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We consider the Green’s functions and the existence of positive solutions for a second-order
functional difference equation with four-point boundary conditions.

1. Introduction

In recent years, boundary value problems (BVPs) of differential and difference equations
have been studied widely and there are many excellent results (see Gai et al. [1], Guo and
Tian [2], Henderson and Peterson [3], and Yang et al. [4]). By using the critical point theory,
Deng and Shi [5] studied the existence and multiplicity of the boundary value problems to a
class of second-order functional difference equations

Lun = f(n, un+1, un, un−1) (1.1)

with boundary value conditions

Δu0 = A, uk+1 = B, (1.2)

where the operator L is the Jacobi operator

Lun = anun+1 + an−1un−1 + bnun. (1.3)
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Ntouyas et al. [6] and Wong [7] investigated the existence of solutions of a BVP for
functional differential equations

x′′(t) = f
(
t, xt, x

′(t)
)
, t ∈ [0, T],

α0x0 − α1x
′(0) = φ ∈ Cr,

β0x(T) + β1x
′(T) = A ∈ R

n,

(1.4)

where f : [0, T]×Cr ×R
n → R

n is a continuous function, φ ∈ Cr = C([−r, 0],Rn), A ∈ R
n, and

xt(θ) = x(t + θ), θ ∈ [−r, 0].
Weng and Guo [8] considered the following two-point BVP for a nonlinear functional

difference equation with p-Laplacian operator

ΔΦp(Δx(t)) + r(t)f(xt) = 0, t ∈ {1, . . . , T},
x0 = φ ∈ C+, Δx(T + 1) = 0,

(1.5)

where Φp(u) = |u|p−2u, p > 1, φ(0) = 0, T , τ ∈ N, C+ = {φ | φ(k) ≥ 0, k ∈ [−τ, 0]}, f : C+ → R
+

is continuous,
∑T

t=τ+1 r(t) > 0.
Yang et al. [9] considered two-point BVP of the following functional difference

equation with p-Laplacian operator:

ΔΦp(Δx(t)) + r(t)f(x(t), xt) = 0, t ∈ {1, . . . , T},
α0x0 − α1Δx(0) = h,

β0x(T + 1) + β1Δx(T + 1) = A,

(1.6)

where h ∈ C+
τ = {φ ∈ Cτ | φ(θ) ≥ 0, θ ∈ {−τ, . . . , 0}}, A ∈ R

+, and α0, α1, β0, and β1 are
nonnegative real constants.

For a, b ∈ N and a < b, let

R
+ = {x | x ∈ R, x ≥ 0},

[a, b] = {a, a + 1, . . . , b}, [a, b) = {a, a + 1, . . . , b − 1}, [a,+∞) = {a, a + 1, . . . , },
Cτ =

{
φ | φ : [−τ, 0] → R

}
, C+

τ =
{
φ ∈ Cτ | φ(θ) ≥ 0, θ ∈ [−τ, 0]}.

(1.7)

Then Cτ and C+
τ are both Banach spaces endowed with the max-norm

∥∥φ
∥∥
τ = max

k∈[−τ,0]

∣∣φ(k)
∣∣. (1.8)

For any real function x defined on the interval [−τ, T] and any t ∈ [0, T] with T ∈ N,
we denote by xt an element of Cτ defined by xt(k) = x(t + k), k ∈ [−τ, 0].
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In this paper, we consider the following second-order four-point BVP of a nonlinear
functional difference equation:

−Δ2u(t − 1) = r(t)f(t, ut), t ∈ [1, T],

u0 = αu
(
η
)
+ h, t ∈ [−τ, 0],

u(T + 1) = βu(ξ) + γ,

(1.9)

where ξ, η ∈ (1, T) and ξ < η, 0 < τ < T , Δu(t) = u(t + 1) − u(t), Δ2u(t) = Δ(Δu(t)), f :
R × Cτ → R

+ is a continuous function, h ∈ C+
τ and h(t) ≥ h(0) ≥ 0 for t ∈ [−τ, 0], α, β, and γ

are nonnegative real constants, and r(t) ≥ 0 for t ∈ [1, T].
At this point, it is necessary to make some remarks on the first boundary condition in

(1.9). This condition is a generalization of the classical condition

u(0) = αu
(
η
)
+ C (1.10)

from ordinary difference equations. Here this condition connects the history u0 with the single
u(η). This is suggested by the well-posedness of BVP (1.9), since the function f depends on
the term ut (i.e., past values of u).

As usual, a sequence {u(−τ), . . . , u(T + 1)} is said to be a positive solution of BVP (1.9)
if it satisfies BVP (1.9) and u(k) ≥ 0 for k ∈ [−τ, T] with u(k) > 0 for k ∈ [1, T].

2. The Green’s Function of (1.9)

First we consider the nonexistence of positive solutions of (1.9). We have the following result.

Lemma 2.1. Assume that

βξ > T + 1, (2.1)

or

α
(
T + 1 − η

)
> T + 1. (2.2)

Then (1.9) has no positive solution.

Proof. From Δ2u(t − 1) = −r(t)f(t, ut) ≤ 0, we know that u(t) is convex for t ∈ [0, T + 1].
Assume that x(t) is a positive solution of (1.9) and (2.1) holds.
(1) Consider that γ = 0.
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If x(T + 1) > 0, then x(ξ) > 0. It follows that

x(T + 1) − x(0)
T + 1

=
βx(ξ) − x(0)

T + 1

>
x(ξ)
ξ

− x(0)
T + 1

≥ x(ξ) − x(0)
ξ

,

(2.3)

which is a contradiction to the convexity of x(t).
If x(T + 1) = 0, then x(ξ) = 0. If x(0) > 0, then we have

x(T + 1) − x(0)
T + 1

= − x(0)
T + 1

,

x(ξ) − x(0)
ξ

= −x(0)
ξ

.

(2.4)

Hence

x(T + 1) − x(0)
T + 1

>
x(ξ) − x(0)

ξ
, (2.5)

which is a contradiction to the convexity of x(t). If x(t) ≡ 0 for t ∈ [1, T], then x(t) is a trivial
solution. So there exists a t0 ∈ [1, ξ) ∪ (ξ, T] such that x(t0) > 0.

We assume that t0 ∈ [1, ξ). Then

x(T + 1) − x(t0)
T + 1 − t0

= − x(t0)
T + 1 − t0

,

x(ξ) − x(t0)
ξ − t0

= −x(t0)
ξ − t0

.

(2.6)

Hence

x(T + 1) − x(t0)
T + 1 − t0

>
x(ξ) − x(t0)

ξ − t0
, (2.7)

which is a contradiction to the convexity of x(t).
If t0 ∈ (ξ, T], similar to the above proof, we can also get a contradiction.
(2) Consider that γ > 0.
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Now we have

x(T + 1) − x(0)
T + 1

=
βx(ξ) − x(0) + γ

T + 1

≥ x(ξ)
ξ

− x(0)
T + 1

+
γ

T + 1

≥ x(ξ) − x(0)
ξ

+
γ

T + 1

>
x(ξ) − x(0)

ξ
,

(2.8)

which is a contradiction to the convexity of x(t).
Assume that x(t) is a positive solution of (1.9) and (2.2) holds.
(1) Consider that h(0) = 0.
If x(T + 1) > 0, then we obtain

x(T + 1) − x(0)
T + 1

=
x(T + 1) − αx

(
η
)

T + 1

<
x(T + 1)
T + 1 − η

− αx
(
η
)

T + 1

≤ x(T + 1) − x
(
η
)

T + 1 − η
,

(2.9)

which is a contradiction to the convexity of x(t).
If x(η) > 0, similar to the above proof, we can also get a contradiction.
If x(T + 1) = x(η) = 0, and so x(0) = 0, then there exists a t0 ∈ [1, η) ∪ (η, T] such that

x(t0) > 0. Otherwise, x(t) ≡ 0 is a trivial solution. Assume that t0 ∈ [1, η), then

x(T + 1) − x(t0)
T + 1 − t0

= − x(t0)
T + 1 − t0

,

x
(
η
) − x(t0)
η − t0

= − x(t0)
η − t0

,

(2.10)

which implies that

x(T + 1) − x(t0)
T + 1 − t0

>
x
(
η
) − x(t0)
η − t0

. (2.11)

A contradiction to the convexity of x(t) follows.
If t0 ∈ (η, T], we can also get a contradiction.
(2) Consider that h(0) > 0.
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Now we obtain

x(T + 1) − x(0)
T + 1

=
x(T + 1) − αx

(
η
) − h(0)

T + 1

≤ x(T + 1)
T + 1 − η

− x
(
η
)

T + 1 − η
− h(0)
T + 1

<
x(T + 1) − x

(
η
)

T + 1 − η
,

(2.12)

which is a contradiction to the convexity of x(t).

Next, we consider the existence of the Green’s function of equation

−Δ2u(t − 1) = f(t),

u(0) = αu
(
η
)
,

u(T + 1) = βu(ξ).

(2.13)

We always assume that
(H1) 0 ≤ α, β ≤ 1 and αβ < 1.
Motivated by Zhao [10], we have the following conclusions.

Theorem 2.2. The Green’s function for second-order four-point linear BVP (2.13) is given by

G1(t, s) = G(t, s) +
α(T + 1 − t)

αη + (1 − α)(T + 1)
× αη + β(1 − α)t + (1 − α)

(
T + 1 − βξ

)

(
1 − β

)
αη + (1 − α)

(
T + 1 − βξ

) G
(
η, s

)

+
β(1 − α)t + αβη

(
1 − β

)
αη + (1 − α)

(
T + 1 − βξ

)G(ξ, s),

(2.14)

where

G(t, s) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

s(T + 1 − t)
T + 1

, 0 ≤ s ≤ t − 1,

t(T + 1 − s)
T + 1

, t ≤ s ≤ T + 1.
(2.15)

Proof. Consider the second-order two-point BVP

−Δ2u(t − 1) = f(t), t ∈ [1, T],

u(0) = 0,

u(T + 1) = 0.

(2.16)
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It is easy to find that the solution of BVP (2.16) is given by

u(t) =
T∑

s=1

G(t, s)f(s), (2.17)

u(0) = 0, u(T + 1) = 0, u
(
η
)
=

T∑

s=1

G
(
η, s

)
f(s). (2.18)

The three-point BVP

−Δ2u(t − 1) = f(t), t ∈ [1, T],

u(0) = αu
(
η
)
, t ∈ [−τ, 0],

u(T + 1) = 0

(2.19)

can be obtained from replacing u(0) = 0 by u(0) = αu(η) in (2.16). Thus we suppose that the
solution of (2.19) can be expressed by

v(t) = u(t) + (c + dt)u
(
η
)
, (2.20)

where c and d are constants that will be determined.
From (2.18) and (2.20), we have

v(0) = u(0) + cu
(
η
)
,

v
(
η
)
= u

(
η
)
+
(
c + dη

)
u
(
η
)
=
(
1 + c + dη

)
u
(
η
)
,

v(T + 1) = u(T + 1) + (c + d(T + 1))u
(
η
)
= (c + d(T + 1))u

(
η
)
.

(2.21)

Putting the above equations into (2.19) yields

(1 − α)c − αηd = α,

c + (T + 1)d = 0.
(2.22)

By (H1), we obtain c and d by solving the above equation:

c =
α(T + 1)

αη + (1 − α)(T + 1)
,

d =
−α

αη + (1 − α)(T + 1)
.

(2.23)
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By (2.19) and (2.20), we have

v(0) = αv
(
η
)
,

v(T + 1) = 0,

v(ξ) = u(ξ) + (c + dξ)u
(
η
)
.

(2.24)

The four-point BVP (2.13) can be obtained from replacing u(T + 1) = 0 by u(T + 1) = βu(ξ) in
(2.19). Thus we suppose that the solution of (2.13) can be expressed by

w(t) = v(t) + (a + bt)v(ξ), (2.25)

where a and b are constants that will be determined.
From (2.24) and (2.25), we get

w(0) = v(0) + av(ξ) = αv
(
η
)
+ av(ξ),

w
(
η
)
= v

(
η
)
+
(
a + bη

)
v(ξ),

w(T + 1) = v(T + 1) + (a + b(T + 1))v(ξ) = (a + b(T + 1))v(ξ),

w(ξ) = v(ξ) + (a + bξ)v(ξ).

(2.26)

Putting the above equations into (2.13) yields

(1 − α)a − αηb = 0,
(
1 − β

)
a +

(
T + 1 − βξ

)
b = β.

(2.27)

By (H1), we can easily obtain

a =
αβη

(
1 − β

)
αη + (1 − α)

(
T + 1 − βξ

) ,

b =
β(1 − α)

(
1 − β

)
αη + (1 − α)

(
T + 1 − βξ

) .

(2.28)

Then by (2.17), (2.20), (2.23), (2.25), and (2.28), the solution of BVP (2.13) can be expressed
by

w(t) =
T∑

s=1

G1(t, s)f(s), (2.29)

where G1(t, s) is defined in (2.14). That is, G1(t, s) is the Green’s function of BVP (2.13).
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Remark 2.3. By (H1), we can see that G1(t, s) > 0 for (t, s) ∈ [0, T + 1]2. Let

m = min
(t,s)∈[1,T]2

G1(t, s), M = max
(t,s)∈[1,T]2

G1(t, s). (2.30)

Then M ≥ m > 0.

Lemma 2.4. Assume that (H1) holds. Then the second-order four-point BVP (2.13) has a unique
solution which is given in (2.29).

Proof. We need only to show the uniqueness.
Obviously, w(t) in (2.29) is a solution of BVP (2.13). Assume that v(t) is another

solution of BVP (2.13). Let

z(t) = v(t) −w(t), t ∈ [−τ, T + 1]. (2.31)

Then by (2.13), we have

−Δ2z(t − 1) = −Δ2v(t − 1) + Δ2w(t − 1) ≡ 0, t ∈ [1, T], (2.32)

z(0) = v(0) −w(0) = αz
(
η
)
,

z(T + 1) = v(T + 1) −w(T + 1) = βz(ξ).
(2.33)

From (2.32) we have, for t ∈ [1, T],

z(t) = c1t + c2, (2.34)

which implies that

z(0) = c2, z
(
η
)
= c1η + c2, z(ξ) = c1ξ + c2, z(T + 1) = c1(T + 1) + c2. (2.35)

Combining (2.33) with (2.35), we obtain

αηc1 − (1 − α)c2 = 0,
(
T + 1 − βξ

)
c1 +

(
1 − β

)
c2 = 0.

(2.36)

Condition (H1) implies that (2.36) has a unique solution c1 = c2 = 0. Therefore v(t) ≡ w(t) for
t ∈ [−τ, T + 1]. This completes the proof of the uniqueness of the solution.
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3. Existence of Positive Solutions

In this section, we discuss the BVP (1.9).
Assume that h(0) = 0, γ = 0.
We rewrite BVP (1.9) as

−Δ2u(t − 1) = r(t)f(t, ut), t ∈ [1, T],

u0 = αu
(
η
)
+ h, t ∈ [−τ, 0],

u(T + 1) = βu(ξ)

(3.1)

with h(0) = 0.
Suppose that u(t) is a solution of the BVP (3.1). Then it can be expressed as

u(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

T∑

s=1

G1(t, s)r(s)f(s, us), t ∈ [1, T],

αu
(
η
)
+ h(t), t ∈ [−τ, 0],

βu(ξ), t = T + 1.

(3.2)

Lemma 3.1 (see Guo et al. [11]). Assume that E is a Banach space and K ⊂ E is a cone in E. Let
Kp = {u ∈ K | ‖u‖ = p}. Furthermore, assume that Φ : K → K is a completely continuous operator
and Φu/=u for u ∈ ∂Kp = {u ∈ K | ‖u‖ = p}. Thus, one has the following conclusions:

(1) if ‖u‖ ≤ ‖Φu‖ for u ∈ ∂Kp, then i(Φ, Kp,K) = 0;
(2) if ‖u‖ ≥ ‖Φu‖ for u ∈ ∂Kp, then i(Φ, Kp,K) = 1.

Assume that f ≡ 0. Then (3.1)may be rewritten as

−Δ2u(t − 1) = 0, t ∈ [1, T],

u0 = αu
(
η
)
+ h,

u(T + 1) = βu(ξ).

(3.3)

Let u(t) be a solution of (3.3). Then by (3.2) and ξ, η ∈ (1, T), it can be expressed as

u(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, t ∈ [1, T],

h(t), t ∈ [−τ, 0],
0, t = T + 1.

(3.4)
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Let u(t) be a solution of BVP (3.1) and y(t) = u(t) − u(t). Then for t ∈ [1, T] we have
y(t) ≡ u(t) and

y(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

T∑

s=1

G1(t, s)r(s)f
(
s, ys + us

)
, t ∈ [1, T],

αy
(
η
)
, t ∈ [−τ, 0],

βy(ξ), t = T + 1.

(3.5)

Let

‖u‖ = max
t∈[−τ,T+1]

|u(t)|, E = {u | u : [−τ, T + 1] → R},

K =
{
u ∈ E | min

t∈[1,T]
u(t) ≥ m

M
‖u‖, u(t) = αu

(
η
)
, t ∈ [−τ, 0], u(T + 1) = βu(ξ)

}
.

(3.6)

Then E is a Banach space endowed with norm ‖ · ‖ and K is a cone in E.
For y ∈ K, we have by (H1) and the definition of K,

∥∥y
∥∥ = max

t∈[−τ,T+1]

∣∣y(t)
∣∣ = max

t∈[1,T]

∣∣y(t)
∣∣. (3.7)

For every y ∈ ∂Kp, s ∈ [1, T], and k ∈ [−τ, 0], by the definition of K and (3.5), if
s + k ≤ 0, we have

ys = y(s + k) = αy
(
η
)
. (3.8)

If T ≥ s + k ≥ 1, we have, by (3.4),

us = u(s + k) = 0, ys = y(s + k) ≥ min
t∈[1,T]

y(t ) ≥ m

M

∥∥y
∥∥, (3.9)

hence by the definition of ‖ · ‖τ , we obtain for s ∈ [τ + 1, T]

‖ys‖τ ≥ m

M
‖y‖. (3.10)

Lemma 3.2. For every y ∈ K, there is t0 ∈ [τ + 1, T], such that

∥∥yt0

∥∥
τ =

∥∥y
∥∥. (3.11)
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Proof. For s ∈ [τ + 1, T], k ∈ [−τ, 0], and s + k ∈ [1, T], by the definitions of ‖ · ‖τ and ‖ · ‖, we
have

‖ys‖τ = max
k∈[−τ,0]

∣
∣y(s + k)

∣
∣,

‖y‖ = max
t∈[1,T]

∣
∣y(t)

∣
∣.

(3.12)

Obviously, there is a t0 ∈ [τ + 1, T], such that (3.11) holds.
Define an operator Φ : K → E by

(
Φy

)
(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

T∑

s=1

G1(t, s)r(s)f
(
s, ys + us

)
, t ∈ [1, T],

α
(
Φy

)(
η
)
, t ∈ [−τ, 0],

β
(
Φy

)
(ξ), t = T + 1.

(3.13)

Then we may transform our existence problem of positive solutions of BVP (3.1) into a fixed
point problem of operator (3.13).

Lemma 3.3. Consider that Φ(K) ⊂ K.

Proof. If t ∈ [−τ, 0] and t = T +1, (Φy)(t) = αΦ(η) and (Φy)(T +1) = βΦ(ξ), respectively. Thus,
(H1) yields

‖Φy‖ = max
t∈[−τ,T+1]

∣∣(Φy
)
(t)

∣∣ = max
t∈[1,T]

∣∣(Φy
)
(t)

∣∣ = ‖Φy‖[1,T]. (3.14)

It follows from the definition of K that

min
t∈[1,T]

(
Φy

)
(t) = min

t∈[1,T]

T∑

s=1

G1(t, s)r(s)f
(
s, ys + us

)

≥ m
T∑

s=1

r(s)f
(
s, ys + us

)

≥ m

M

T∑

s=1

{
max
1≤s,t≤T

G1(t, s)
}
r(s)f

(
s, ys + us

)

≥ m

M
max
t∈[1,T]

T∑

s=1

G1(t, s)r(s)f
(
s, ys + us

)

=
m

M
‖Φy‖,

(3.15)

which implies that Φ(K) ⊂ K.
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Lemma 3.4. Suppose that (H1) holds. Then Φ : K → K is completely continuous.

We assume that
(H2)

∑T
t=1 r(t) > 0,

(H3)h = ‖h‖τ = max
t∈[−τ,0]

h(t) > 0.

We have the following main results.

Theorem 3.5. Assume that (H1)–(H3) hold. Then BVP (3.1) has at least one positive solution if the
following conditions are satisfied:

(H4) there exists a p1 > h such that, for s ∈ [1, T], if ‖φ‖τ ≤ p1 + h, then f(s, φ) ≤ R1p1;
(H5) there exists a p2 > p1 such that, for s ∈ [1, T], if ‖φ‖τ ≥ (m/M)p2, then f(s, φ) ≥ R2p2
or
(H6)1 > α > 0;
(H7) there exists a 0 < r1 < p1 such that, for s ∈ [1, T], if ‖φ‖τ ≤ r1, then f(s, φ) ≥ R2r1;
(H8) there exists an r2 ≥ max{p2 + h, (Mh/mα)}, such that, for s ∈ [1, T], if ‖φ‖τ ≥

(mα/M)r2 − h, then f(s, φ) ≤ R1r2,
where

R1 ≤ 1

M
∑T

s=1 r(s)
, R2 ≥ 1

m
∑T

s=τ+1 r(s)
. (3.16)

Proof. Assume that (H4) and (H5) hold. For every y ∈ ∂Kp1 , we have ‖ys + us‖τ ≤ p1 + h, thus

∥∥Φy
∥∥ =

∥∥Φy
∥∥
[1,T]

≤ M
T∑

s=1

r(s)f
(
s, ys + us

)

≤ MR1p1
T∑

s=1

r(s)

≤ p1

=
∥∥y

∥∥,

(3.17)

which implies by Lemma 3.1 that

i
(
Φ, Kp1 , K

)
= 1. (3.18)
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For every y ∈ ∂Kp2 , by (3.8)–(3.10) and Lemma 3.2, we have, for s ∈ [τ + 1, T], ‖ys‖τ ≥
(m/M)‖y‖ = (m/M)p2. Then by (3.13) and (H5), we have

∥
∥Φy

∥
∥ =

∥
∥Φy

∥
∥
[1,T] ≥ m

T∑

s=τ+1

r(s)f
(
s, ys + us

)

= m
T∑

s=τ+1

r(s)f
(
s, ys

)

≥ mR2p2
T∑

s=τ+1

r(s) ≥ p2 =
∥
∥y

∥
∥,

(3.19)

which implies by Lemma 3.1 that

i
(
Φ, Kp2 , K

)
= 0. (3.20)

So by (3.18) and (3.20), there exists one positive fixed point y1 of operator Φ with y1 ∈ Kp2 \
Kp1 .

Assume that (H6)–(H8) hold, for every y ∈ ∂Kr1 and s ∈ [τ +1, T], ‖ys + us‖τ = ‖ys‖τ ≤
‖y‖ = r1, by (H7), we have

∥∥Φy
∥∥ ≥ ∥∥y

∥∥. (3.21)

Thus we have from Lemma 3.1 that

i(Φ, Kr1 , K) = 0. (3.22)

For every y ∈ ∂Kr2 , by (3.8)–(3.10), we have ‖ys + us‖τ ≥ ‖ys‖τ −h ≥ (mα/M)r2−h > 0,

‖Φy‖ ≤ ‖y‖. (3.23)

Thus we have from Lemma 3.1 that

i(Φ, Kr2 , K) = 1. (3.24)

So by (3.22) and (3.24), there exists one positive fixed point y2 of operator Φ with
y2 ∈ Kr2 \Kr1 .

Consequently, u1 = y1 + u or u2 = y2 + u is a positive solution of BVP (3.1).

Theorem 3.6. Assume that (H1)–(H3) hold. Then BVP (3.1) has at least one positive solution if (H4)
and (H7) or (H5) and (H8) hold.

Theorem 3.7. Assume that (H1)–( H3) hold. Then BVP (3.1) has at least two positive solutions if
(H4), (H5), and (H7) or (H4), (H5), and (H8) hold.
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Theorem 3.8. Assume that (H1)–(H3) hold. Then BVP (3.1) has at least three positive solutions if
(H4)–(H8) hold.

Assume that h(0) > 0, γ > 0, and
(H9) (1 − β)h(0) − (1 − α)γ > 0.
Define H(t) : [−τ, T + 1] → R as follows:

H(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

h(t), t ∈ [−τ, 0],
0, t ∈ [1, T],

H(T + 1), t = T + 1,

(3.25)

which satisfies
(H10) (1 − α)H(T + 1) − (1 − β)h(0) > 0.
Obviously, H(t) exists.
Assume that u(t) is a solution of (1.9). Let

w(t) = u(t) + pH(t) + B, (3.26)

where

p =

(
1 − β

)
h(0) − (1 − α)γ

(1 − α)H(T + 1) − (
1 − β

)
h(0)

, B =
h(0)

{
γ −H(T + 1)

}

(1 − α)H(T + 1) − (
1 − β

)
h(0)

. (3.27)

By (1.9), (3.26), (3.27), (H7), (H8), and the definition of H(t), we have

w(0) = u(0) + ph(0) + B

= αw
(
η
)
+ ph(0) + (1 − α)B + h(0)

= αw
(
η
)
,

(3.28)

w(T + 1) = u(T + 1) + ph(T + 1) + B

= βw(ξ) + pH(T + 1) +
(
1 − β

)
B + γ

= βw(ξ),

(3.29)

and, for t ∈ [1, T],

−Δ2w(t − 1) = −Δ2u(t − 1) − pΔ2H(t − 1)

= r(t)f(t, ut) − pΔ2H(t − 1)

= r(t)f
(
t,wt − pHt − B

) − p{H(t + 1) −H(t − 1)}.
(3.30)

Let

F(t,wt) = r(t)f
(
t,wt − pHt − B

) − p{H(t + 1) −H(t − 1)}. (3.31)
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Then by (3.27), (H9), (H10), and the definition of H(t), we have F(t,wt) > 0 for t ∈
[1, T]. Thus, the BVP (1.9) can be changed into the following BVP:

−Δ2w(t − 1) = F(t,wt), t ∈ [1, T],

w0 = αw
(
η
)
+ g, t ∈ [−τ, 0],

w(T + 1) = βw(ξ),

(3.32)

with g = −Bα + h + pH0 + B ∈ C+
τ and g(0) = 0.

Similar to the above proof, we can show that (1.9) has at least one positive solution.
Consequently, (1.9) has at least one positive solution.

Example 3.9. Consider the following BVP:

−Δ2u(t − 1) =
t

120
f(t, ut), t ∈ [1, 5],

u0 = u(2) +
t2

4
, t ∈ [−2, 0],

u(T + 1) =
1
2
u(4).

(3.33)

That is,

T = 5, τ = 2, α =
1
2
, β = 1, ξ = 2, η = 4, h(t) =

t2

4
, r(t) =

t

120
.

(3.34)

Then we obtain

h = 1,
21
24

≤ G1(t, s) ≤ 163
40

,
5∑

s=1

r(t) =
1
8
,

5∑

s=3

r(t) =
1
10

. (3.35)

Let

f
(
t, φ

)
=

⎧
⎪⎪⎨

⎪⎪⎩

2R2
(
p2 − r1

)

π
arctan

(
s − m

M
p2
)
+ R2p2, s ≤ m

M
p2,

2
(
R1r2 − R2p2

)

π
arctan

(
s − m

M
p2
)
+ R2p2, s >

m

M
p2,

R1 =
3
2
, R2 = 12, r1 = 1, r2 = 400, p1 = 4, p2 = 40,

(3.36)

where s = ‖φ‖τ .
By calculation, we can see that (H4)–(H8) hold, then by Theorem 3.8, the BVP (3.33)

has at least three positive solutions.
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4. Eigenvalue Intervals

In this section, we consider the following BVP with parameter λ:

−Δ2u(t − 1) = λr(t)f(t, ut), t ∈ [1, T],

u0 = αu
(
η
)
+ h, t ∈ [−τ, 0],

u(T + 1) = βu(ξ)

(4.1)

with h(0) = 0.
The BVP (4.1) is equivalent to the equation

u(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

λ
T∑

s=1

G1(t, s)r(s)f(s, us), t ∈ [1, T],

αu
(
η
)
+ h(t), t ∈ [−τ, 0],

βu(ξ), t = T + 1.

(4.2)

Let u(t) be the solution of (3.3), y(t) = u(t) − u(t). Then we have

y(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

λ
T∑

s=1

G1(t, s)r(s)f
(
s, ys + us

)
, t ∈ [1, T],

αy
(
η
)
, t ∈ [−τ, 0],

βy(ξ), t = T + 1.

(4.3)

Let E and K be defined as the above. Define Φ : K → E by

Φy(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

λ
T∑

s=1

G1(t, s)r(s)f
(
s, ys + us

)
, t ∈ [1, T],

αΦy
(
η
)
, t ∈ [−τ, 0],

βΦy(ξ), t = T + 1.

(4.4)

Then solving the BVP (4.1) is equivalent to finding fixed points in K. Obviously Φ is
completely continuous and keeps the K invariant for λ ≥ 0.

Define

f0 = lim inf
‖φ‖τ → 0+

min
t∈[1,T]

f
(
t, φ

)

‖φ‖τ , f∞ = lim inf
‖φ‖τ →∞

min
t∈[1,T]

f
(
t, φ

)

‖φ‖τ , f∞ = lim sup
‖φ‖τ →∞

max
t∈[1,T]

f
(
t, φ

)

‖φ‖τ ,

(4.5)

respectively. We have the following results.
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Theorem 4.1. Assume that (H1), (H2), (H6),
(H11) r = min

t∈[1,T]
r(t) > 0,

(H12) min{1/mrf0,M/m2f0
∑T

s=τ+1 r(s)} < λ < 1/Mδf∞ ∑T
s=1 r(s)

hold, where δ = max{1, (1 + μ)α}, then BVP (4.1) has at least one positive solution, where μ is a
positive constant.

Proof. Assume that condition (H12) holds. If λ > 1/mrf0 and f0 < ∞, there exists an ε > 0
sufficiently small, such that

λ ≥ 1
mr

(
f0 − ε

) . (4.6)

By the definition of f0, there is an r1 > 0, such that for 0 < ‖φ‖τ ≤ r1,

min
t∈[1,T]

f
(
t, φ

)

∥∥φ
∥∥
τ

> f0 − ε. (4.7)

It follows that, for t ∈ [1, T] and 0 < ‖φ‖τ ≤ r1,

f
(
t, φ

)
>
(
f0 − ε

)∥∥φ
∥∥
τ . (4.8)

For every y ∈ ∂Kr1 and s ∈ [τ + 1, T], by (3.9), we have

∥∥ys + us

∥∥
τ =

∥∥ys

∥∥
τ ≤ ∥∥y

∥∥ = r1. (4.9)

Therefore by (3.13) and Lemma 3.2, we have

‖Φy‖ = max
t∈[1,T]

λ
T∑

s=1

G1(t, s)r(s)f
(
s, ys + us

)

≥ λmax
t∈[1,T]

T∑

s=τ+1

G1(t, s)r(s)f
(
s, ys + us

)

≥ mλr
(
f0 − ε

)∥∥yt0

∥∥
τ

= mλr
(
f0 − ε

)∥∥y
∥∥

≥ ‖y‖.

(4.10)
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If λ > M/m2f0
∑T

s=τ+1 r(s), then for a sufficiently small ε > 0, we have λ ≥ M/m2(f0 −
ε)

∑T
s=τ+1 r(s). Similar to the above, for every y ∈ ∂Kr1 , we obtain by (3.10)

‖Φy‖ ≥ mλ
T∑

s=τ+1

r(s)
(
f0 − ε

)∥∥ys

∥
∥
τ

≥ mλ
T∑

s=τ+1

r(s)
(
f0 − ε

) m
M

∥
∥y

∥
∥

≥ m2λ
(
f0 − ε

)

M

T∑

s=τ+1

r(s)
∥
∥y

∥
∥

≥ ∥
∥y

∥
∥.

(4.11)

If f0 = ∞, choose K > 0 sufficiently large, such that

m2λK

M

T∑

s=τ+1

r(s) ≥ 1. (4.12)

By the definition of f0, there is an r1 > 0, such that, for t ∈ [1, T] and 0 < ‖φ‖τ ≤ r1,

f
(
t, φ

)
> K

∥∥φ
∥∥
τ . (4.13)

For every y ∈ ∂Kr1 , by (3.8)–(3.10) and (3.13), we have

‖Φy‖ ≥ ∥∥y
∥∥, (4.14)

which implies that

i(Φ, Kr1 , K) = 0. (4.15)

Finally, we consider the assumption λ < 1/Mδf∞ ∑T
s=1 r(s). By the definition of f∞,

there is
r > max{r1, h/μα}, such that, for t ∈ [1, T] and ‖φ‖ ≥ r,

f
(
t, φ

)
<
(
f∞ + ε1

)∥∥φ
∥∥. (4.16)

We now show that there is r2 ≥ r, such that, for y ∈ ∂Kr2 , ‖Φy‖ ≤ ‖y‖. In fact, for
s ∈ [1, T] r2 ≥ (Mr/mα) and every y ∈ ∂Kr2 , δ‖y‖ ≥ ‖ys + us‖τ ≥ r; hence in a similar way,
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we have

∥
∥Φy

∥
∥ ≤ ∥

∥y
∥
∥, (4.17)

which implies that

i(Φ, Kr2 , K) = 1. (4.18)

Theorem 4.2. Assume that (H1),(H2), and (H11) hold. If f∞ = ∞ or f0 = ∞, then there is a λ0 > 0
such that for 0 < λ ≤ λ0, BVP (4.1) has at least one positive solution.

Proof. Let r > h be given. Define

L = max
{
f
(
t, φ

) | (t, φ) ∈ [1, T] × Cr
τ

}
. (4.19)

Then L > 0, where Cr
τ = {φ ∈ C+

τ | ‖φ‖τ ≤ r}.
For every y ∈ ∂Kr−h, we know that ‖y‖ = r − h. By the definition of operator Φ, we

obtain

∥∥Φy
∥∥ =

∥∥Φy
∥∥
[1,T] ≤ λLM

T∑

s=1

r(s). (4.20)

It follows that we can take λ0 = (r − h/ML
∑T

s=1 r(s)) > 0 such that, for all 0 < λ ≤ λ0 and all
y ∈ ∂Kr−h,

∥∥Φy
∥∥ ≤ ∥∥y

∥∥. (4.21)

Fix 0 < λ ≤ λ0. If f∞ = ∞, for C = (1/λmr), we obtain a sufficiently large R > r such
that, for ‖φ‖τ ≥ R,

min
t∈[1,T]

f
(
t, φ

)

‖Φ‖τ
> C. (4.22)

It follows that, for ‖φ‖τ ≥ R and t ∈ [1, T],

f
(
t, φ

) ≥ C
∥∥φ

∥∥
τ . (4.23)
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For every y ∈ ∂KR, by the definition of ‖·‖, ‖·‖τ and the definition of Lemma 3.2, there
exists a t0 ∈ [τ + 1, T] such that ‖y‖ = ‖yt0‖τ = R and ut0 = 0, thus ‖yt0 + ut0‖τ ≥ R. Hence

‖Φy‖ = max
t∈[1,T]

λ
T∑

s=1

G1(t, s)r(s)f
(
s, ys + us

)

≥ max
t∈[1,T]

λG1(t, t0)r(t0)f
(
t0, yt0 + ut0

)

≥ λmrC
∥
∥yt0

∥
∥
τ

≥ mCRλr

= R

= ‖y‖.

(4.24)

If f0 = ∞, there is s < r, such that, for 0 < ‖φ‖τ ≤ s and t ∈ [1, T],

f
(
t, φ

)
> T

∥∥φ
∥∥
τ , (4.25)

where T > (1/λmr).
For every y ∈ ∂Ks, by(3.8)–(3.10) and Lemma 3.2,

‖Φy‖ ≥ mλ
T∑

s=τ+1

r(s)f
(
s, ys

)

≥ Tmλ
T∑

s=τ+1

r(s)
∥∥ys

∥∥
τ

≥ Tmλr
∥∥yt0

∥∥
τ

= Tmλr
∥∥y

∥∥

≥ ∥∥y
∥∥,

(4.26)

which by combining with (4.21) completes the proof.

Example 4.3. Consider the BVP(3.33) in Example 3.9 with

f
(
t, φ

)
=

⎧
⎪⎨

⎪⎩

A arctan s, s ≤ m

M
p2,

A arctan s + C

1000
, s >

m

M
p2,

C =
(
1000 − m

M
p2
)
A arctan

( m

M
p2
)
,

(4.27)

where s = ‖φ‖τ , A is some positive constant, p2 = 40, m = (21/24), and M = (163/40).
By calculation, f0 = A, f∞ = πA/2000, and r = 1/120; let δ = 1. Then by Theorem(4.1),

for λ ∈ ((2608/49A), (640000/163πA)), the above equation has at least one positive solution.
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