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We use a fixed point theorem in a cone to obtain the existence of positive solutions of the differential
equation, u

′′
+ λf(t, u) = 0, 0 < t < 1, with some suitable boundary conditions, where λ is a

parameter.

1. Introduction

We consider the existence of positive solutions of the following two-point boundary value
problem:

(Eλ)u′′ + λf(t, u) = 0, 0 < t < 1,

(BC)u(0) = a, u(1) = b,
(BVPλ)

where a and b are nonnegative constants, and f ∈ C([0, 1] × [0,∞), [0,∞)).
In the last thirty years, there are many mathematician considered the boundary value

problem (BVPλ) with a = b = 0, see, for example, Chu et al. [1], Chu et al. [2], Chu and Zhau
[3], Chu and Jiang [4], Coffman and Marcus [5], Cohen and Keller [6], Erbe [7], Erbe et al.
[8], Erbe andWang [9], Guo and Lakshmikantham [10], Iffland [11], Njoku and Zanolin [12],
Santanilla [13].

In 1993, Wong [14] showed the following excellent result.
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Theorem A (see [14]). Assume that

f(t, u) := p(t)h(u) ∈ C([0, 1] × [0,∞); (0,∞)) (1.1)

is an increasing function with respect to u. If there exists a constant L such that

∫ c

0

du√
H(c) −H(u)

≤ L < ∞ ∀c > 0, (1.2)

whereH(u) :=
∫u
0h(y)dy for u ≥ 0, then, there exists λ∗ ∈ (0, 8 L2p−10 ) such that the boundary value

problem (BVPλ) with a = b = 0 has a positive solution in C2(0, 1)
⋂
C[0, 1] for 0 < λ ≤ λ∗, while

there is no such solution for λ > λ∗ in which p0 := min{p(t) | t ∈ [1/4, 3/4]}.

Seeing such facts, we cannot but ask “whether or not we can obtain a similar
conclusion for the boundary value problem (BVPλ).” We give a confirm answer to the
question.

First, We observe the following statements.

(1) Let

k(t, s) =

⎧⎨
⎩
s(1 − t), for 0 ≤ s ≤ t ≤ 1,

t(1 − s), for 0 ≤ t ≤ s ≤ 1,
(1.3)

on [0, 1] × [0, 1], then k(t, s) is the Green’s function of the differential equation
u′′(t) = 0 in (0, 1) with respect to the boundary value condition u(0) = u(1) = 0.

(2) K := {u ∈ C[0, 1] | u(t) ≥ 0, mint∈[1/4,3/4]u(t) ≥ (1/4)‖u‖}, is a cone in the Banach
space with ‖u‖ = supt∈[0,1]|u(t)|.

In order to discuss our main result, we need the follo wing useful lemmas which due
to Lian et al. [15] and Guo and Lakshmikantham [10], respectively.

Lemma B (see [10]). Suppose that k(t, s) be defined as in (1). Then, we have the following
results.

(R1) (k(t, s)/k(s, s) ≤ 1, for t ∈ [0, 1] and s ∈ [0, 1],)

(R2) (k(t, s)/k(s, s) ≥ 1/4, for t ∈ [1/4, 3/4] and s ∈ [0, 1].)

Lemma C (see [10, Lemmas 2.3.3 and 2.3.1]). Let E be a real Banach space, and let C ⊂ E be a
cone. Assume that Bρ := {u ∈ C | ‖u‖ < ρ} and A : Bρ → C is completely continuous. Then

(1) i(A,Bρ, C) = 0 if

Infu∈∂Bρ ‖Au‖ > 0,

Au/=αu for u ∈ ∂Bρ, α ∈ (0, 1],
(1.4)

(2) i(A,Bρ, C) = 1 if Au/=αu for u ∈ ∂Bρ and α ≥ 1,

where i(A,Bρ, C) is the fixed point index of a compact map A : Bρ → C, such that Au/=u for
u ∈ ∂Bρ, with respect to Bρ.



Boundary Value Problems 3

2. Main Results

Now, we can state and prove our main result.

Theorem 2.1. Suppose that there exist two distinct positive constants η, θ and a function
g ∈ C([ξ2, θ]; [0,∞)) with θ > max{a, b} := ξ1 and ξ2 = min{a, b} such that

f(t, u) ≥ η

(∫3/4

1/4
k

(
1
2
, s

)
ds

)−1
on

[
1
4
,
3
4

]
×
[
1
4
η, η

]
, (2.1)

f(t, u) ≤ g(u) on [0, 1] × [ξ2, θ]. (2.2)

Then (BVPλ) has a positive solution u with ‖u‖ between η and θ if

λ ∈
⎡
⎣1, 2

(∫θ

ξ1

ds√
G(θ) −G(s)

)2
⎤
⎦, (2.3)

where

G(u) :=

⎧⎪⎪⎨
⎪⎪⎩

∫u

ξ1

g(s)ds, if u ∈ [ξ1, θ],

0, if u ∈ [ξ2, ξ1].

(2.4)

Proof. It is clear that (BVPλ) has a solution u = u(t) if, and only if, u is the solution of the
operator equation

u(t) = a(1 − t) + bt + λ

∫1

0
k(t, s)f(s, u(s))ds := Au(t). (2.5)

It follows from the definition of K in our observation (2) and Lemma B that

min
t∈[1/4,3/4]

(Au)(t) = min
t∈[1/4,3/4]

(
a(1 − t) + bt + λ

∫1

0
k(t, s)f(s, u(s))ds

)

≥ 1
4

(
a(1 − t) + bt + λ

∫1

0
k(s, s)f(s, u(s)) ds

) (
using(R2)

)

≥ 1
4

(
a(1 − t) + bt + λ

∫1

0
k(t, s)f(s, u(s))ds

) (
using(R1)

)
.

(2.6)
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Hence, mint∈[1/4,3/4](Au)(t) ≥ (1/4)‖Au‖, which implies AK ⊂ K. Furthermore, it is easy to
check that A : K → K is completely continuous. If there exists a u ∈ ∂Bη ∪ ∂Bθ such that
Au = u, then we obtain the desired result. Thus, we may assume that

Au/=u for u ∈ ∂Bη ∪ ∂Bθ, (2.7)

where Bη := {u ∈ K | ‖u‖ < η} and Bθ := {u ∈ K | ‖u‖ < θ}. We now separate the rest proof
into the following three steps.
Step 1. It follows from the definitions of ‖u‖ and K that, for u ∈ ∂Bη,

u(t) ≤ ‖u‖ = η for t ∈ [0, 1],

u(t) ≥ mint∈[1/4,3/4]u(t) ≥ 1
4
‖u‖ =

1
4
η for t ∈

[
1
4
,
3
4

]
,

(2.8)

which implies

1
4
η ≤ u(t) ≤ η for t ∈

[
1
4
,
3
4

]
. (2.9)

Hence, by (2.5),

(Au)
(
1
2

)
=

1
2
(a + b) + λ

∫1

0
k

(
1
2
, s

)
f(s, u(s))ds

≥
∫1

0
k

(
1
2
, s

)
f(s, u(s))ds

(
using λ ≥ 1, a, b ≥ 0

)

≥
∫3/4

1/4
k

(
1
2
, s

)
f(s, u(s))ds

≥ η

(∫3/4

1/4
k

(
1
2
, s

)
ds

)−1(∫3/4

1/4
k

(
1
2
, s

)
ds

)
‖u‖
η

= ‖u‖,

(2.10)

which implies

‖Au‖ ≥ ‖u‖ for u ∈ ∂Bη. (2.11)

Hence

inf
u∈∂Bη

‖Au‖ ≥ inf
u∈∂Bη

‖u‖ = η > 0. (2.12)
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We now claim that

Au/=αu, for u ∈ ∂Bη, α ∈ (0, 1). (2.13)

In fact, if there exist u ∈ ∂Bη and α ∈ (0, 1) such that Au = αu, then, by (2.11),

‖u‖ ≤ ‖Au‖ = α‖u‖ < ‖u‖, (2.14)

which gives a contradiction. This proves that (2.13) holds. Thus, by Lemma C,

i
(
A,Bη,K

)
= 0. (2.15)

Step 2. First, we claim that

Au/=αu for u ∈ ∂Bθ, α > 1. (2.16)

Suppose to the contrary that there exist u ∈ ∂Bθ and α > 1 such that

Au = αu. (2.17)

It is clear that (2.17) is equivalent to

u′′(t) +
λ

α
f(t, u) = 0. (2.18)

Since u ∈ C[0, 1] and ‖u‖ = θ > 0, it follows that there exists a t∗ ∈ (0, 1) such that

u(t∗) = ‖u‖ = θ. (2.19)

Let

t1 = min{t ∈ [0, 1] | u(t) = θ}, t2 = max{t ∈ [0, 1] | u(t) = θ}. (2.20)

Then 0 < t1 ≤ t∗ ≤ t2 < 1. From u′′ < 0 on (0, 1), we see that u′(t) > 0 on (0, t1) u′(t) < 0 on
(t2, 1) and u′(t) = 0 on [t1, t2]. It follows from

u′′(t) = −λ
α
f(t, u(t)) ≥ −λ

α
g(u(t)) for t ∈ [0, 1] (2.21)
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and u′(t) = 0 on [t1, t2] that

0 < u′(t) ≤
√

2λ
α
(G(θ) −G(u(t))) for t ∈ [0, t1),

0 > u′(t) ≥ −
√

2λ
α
(G(θ) −G(u(t))) for t ∈ (t2, 1].

(2.22)

Hence,

∫θ

a

ds√
(2λ/α)(G(θ) −G(s))

≤
∫ t1

0
dt = t1,

∫θ

b

ds√
(2λ/α)(G(θ) −G(s))

≤
∫1

t2

dt = 1 − t2.

(2.23)

Thus

1 ≥ 1 − t2 + t1

≥ 2√
2λ/α

∫θ

ξ1

ds√
G(θ) −G(s)

>

√
2
λ

∫θ

ξ1

ds√
G(θ) −G(s)

(since α > 1)

≥ 1

⎛
⎝because λ ∈

⎡
⎣1, 2

(∫θ

ξ1

ds√
G(θ) −G(s)

)2
⎤
⎦
⎞
⎠.

(2.24)

This contradiction implies

Au/=αu, for u ∈ ∂Bθ, α > 1. (2.25)

Therefore, by Lemma C,

i(A,Bθ,K) = 1. (2.26)

Step 3. It follows from Steps (1) and (2) and the property of the fixed point index (see, for
example, [10, Theorem 2.3.2]) that the proof is complete.
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Remark 2.2. It follows from the conclusion of Theorem 2.1 that the positive constant θ and
nonnegative function g(u) satisfy

∫θ

ξ1

ds√
G(θ) −G(s)

≥ 1√
2
. (2.27)

There are many functions g(u) and positive constants θ satisfying (2.27). For example,
Suppose that M ∈ (0, 8] and θ ∈ (ξ1,∞). Let g(u) := M(θ − ξ1) on [ξ2, θ], then G(u) =
M(θ − ξ1)(u − ξ1) on [ξ1, θ] and

∫θ

ξ1

1√
G(θ) −G(u)

du =
1√

M(θ − ξ1)

∫θ

ξ1

1√
θ − u

du

=
1√

M(θ − ξ1)

(
2
√
θ − ξ1

)

=
2√
M

≥ 1√
2
.

(2.28)

Remark 2.3. We now define

max f0 := lim
u→ 0+

max
t∈[0,1]

f(t, u)
u

,

min f0 := lim
u→ 0+

min
t∈[0,1]

f(t, u)
u

,

max f∞ := lim
u→∞

max
t∈[0,1]

f(t, u)
u

,

min f∞ := lim
u→∞

min
t∈[0,1]

f(t, u)
u

.

(2.29)

A simple calculation shows that

∫3/4

1/4
k

(
1
2
, s

)
ds =

3
32

. (2.30)

Then, we have the following results.
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(i) Suppose that max f0 := C1 ∈ [0,M) ⊆ [0, 8). Taking ε = M − C1 > 0, there exists
1 > θ1 > 0 (θ1 can be chosen small arbitrarily) such that

max
t∈[0,1]

f(t, u)
u

≤ ε + C1 = M on (0, θ1]. (2.31)

Hence,

f(t, u) ≤ Mu ≤ Mθ1 on [0, 1] × [ξ2, θ1] ⊂ [0, 1] × [0, θ1]. (2.32)

It follows from Remark 2.2 that the hypothesis (2.2) of Theorem 2.1 is satisfied if
λ ∈ [1, 8/M].

(ii) Suppose that min f∞ := C2 ∈ (128/3,∞]. Taking ε = C2 − 128/3 > 0, there exists
η1 > 0 (η1 can be chosen large arbitrarily) such that

min
t∈[0,1]

f(t, u)
u

≥ −ε + C2 =
128
3

on
[
1
4
η1,∞

)
. (2.33)

Hence,

f(t, u) ≥ 128
3

u ≥ 128
3

1
4
η1 ≥ 32

3
η1 on

[
1
4
,
3
4

]
×
[
1
4
η1, η1

]
⊂ [0, 1] ×

[
1
4
η1,∞

)
,

(2.34)

which satisfies the hypothesis (2.1) of Theorem 2.1.

(iii) Suppose that min f0 := C3 ∈ (128/3,∞]. Taking ε = C3 − 128/3 > 0, there exists
1 > η2 > 0 (η2 can be chosen small arbitrarily) such that

min
t∈[0,1]

f(t, u)
u

≥ −ε + C3 =
128
3

on
(
0, η2

]
. (2.35)

Hence,

f(t, u) ≥ 128
3

u ≥ 128
3

1
4
η2 =

32
3
η2 on

[
1
4
,
3
4

]
×
[
1
4
η2, η2

]
⊂ [0, 1] × [

0, η2
]
, (2.36)

which satisfies the hypothesis (2.1) of Theorem 2.1.

(iv) Suppose that max f∞ := C4 ∈ [0,M) ⊆ [0, 8). Taking ε = M − C4 > 0, there exists a
δ > 0 (δ can be chosen large arbitrarily) such that

max
t∈[0,1]

f(t, u)
u

≤ ε + C4 = M on [δ,∞). (2.37)

Hence, we have the following two cases.
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Case (i). Assume that maxt∈[0,1]f(t, u) is bounded, say

f(t, u) ≤ L on [0, 1] × [0,∞), (2.38)

for some constant L. Taking θ2 = L/M > 1 (since L can be chosen large arbitrarily, θ2 can be
chosen large arbitrarily, too),

f(t, u) ≤ L = Mθ2 on [0, 1] × [0, θ2] ⊂ [0, 1] × [0,∞). (2.39)

Case (ii). Assume that maxt∈[0,1]f(t, u) is unbounded, then there exist a θ2 ≥ max{δ, ξ2} (θ2
can be chosen large arbitrarily) and t0 ∈ [0, 1] such that

f(t, u) ≤ f(t0, θ2) on [0, 1] × [0, θ2]. (2.40)

It follows from θ2 ≥ δ and (2.37) that

f(t, u) ≤ f(t0, θ2) ≤ Mθ2 on [0, 1] × [ξ2, θ2] ⊂ [0, 1] × [0, θ2]. (2.41)

By Cases (i), (ii) and Remark 2.2, we see that the hypothesis (2.2) of Theorem 2.1 is satisfied
if λ ∈ [1, 8/M].

We immediately conclude the following corollaries.

Corollary 2.4. (BVPλ) has at least one positive solution for λ ∈ [1, 8M] if one of the following
conditions holds:

(H1) max f0 = C1 ∈ [0,M) ⊆ [0, 8),min f∞ = C2 ∈ (128/3,∞],

(H2) min f0 = C3 ∈ (128/3,∞],max f∞ = C4 ∈ [0,M) ⊆ [0, 8).

Proof. It follows from Remark 2.3 and Theorem 2.1 that the desired result holds, immediately.

Corollary 2.5. Let

(H3) min f∞ = C2,min f0 = C3 ∈ (128/3,∞],

(H4) f(t, u) ≤ Mθ∗ on [0, 1] × [ξ2, θ∗] for some M ∈ (0, 8] and θ∗ > 0.

Then, for λ ∈ [1, 8/M], (BVPλ) has at least two positive solutions u1 and u2 such that

0 < ‖u1‖ < θ∗ < ‖u2‖. (2.42)

Proof. It follows from Remark 2.3 that there exist two real numbers η2 < θ∗ < η1 satisfying

f(t, u) ≥ 32
3
η1 on

[
1
4
,
3
4

]
×
[
1
4
η1, η1

]
,

f(t, u) ≥ 32
3
η2 on

[
1
4
,
3
4

]
×
[
1
4
η2, η2

]
.

(2.43)
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Hence, by Theorem 2.1 and Remark 2.2, we see that for each λ ∈ [1, 8/M], there exist two
positive solutions u1 and u2 of (BVPλ) such that

η2 < ‖u1‖ < θ∗ < ‖u2‖ < η1. (2.44)

Thus, we complete the proof.

Corollary 2.6. Let

(H5) max f0 = C1, max f∞ = C4 ∈ [0,M) ⊆ [0, 8),

(H6) f(t, u) ≥ (32/3) η∗ on [1/4, 3/4] × [(1/4)η∗, η∗], for some η∗ > 0.

Then, for λ ∈ [1, 8/M], (BVPλ) has at least two positive solutions u1 and u2 such that

0 < ‖u1‖ < η∗ < ‖u2‖. (2.45)

Proof. It follows from Remark 2.3 that there exist two real numbers θ1 < η∗ < θ2 satisfying

f(t, u) ≤ Mθ1 on [0, 1] × [ξ2, θ1],

f(t, u) ≤ Mθ2 on [0, 1] × [ξ2, θ2].
(2.46)

Hence, by Theorem 2.1 and Remark 2.2, we see that, for each λ ∈ [1, 8/M], (BVPλ) has two
positive solutions u1 and u2 such that

θ1 < ‖u1‖ < η∗ < ‖u2‖ < θ2. (2.47)

Thus, we completed the proof.

3. Examples

To illustrate the usage of our results, we present the following examples.

Example 3.1. Consider the following boundary value problem:

u′′(t) + λ
ueu

1 + t2
= 0 in(0, 1),

(BC1)

⎧⎨
⎩
u(0) = a = 1,

u(1) = b = 1.

(BVP.1)

Clearly,

max f0 = 1 ∈ [0,M) ⊆ [0, 8),

min f∞ = ∞ ∈
(
128
3

,∞
]
.

(3.1)
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If we take M = 2, then it follows from (H1) of Corollary 2.4 that (BVP.1) has a solution if
λ ∈ [1, 4].

Example 3.2. Consider the following boundary value problem:

u′′(t) + λ[u(1 − t) +K(1 − e−u)] = 0 in (0, 1), K +
1
4
>

128
3

,

(BC2)

⎧⎨
⎩
u(0) = a = 1,

u(1) = b = 2.

(BVP.2)

Clearly,

min f0 = K +
1
4
∈
(
128
3

,∞
]
,

max f∞ = 1 ∈ [0,M) ⊆ [0, 8).

(3.2)

If we take M = 2, then it follows from (H2) of Corollary 2.4 that (BVP.2) has a solution if
λ ∈ [1, 4].

Example 3.3. Consider the following boundary value problem:

u′′(t) +
(
λu3/2 + u1/2)/(1 + t) = 0 in (0, 1),

(BC3)

⎧⎨
⎩
u(0) = a = 0,

u(1) = b = 1.

(BVP.3)

Clearly, if we take M = 2 and θ∗ = 1,

min f∞ = ∞ ∈ (128/3,∞],

min f0 = ∞ ∈ (128/3,∞],

f(t, u) ≤ 2 on[0, 1] × [0, 1].

(3.3)

Hence, it follows from Corollary 2.5 that (BVP.3) has two solutions if λ ∈ [1, 4].
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