) to
have a pseudo-C3[0, 1] positive solution is that the following integral condition holds:

0 <

∫1

0
f(s, (1 − s), (1 − s))ds < +∞. (3.1)

Proof. The proof is divided into two parts, necessity and suffeciency.

Necessity. Suppose that x(t) is a pseudo-C3[0, 1] positive solution of (1.1). Then both
ϕ′
p(x

′′(0)) and ϕ′
p(x

′′(1)) exist. By Lemma 2.4, there exist two constants 0 < I1 < I2 such that

I1(1 − t) < x(t) < I2(1 − t), t ∈ [0, 1]. (3.2)

Without loss of generality, we may assume that 0 < I1 < 1 < I2. This together with condition
(H) implies that

∫1

0
f(s, (1 − s), (1 − s))ds ≤

∫1

0
f

(
s,

1
I1
x(s),

1
I2
x(s)

)
≤ ξ

(
1
I1

)
Ib2

∫1

0
f(s, x(s), x(s))ds

= ξ

(
1
I1

)
Ib2 ·

(
ϕ′
p

(
x′′(1)

) − ϕ′
p

(
x′′(0)

))
< +∞.

(3.3)

On the other hand, since x(t) is a pseudo-C3[0, 1] positive solution of (1.1), we have

f(t, x(t), x(t))/≡ 0, t ∈ (0, 1). (3.4)

Otherwise, let z(t) = ϕp(x′′(t)). By the proof of Lemma 2.3, we have that z(t) ≡ 0, t ∈ (0, 1),
that is, x′′(t) ≡ 0 which contradicts that x(t) is a pseudo-C3[0, 1] positive solution. Therefore,
there exists a positive t0 ∈ (0, 1) such that f(t0, x(t0), x(t0)) > 0. Obviously, x(t0) > 0. By (1.6)
we have

0 < f(t0, x(t0), x(t0)) ≤

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ξ

(
x(t0)
1 − t0

)
f(t0, 1 − t0, 1 − t0), if x(t0) ≥ 1 − t0,

(
1 − t0
x(t0)

)b

f(t0, 1 − t0, 1 − t0), if x(t0) ≤ 1 − t0.

(3.5)

Consequently, f(t0, 1 − t0, 1 − t0) > 0, which implies that

∫1

0
f(s, 1 − s, 1 − s)ds > 0. (3.6)
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It follows from (3.3) and (3.6) that

0 <

∫1

0
f(s, 1 − s, 1 − s)ds < +∞, (3.7)

which is the desired inequality.

Sufficiency. First, we prove the existence of a pair of upper and lower solutions. Since ξ(l)/l2

is integrable on [1,+∞), we have

lim
l→+∞

inf
ξ(l)
l

= 0. (3.8)

Otherwise, if liml→+∞ inf(ξ(l)/l) = m0 > 0, then there exists a real number N > 0 such that
ξ(l)/l2 > m0/2l when l > N, which contradicts the condition that ξ(l)/l2 is integrable on
[1,+∞). In view of condition (H) and (3.8), we obtain that

f(t, ru, v) ≥ h(r)f(t, u, v), r ∈ (0, 1), (3.9)

lim
r→ 0+

sup
r

h(r)
= lim

p→+∞
sup

p−1

h
(
p−1

) = lim
p→+∞

inf
ξ
(
p
)

p
= 0, (3.10)

where h(r) = (ξ(r−1))−1.
Suppose that (3.1) holds. Firstly, we define the linear operators A and B as follows:

Bx(t) =
∫1

0
G(t, s)x(s)ds +

1
1 − σ2

∫∫1

0
G(s, τ)h(τ)x(s)dτ ds, (3.11)

Ax(t) =
∫1

0
G(t, s)x(s)ds +

1 − t

1 − σ1

∫∫1

0
G(s, τ)g(τ)x(s)dτ ds, (3.12)

where G(t, s) is given by (2.27). Let

b1(t) = Aϕ−1
p Bf(t, 1 − t, 1 − t), t ∈ [0, 1]. (3.13)

It is easy to know from (3.11) and (3.12) that ϕp(−b′′(t)) ∈ C1[0, 1]. By Lemma 2.4, we know
that there exists a positive number k < 1 such that

k1(1 − t) ≤ b1(t) ≤ 1
k1

(1 − t), t ∈ [0, 1]. (3.14)

Take 0 < l1 < k1 sufficiently small, then by (3.10), we get that l1k1/h(l1k1) ≤ k1, that is,

h(l1k1) − l1 ≥ 0, ξ

(
1

l1k1

)
− 1
l1

≤ 0. (3.15)
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Let

α(t) = l1b1(t), β(t) =
1
l1
b1(t), t ∈ [0, 1]. (3.16)

Thus, from (3.14) and (3.16), we have

l1k1(1 − t) ≤ α(t) ≤ (1 − t) ≤ β(t) ≤ 1
l1k1

(1 − t), t ∈ [0, 1]. (3.17)

Considering p ≥ 2, it follows from (3.15), (3.17), and condition (H) that

f(t, α(t), α(t)) ≥ f(t, l1k1(1 − t), (1 − t)) ≥ h(l1k1)f(t, (1 − t), (1 − t))

≥ l1f(t, (1 − t), (1 − t)) ≥ l
p−1
1 f(t, (1 − t), (1 − t))

=
[
ϕp

(
α′′(t)

)]′′
, t ∈ (0, 1),

f
(
t, β(t), β(t)

) ≤ f

(
t,

1
l1k1

(1 − t), (1 − t)
)

≤ ξ

(
1

l1k1

)
f(t, (1 − t), (1 − t))

≤
(
1
l1

)
f(t, (1 − t), (1 − t))

≤
(
1
l1

)p−1
f(t, (1 − t), (1 − t))

=
[
ϕp

(
β′′(t)

)]′′
, t ∈ (0, 1).

(3.18)

From (3.13) and (3.16), it follows that

α(0) =
∫1

0
g(t)α(t)dt, β(0) =

∫1

0
g(t)β(t)dt, α(1) = 0, β(1) = 0,

ϕp

(
α′′(0)

)
= ϕp

(
α′′(1)

)
=
∫1

0
h(s)ϕp

(
α′′(s)

)
ds,

ϕp

(
β′′(0)

)
= ϕp

(
β′′(1)

)
=
∫1

0
h(s)ϕp

(
β′′(s)

)
ds.

(3.19)

Thus, we have shown that α(t) and β(t) are lower and upper solutions of BVP (1.1),
respectively.

Additionally, when α(t) ≤ x(t) ≤ β(t), t ∈ [0, 1], by (3.17) and condition (H), we have

0 ≤ f(t, x(t), x(t)) ≤ f

(
t,

1
l1k1

(1 − t), l1k1(1 − t)
)

≤ ξ

(
1

l1k1

)
f(t, (1 − t), l1k1(1 − t)) ≤ ξ

(
1

l1k1

)
(l1k1)

−bf(t, (1 − t), (1 − t)) = F(t).

(3.20)
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From (3.1), we have
∫1
0 F(t)dt < +∞. So, it follows from Lemma 2.5 that BVP (1.1) admits a

pseudo-C3[0, 1] positive solution such that α(t) ≤ x(t) ≤ β(t).

Remark 3.2. Lin et al. [23, 24] considered the existence and uniqueness of solutions for some
fourth-order and (k, n − k) conjugate boundary value problems when f(t, u, v) = q(t)(g(u) +
h(v)), where

g : [0,+∞) −→ [0,+∞) is continuous and nondecreasing,

h : (0,+∞) −→ (0,+∞) is continuous and nonincreasing,
(3.21)

under the following condition:

(P1) for t ∈ (0, 1) and u, v > 0, there exists α ∈ (0, 1) such that

g(tu) ≥ tαg(u),

h
(
t−1v

)
≥ tαh(v).

(3.22)

Lei et al. [25] and Liu and Yu [26] investigated the existence and uniqueness of positive
solutions to singular boundary value problems under the following condition:

(P2) f(t, λu, (1/λ)v) ≥ λαf(t, u, v), for all u, v > 0, λ ∈ (0, 1), where α ∈ [0, 1) and
f(t, u, v) is nondecreasing on u and nonincreasing on v.

Obviously, (3.21)-(3.22) imply condition (P2) and condition (P2) implies condition
(H). So, condition (H) is weaker than conditions (P1) and (P2). Thus, functions considered in
this paper are wider than those in [23–26].

In the following, when f(t, u, u) admits the form f(t, u), that is, nonlinear term f is not
mixed monotone on u, but monotone with respect u, BVP (1.1) becomes

(
ϕp

(
x′′(t)

))′′ = f(t, x(t)), 0 < t < 1,

x(0) =
∫1

0
g(s)x(s)ds, x(1) = 0,

ϕp

(
x′′(0)

)
= ϕp

(
x′′(1)

)
=
∫1

0
h(s)ϕp

(
x′′(s)

)
ds.

(3.23)

If f(t, u) satisfies one of the following:

(H∗) f(t, u) : J × R+ → R
+ is continuous, nondecreasing on u, for each fixed t ∈ (0, 1),

there exists a function ξ : [1,+∞) → R+, ξ(l) < l and ξ(l)/l2 is integrable on (1,+∞)
such that

f(t, lu) ≤ ξ(l)f(t, u), ∀(t, u) ∈ J × R+, l ∈ [1,+∞). (3.24)
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Theorem 3.3. Suppose that (H∗) holds, then a necessary and sufficient condition for BVP (3.23) to
have a pseudo-C3[0, 1] positive solution is that the following integral condition holds

0 <

∫1

0
f(s, 1 − s)ds < +∞. (3.25)

Proof. The proof is similar to that of Theorem 3.1; we omit the details.

Theorem 3.4. Suppose that (H∗) holds, then a necessary and sufficient condition for problem (3.23)
to have a C2[0, 1] positive solution is that the following integral condition holds

0 <

∫1

0
s(1 − s)f(s, (1 − s))ds < +∞. (3.26)

Proof. The proof is divided into two parts, necessity and suffeciency.

Necessity. Assume that x(t) is a C2[0, 1] positive solution of BVP (3.23). By Lemma 2.4, there
exist two constants I1 and I2, 0 < I1 < I2, such that

I1(1 − t) ≤ x(t) ≤ I2(1 − t), t ∈ [0, 1]. (3.27)

Let c1 be a constant such that c1I2 ≤ 1, 1/c1 ≥ 1. By condition (H), we have

f(t, x(t)) = f

(
t,

1
c1

c1x(t)
1 − t

(1 − t)
)

≥ f

(
t,
c1x(t)
1 − t

(1 − t)
)

≥ ξ

(
1 − t

c1x(t)

)−1
f(t, (1 − t)) ≥ c1x(t)

1 − t
f(t, (1 − t))

≥ c1I1f(t, (1 − t)), t ∈ (0, 1).

(3.28)

By virtue of (3.28), we obtain that

f(t, (1 − t)) ≤ (c1I1)−1f(t, x(t)) = (c1I1)−1
[
ϕp

(
x′′(t)

)]′′
, t ∈ (0, 1). (3.29)

By boundary value condition, we know that there exists a t0 ∈ (0, 1) such that

[
ϕp

(
x′′)]′(t0) = 0. (3.30)

For t ∈ (t0, 1), by integration of (3.29), we get

∫ t

t0

f(s, (1 − s))ds ≤ (c1I1)−1
[
ϕp

(
x′′)]′(t), t ∈ (t0, 1). (3.31)
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Integrating (3.31), we have

∫1

t0

∫ t

t0

f(s, (1 − s))dsdt ≤ (c1I1)−1
∫1

t0

[
ϕp

(
x′′)]′(t)dt

= (c1I1)−1
[
ϕp

(
x′′)(1) − ϕp

(
x′′)(t0)

]
< +∞.

(3.32)

Exchanging the order of integration, we obtain that

∫1

t0

∫ t

t0

f(s, (1 − s))dsdt =
∫1

t0

(1 − s)f(s, (1 − s))ds < +∞. (3.33)

Similarly, by integration of (3.29), we get

∫ t0

0
sf(s, (1 − s))ds < +∞. (3.34)

Equations (3.33) and (3.34) imply that

∫1

0
s(1 − s)f(s, (1 − s))ds < +∞. (3.35)

Since x(t) is a C2[0, 1] positive solution of BVP (1.1), there exists a positive t0 ∈ (0, 1) such
that f(t0, x(t0)) > 0. Obviously, x(t0) > 0. On the other hand, choose c2 < min{1, I1, 1/I2},
then c2I2 < 1. By condition (H), we have

0 < f(t0, x(t0)) = f

(
t0,

1
c2

c2x(t0)
1 − t0

(1 − t0)
))

≤ ξ

(
1
c2

)
f

(
t0,

c2x(t0)
1 − t0

(1 − t0)
)

≤ ξ

(
1
c2

)
f(t0, (1 − t0)).

(3.36)

Consequently, f(t0, t0) > 0, which implies that

∫1

0
s(1 − s)f(s, (1 − s))ds > 0. (3.37)

It follows from (3.35) and (3.37) that

0 <

∫1

0
s(1 − s)f(s, (1 − s))ds < +∞, (3.38)

which is the desired inequality.
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Sufficiency. Suppose that (3.26) holds. Let

b2(t) = Aϕ−1
p Bf(t, 1 − t), t ∈ [0, 1]. (3.39)

It is easy to know, from (3.11) and (3.26), that

Bf(t, 1 − t) ≤ 1
1 − σ2

∫1

0
G(s, s)f(s, 1 − s)ds < +∞. (3.40)

Thus, (3.12), (3.39), and (3.40) imply that 0 ≤ b2(t) < +∞. By Lemma 2.4, we know that there
exists a positive number k2 < 1 such that

k2(1 − t) ≤ b2(t) ≤ 1
k2

(1 − t), t ∈ [0, 1]. (3.41)

Take 0 < l2 < k2 sufficiently small, then by (3.10), we get that l2k2/h(l2k2) ≤ k2, that is,

h(l2k2) − l2 ≥ 0, ξ

(
1

l2k2

)
− 1
l2

≤ 0. (3.42)

Let

α(t) = l2b2(t), β(t) =
1
l2
b2(t), t ∈ [0, 1]. (3.43)

Thus, from (3.41) and (3.43), we have

l2k2(1 − t) ≤ α(t) ≤ (1 − t) ≤ β(t) ≤ 1
l2k2

(1 − t), t ∈ [0, 1]. (3.44)

Notice that p ≥ 2, it follows from (3.42)−(3.44) and condition (H) that

f(t, α(t)) ≥ f(t, l2k2(1 − t)) ≥ h(l2k2)f(t, (1 − t))

≥ l2f(t, (1 − t)) ≥ l
p−1
2 f(t, (1 − t))

=
[
ϕp

(
α′′(t)

)]′′
, t ∈ (0, 1),

f
(
t, β(t)

) ≤ f

(
t,

1
lk
(1 − t)

)
≤ ξ

(
1

l2k2

)
f(t, (1 − t))

≤
(
1
l2

)
f(t, (1 − t)) ≤

(
1
l2

)p−1
f(t, (1 − t))

=
[
ϕp

(
β′′(t)

)]′′
, t ∈ (0, 1).

(3.45)
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From (3.39) and (3.43), it follows that

α(0) =
∫1

0
g(t)α(t)dt, β(0) =

∫1

0
g(t)β(t)dt, α(1) = 0, β(1) = 0,

ϕp

(
α′′(0)

)
= ϕp

(
α′′(1)

)
=
∫1

0
h(s)ϕp

(
α′′(s)

)
ds,

ϕp

(
β′′(0)

)
= ϕp

(
β′′(1)

)
=
∫1

0
h(s)ϕp

(
β′′(s)

)
ds.

(3.46)

Thus, we have shown that α(t) and β(t) are lower and upper solutions of BVP (1.1),
respectively.

From the first conclusion of Lemma 2.5, we conclude that problem (1.1) has at least
one C2[0, 1] positive solution x(t).

4. Dual Results

Consider the fourth-order singular p-Laplacian differential equations with integral condi-
tions:

(
ϕp

(
x′′(t)

))′′ = f(t, x(t), x(t)), 0 < t < 1,

x(0) =
∫1

0
g(s)x(s)ds, x(1) = 0,

ϕp

(
x′′(0)

)
=
∫1

0
h(s)ϕp

(
x′′(s)

)
ds, x′′(1) = 0,

(4.1)

(
ϕp

(
x′′(t)

))′′ = f(t, x(t)), 0 < t < 1,

x(0) =
∫1

0
g(s)x(s)ds, x(1) = 0,

ϕp

(
x′′(0)

)
=
∫1

0
h(s)ϕp

(
x′′(s)

)
ds, x′′(1) = 0.

(4.2)

Firstly, we define the linear operator B1 as follows:

B1x(t) =
∫1

0
G(t, s)x(s)ds +

1 − t

1 − ∫1
0 (1 − s)h(s)ds

∫∫1

0
G(s, τ)h(τ)x(s)dτ ds, (4.3)

where G(t, s) is given by (2.27).
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By analogous methods, we have the following results.
Assume that x(t) is a C2[0, 1] positive solution of problem (4.1). Then x(t) can be

expressed by

x(t) = Aϕ−1
p B1f(t, x(t), x(t)). (4.4)

Theorem 4.1. Suppose that (H) holds, then a necessary and sufficient condition for (4.1) to have a
pseudo-C3[0, 1] positive solution is that the following integral condition holds:

0 <

∫1

0
f(s, (1 − s), (1 − s))ds < +∞. (4.5)

Theorem 4.2. Suppose that (H∗) holds, then a necessary and sufficient condition for problem (4.2) to
have a pseudo-C3[0, 1] positive solution is that the following integral condition holds:

0 <

∫1

0
f(s, 1 − s)ds < +∞. (4.6)

Theorem 4.3. Suppose that (H∗) holds, then a necessary and sufficient condition for problem (4.2) to
have a C2[0, 1] positive solution is that the following integral condition holds:

0 <

∫1

0
s(1 − s)f(s, (1 − s))ds < +∞. (4.7)

Consider the fourth-order singular p-Laplacian differential equations with integral condi-
tions:

(
ϕp

(
x′′(t)

))′′ = f(t, x(t), x(t)), 0 < t < 1,

x(0) = 0, x(1) =
∫1

0
g(s)x(s)ds,

ϕp

(
x′′(0)

)
=
∫1

0
h(s)ϕp

(
x′′(s)

)
ds, x′′(1) = 0,

(4.8)

(
ϕp

(
x′′(t)

))′′ = f(t, x(t)), 0 < t < 1,

x(0) = 0, x(1) =
∫1

0
g(s)x(s)ds,

ϕp

(
x′′(0)

)
=
∫1

0
h(s)ϕp

(
x′′(s)

)
ds, x′′(1) = 0.

(4.9)

Define the linear operator A1 as follows:

A1x(t) =
∫1

0
G(t, s)x(s)ds +

t

1 − ∫1
0 sg(s)ds

∫∫1

0
G(s, τ)g(τ)x(s)dτ ds. (4.10)
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If x(t) is a C2[0, 1] positive solution of problem (4.8). Then x(t) can be expressed by

x(t) = A1ϕ
−1
p B1f(t, x(t), x(t)). (4.11)

Theorem 4.4. Suppose that (H) holds, then a necessary and sufficient condition for problem (4.8) to
have a pseudo-C3[0, 1] positive solution is that the following integral condition holds:

0 <

∫1

0
f(s, s, s)ds < +∞. (4.12)

Theorem 4.5. Suppose that (H∗) holds, then a necessary and sufficient condition for problem (4.9) to
have a pseudo-C3[0, 1] positive solution is that the following integral condition holds:

0 <

∫1

0
f(s, s)ds < +∞. (4.13)

Theorem 4.6. Suppose that (H∗) holds, then a necessary and sufficient condition for problem (4.9) to
have a C2[0, 1] positive solution is that the following integral condition holds:

0 <

∫1

0
s(1 − s)f(s, s)ds < +∞. (4.14)

Consider the fourth-order singular p-Laplacian differential equations with integral condi-
tions:

(
ϕp

(
x′′(t)

))′′ = f(t, x(t), x(t)), 0 < t < 1,

x(0) = 0, x(1) =
∫1

0
g(s)x(s)ds,

ϕp

(
x′′(0)

)
= 0, ϕp

(
x′′(1)

)
=
∫1

0
h(s)ϕp

(
x′′(s)

)
ds,

(4.15)

(
ϕp

(
x′′(t)

))′′ = f(t, x(t)), 0 < t < 1,

x(0) = 0, x(1) =
∫1

0
g(s)x(s)ds,

ϕp

(
x′′(0)

)
= 0, ϕp

(
x′′(1)

)
=
∫1

0
h(s)ϕp

(
x′′(s)

)
ds.

(4.16)

Define the linear operator B2 as follows:

B2x(t) =
∫1

0
G(t, s)x(s)ds +

t

1 − ∫1
0 sh(s)ds

∫∫1

0
G(s, τ)h(τ)x(s)dτ ds. (4.17)
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If x(t) is a C2[0, 1] positive solution of problem (4.15). Then x(t) can be expressed by

x(t) = A1ϕ
−1
p B2f(t, x(t), x(t)). (4.18)

Theorem 4.7. Suppose that (H) holds, then a necessary and sufficient condition for problem (4.15)
to have a pseudo-C3[0, 1] positive solution is that the following integral condition holds:

0 <

∫1

0
f(s, s, s)ds < +∞. (4.19)

Theorem 4.8. Suppose that (H∗) holds, then a necessary and sufficient condition for problem (4.16)
to have a pseudo-C3[0, 1] positive solution is that the following integral condition holds:

0 <

∫1

0
f(s, s)ds < +∞. (4.20)

Theorem 4.9. Suppose that (H∗) holds, then a necessary and sufficient condition for problem (4.16)
to have a C2[0, 1] positive solution is that the following integral condition holds:

0 <

∫1

0
s(1 − s)f(s, s)ds < +∞. (4.21)
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