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We consider the existence, multiplicity of positive solutions for the integral boundary value
problem with φ-Laplacian (φ(u′(t)))′ + f(t, u(t), u′(t)) = 0, t ∈ [0, 1], u(0) =

∫1
0 u(r)g(r)dr,

u(1) =
∫1
0 u(r)h(r)dr, where φ is an odd, increasing homeomorphism from R onto R. We show

that it has at least one, two, or three positive solutions under some assumptions by applying fixed
point theorems. The interesting point is that the nonlinear term f is involved with the first-order
derivative explicitly.

1. Introduction

We are interested in the existence of positive solutions for the integral boundary value
problem

(
φ
(
u′(t)

))′ + f
(
t, u(t), u′(t)

)
= 0, t ∈ [0, 1],

u(0) =
∫1

0
u(r)g(r)dr, u(1) =

∫1

0
u(r)h(r)dr,

(1.1)

where φ, f, g, and h satisfy the following conditions.

(H1) φ is an odd, increasing homeomorphism from R onto R, and there exist two
increasing homeomorphisms ψ1 and ψ2 of (0,∞) onto (0,∞) such that

ψ1(u)φ(v) ≤ φ(uv) ≤ ψ2(u)φ(v) ∀u, v > 0. (1.2)

Moreover, φ, φ−1 ∈ C1(R), where φ−1 denotes the inverse of φ.
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(H2) f : [0, 1] × [0,+∞) × (−∞,+∞) → (0,+∞) is continuous. g, h ∈ L1[0, 1] are
nonnegative, and 0 <

∫1
0 g(t)dt < 1, 0 <

∫1
0 h(t)dt < 1.

The assumption (H1) on the function φ was first introduced by Wang [1, 2], it covers
two important cases: φ(u) = u and φ(u) = |u|p−2u, p > 1. The existence of positive solutions
for two above cases received wide attention (see [3–10]). For example, Ji and Ge [4] studied
the multiplicity of positive solutions for the multipoint boundary value problem

(
φp

(
u′(t)

))′ + q(t)f
(
t, u(t), u′(t)

)
= 0, t ∈ (0, 1),

u(0) =
m∑

i=1

αiu(ξi), u(1) =
m∑

i=1

βiu(ξi),
(1.3)

where φp(s) = |s|p−2s, p > 1. They provided sufficient conditions for the existence of at
least three positive solutions by using Avery-Peterson fixed point theorem. In [5], Feng et
al. researched the boundary value problem

(
φp

(
u′(t)

))′ + q(t)f(t, u(t)) = 0, t ∈ (0, 1),

u(0) =
m−2∑

i=1

aiu(ξi), u(1) =
m−2∑

i=1

biu(ξi),
(1.4)

where the nonlinear term f does not depend on the first-order derivative and φp(s) = |s|p−2s,
p > 1. They obtained at least one or two positive solutions under some assumptions imposed
on the nonlinearity of f by applying Krasnoselskii fixed point theorem.

As for integral boundary value problem, when φ(u) = u is linear, the existence of
positive solutions has been obtained (see [8–10]). In [8], the author investigated the positive
solutions for the integral boundary value problem

u′′ + f(u) = 0,

u(0) =
∫1

0
u(τ)dα(τ), u(1) =

∫1

0
u(τ)dβ(τ).

(1.5)

The main tools are the priori estimate method and the Leray-Schauder fixed point theorem.
However, there are few papers dealing with the existence of positive solutions when φ
satisfies (H1) and f depends on both u and u′. This paper fills this gap in the literature. The
aim of this paper is to establish some simple criteria for the existence of positive solutions of
BVP(1.1). To get rid of the difficulty of f depending on u′, we will define a special norm in
Banach space (in Section 2).

This paper is organized as follows. In Section 2, we present some lemmas that are
used to prove our main results. In Section 3, the existence of one or two positive solutions for
BVP(1.1) is established by applying the Krasnoselskii fixed point theorem. In Section 4, we
give the existence of three positive solutions for BVP(1.1) by using a new fixed point theorem
introduced by Avery and Peterson. In Section 5, we give some examples to illustrate our main
results.
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2. Preliminaries

The basic space used in this paper is a real Banach space C1[0, 1] with norm ‖ · ‖1 defined by
‖u‖1 = max{‖u‖c, ‖u′‖c}, where ‖u‖c = max0≤t≤1|u(t)|. Let

K =

{

u ∈ C1[0, 1] | u(t) ≥ 0, u(1) =
∫1

0
u(t)h(t)dt, u is concave on [0, 1]

}

. (2.1)

It is obvious that K is a cone in C1[0, 1].

Lemma 2.1 (see [7]). Let u ∈ K, η ∈ (0, 1/2), then u(t) ≥ ηmax0≤t≤1|u(t)|, t ∈ [η, 1 − η].

Lemma 2.2. Let u ∈ K, then there exists a constant M > 0 such that max0≤t≤1|u(t)| ≤
Mmax0≤t≤1|u′(t)|.

Proof. The mean value theorem guarantees that there exists τ ∈ [0, 1], such that

u(1) = u(τ)
∫1

0
h(t)dt. (2.2)

Moreover, the mean value theorem of differential guarantees that there exists σ ∈ [τ, 1], such
that

(∫1

0
h(t)dt − 1

)

u(τ) = u(1) − u(τ) = (1 − τ)u′(σ). (2.3)

So we have

|u(t)| ≤ |u(τ)| +
∣∣∣∣∣

∫ t

τ

u′(s)ds

∣∣∣∣∣
≤

⎛

⎝ 1 − τ

1 − ∫1
0 h(t)dt

+ 1

⎞

⎠max
0≤t≤1

∣∣u′(t)
∣∣ ≤ 2 − ∫1

0 h(t)dt

1 − ∫1
0 h(t)dt

max
0≤t≤1

∣∣u′(t)
∣∣.

(2.4)

Denote M = (2 − ∫1
0 h(t)dt)/(1 −

∫1
0 h(t)dt); then the proof is complete.

Lemma 2.3. Assume that (H1), (H2) hold. If u is a solution of BVP(1.1), there exists a unique δ ∈
(0, 1), such that u′(δ) = 0 and u(t) ≥ 0, t ∈ [0, 1].

Proof. From the fact that (φ(u′))′ = −f(t, u(t), u′(t)) < 0, we know that φ(u′(t)) is strictly
decreasing. It follows that u′(t) is also strictly decreasing. Thus, u(t) is strictly concave on [0,
1]. Without loss of generality, we assume that u(0) = min{u(0), u(1)}. By the concavity of
u, we know that u(t) ≥ u(0), t ∈ (0, 1]. So we get u(0) =

∫1
0 u(t)g(t)dt ≥ u(0)

∫1
0 g(t)dt. By

0 <
∫1
0 g(t)dt < 1, it is obvious that u(0) ≥ 0. Hence, u(t) ≥ 0, t ∈ [0, 1].
On the other hand, from the concavity of u, we know that there exists a unique δwhere

the maximum is attained. By the boundary conditions and u(t) ≥ 0, we know that δ /= 0 or 1,
that is, δ ∈ (0, 1) such that u(δ) = max0≤t≤1u(t) and then u′(δ) = 0.
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Lemma 2.4. Assume that (H1), (H2) hold. Suppose u is a solution of BVP(1.1); then

u(t) =
1

1 − ∫1
0 g(r)dr

∫1

0
g(r)

∫ r

0
φ−1

(∫δ

s

f
(
τ, u(τ), u′(τ)

)
dτ

)

dsdr

+
∫ t

0
φ−1

(∫δ

s

f
(
τ, u(τ), u′(τ)

)
dτ

)

ds

(2.5)

or

u(t) =
1

1 − ∫1
0 h(r)dr

∫1

0
h(r)

∫1

r

φ−1
(∫s

δ

f
(
τ, u(τ), u′(τ)

)
dτ

)
dsdr

+
∫1

t

φ−1
(∫s

δ

f
(
τ, u(τ), u′(τ)

)
dτ

)
ds.

(2.6)

Proof. First, by integrating (1.1) on [0, t], we have

φ
(
u′(t)

)
= φ

(
u′(0)

) −
∫ t

0
f
(
s, u(s), u′(s)

)
ds, (2.7)

then

u′(t) = φ−1
(

φ
(
u′(0)

) −
∫ t

0
f
(
s, u(s), u′(s)

)
ds

)

. (2.8)

Thus

u(t) = u(0) +
∫ t

0
φ−1

(
φ
(
u′(0)

) −
∫s

0
f
(
τ, u(τ), u′(τ)

)
dτ

)
ds (2.9)

or

u(t) = u(1) −
∫1

t

φ−1
(
φ
(
u′(0)

) −
∫s

0
f
(
τ, u(τ), u′(τ)

)
dτ

)
ds. (2.10)

According to the boundary condition, we have

u(0) =
1

1 − ∫1
0 g(r)dr

∫1

0
g(r)

∫ r

0
φ−1

(
φ
(
u′(0)

) −
∫s

0
f
(
τ, u(τ), u′(τ)

)
dτ

)
dsdr,

u(1) = − 1

1 − ∫1
0 h(r)dr

∫1

0
h(r)

∫1

r

φ−1
(
φ
(
u′(0)

) −
∫s

0
f
(
τ, u(τ), u′(τ)

)
dτ

)
dsdr.

(2.11)
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By a similar argument in [5], φ(u′(0)) =
∫δ
0 f(τ, u(τ), u

′(τ))dτ ; then the proof is completed.

Now we define an operator T by

Tu(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

1 − ∫1
0 g(r)dr

∫1

0
g(r)

∫ r

0
φ−1

(∫δ

s

f(τ, u(τ), u′(τ))dτ

)

dsdr

+
∫ t

0
φ−1

(∫δ

s

f(τ, u(τ), u′(τ))dτ

)

ds, 0 ≤ t ≤ δ,

1

1 − ∫1
0 h(r)dr

∫1

0
h(r)

∫1

r

φ−1
(∫ s

δ

f(τ, u(τ), u′(τ))dτ
)
dsdr

+
∫1

t

φ−1
(∫ s

δ

f(τ, u(τ), u′(τ))dτ
)
ds, δ ≤ t ≤ 1.

(2.12)

Lemma 2.5. T : K → K is completely continuous.

Proof. Let u ∈ K; then from the definition of T , we have

(Tu)′(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

φ−1
(∫δ

t

f(τ, u(τ), u′(τ))dτ

)

≥ 0, 0 ≤ t ≤ δ,

−φ−1
(∫ t

δ

f(τ, u(τ), u′(τ))dτ

)

≤ 0, δ ≤ t ≤ 1.

(2.13)

So (Tu)′(t) is monotone decreasing continuous and (Tu)′(δ) = 0. Hence, (Tu)(t) is
nonnegative and concave on [0, 1]. By computation, we can get Tu(1) =

∫1
0 Tu(t)h(t)dt. This

shows that T(K) ⊂ K. The continuity of T is obvious since φ−1, f is continuous. Next, we
prove that T is compact on C1[0, 1].

Let D be a bounded subset of K and m > 0 is a constant such that
∫1
0 f(τ,

u(τ), u′(τ))dτ < m for u ∈ D. From the definition of T , for any u ∈ D, we get

|Tu(t)| <

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

φ−1(m)

1 − ∫1
0 g(r)dr

, 0 ≤ t ≤ δ,

φ−1(m)

1 − ∫1
0 h(r)dr

, δ ≤ t ≤ 1,

∣∣(Tu)′(t)
∣∣ < φ−1(m), 0 ≤ t ≤ 1.

(2.14)

Hence, TD is uniformly bounded and equicontinuous. So we have that TD is compact on
C[0, 1]. From (2.13), we know for ∀ε > 0, ∃κ > 0, such that when |t1 − t2| < κ, we have
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|φ(Tu)′(t1) − φ(Tu)′(t2)| < ε. So φ(TD)′ is compact on C[0, 1]; it follows that (TD)′ is compact
on C[0, 1]. Therefore, TD is compact on C1[0, 1].

Thus, T : K → K is completely continuous.

It is easy to prove that each fixed point of T is a solution for BVP(1.1).

Lemma 2.6 (see [1]). Assume that (H1) holds. Then for u, v ∈ (0,∞),

ψ−1
2 (u)v ≤ φ−1(uφ(v)

) ≤ ψ−1
1 (u)v. (2.15)

To obtain positive solution for BVP(1.1), the following definitions and fixed point
theorems in a cone are very useful.

Definition 2.7. The map α is said to be a nonnegative continuous concave functional on a cone
of a real Banach space E provided that α : K → [0,∞) is continuous and

α
(
tx + (1 − t)y

) ≥ tα(x) + (1 − t)α
(
y
)

(2.16)

for all x, y ∈ K and 0 ≤ t ≤ 1. Similarly, we say the map γ is a nonnegative continuous convex
functional on a cone of a real Banach space E provided that γ : K → [0,∞) is continuous and

γ
(
tx + (1 − t)y

) ≤ tγ(x) + (1 − t)γ
(
y
)

(2.17)

for all x, y ∈ K and 0 ≤ t ≤ 1.

Let γ and θ be a nonnegative continuous convex functionals on K, α a nonnegative
continuous concave functional on K, and ψ a nonnegative continuous functional on K. Then
for positive real number a, b, c, and d, we define the following convex sets:

P
(
γ, d

)
=

{
u ∈ K | γ(u) < d

}
,

P
(
γ, α, b, d

)
=

{
u ∈ K | α(u) ≥ b, γ(u) ≤ d

}
,

P
(
γ, θ, α, b, c, d

)
=

{
u ∈ K | α(u) ≥ b, θ(u) ≤ c, γ(u) ≤ d

}
,

R
(
γ, ψ, a, d

)
=

{
u ∈ K | ψ(u) ≥ a, γ(u) ≤ d

}
.

(2.18)

Theorem 2.8 (see [11]). Let E be a real Banach space and K ⊂ E a cone. Assume that Ω1 and Ω2

are two bounded open sets in E with 0 ∈ Ω1, Ω1 ⊂ Ω2. Let T : K ∩ (Ω2 \ Ω1) → K be completely
continuous. Suppose that one of following two conditions is satisfied:

(1) ‖Tu‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω1, and ‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω2;

(2) ‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω1, and ‖Tu‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω2.

Then T has at least one fixed point in Ω2 \Ω1.

Theorem 2.9 (see [12]). Let K be a cone in a real Banach space E. Let γ and θ be a nonnegative
continuous convex functionals on K, α a nonnegative continuous concave functional on K, and ψ
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a nonnegative continuous functional on K satisfying ψ(λu) ≤ λψ(u) for 0 ≤ λ ≤ 1, such that for
positive number M and d,

α(u) ≤ ψ(u), ‖u‖ ≤ Mγ(u) (2.19)

for all u ∈ P(γ, d). Suppose T : P(γ, d) → P(γ, d) is completely continuous and there exist positive
numbers a, b, and c with a < b such that

(S1) {u ∈ P(γ, θ, α, b, c, d) | α(u) > b}/= ∅ and α(Tu) > b for u ∈ P(γ, θ, α, b, c, d);

(S2) α(Tu) > b for u ∈ P(γ, α, b, d) with θ(Tu) > c;

(S3) 0 /∈ R(γ, ψ, a, d) and ψ(Tu) < a for u ∈ R(γ, ψ, a, d) with ψ(u) = a.

Then T has at least three fixed points u1, u2, u3 ∈ P(γ, d), such that

γ(ui) ≤ d for i = 1, 2, 3,

α(u1) > b,

ψ(u2) > a with α(u2) < b,

ψ(u3) < a.

3. The Existence of One or Two Positive Solutions

For convenience, we denote

L = max

⎧
⎨

⎩

∫1
0 ψ

−1
1 (1 − s)ds

1 − ∫1
0 g(s)ds

, 1

⎫
⎬

⎭
, N = min

{∫1/2

0
ψ−1
2

(
1
2
− s

)
ds,

∫1

1/2
ψ−1
2

(
s − 1

2

)
ds

}

,

fμ = lim sup
‖u‖c+‖v‖c →μ

max
t∈[0,1]

f(t, u(t), v(t))
φ(‖u‖c + ‖v‖c)

, fμ = lim inf
‖u‖c+‖v‖c →μ

min
t∈[0,1]

f(t, u(t), v(t))
φ(‖u‖c + ‖v‖c)

,

(3.1)

where μ denotes 0 or ∞.

Theorem 3.1. Assume that (H1) and (H2) hold. In addition, suppose that one of following conditions
is satisfied.

(i) There exist two constants r, R with 0 < r < (N/L)R such that

(a) f(t, u, v) ≥ φ(r/N) for (t, u, v) ∈ [0, 1] × [0, r] × [−r, r] and
(b) f(t, u, v) ≤ φ(R/L) for (t, u, v) ∈ [0, 1] × [0, R] × [−R,R];

(ii) f∞ < ψ1(1/2L), f0 > ψ2(1/N);

(iii) f0 < ψ1(1/2L), f∞ > ψ2(1/N).

Then BVP(1.1) has at least one positive solution.



8 Boundary Value Problems

Proof. (i) Let Ω1 = {u ∈ K | ‖u‖1 < r}, Ω2 = {u ∈ K | ‖u‖1 < R}.
For u ∈ ∂Ω1, we obtain u ∈ [0, r] and u′ ∈ [−r, r], which implies f(t, u, u′) ≥ φ(r/N).

Hence, by (2.12) and Lemma 2.6,

‖Tu‖c = max
0≤t≤1

|Tu(t)|

=
1

1 − ∫1
0 g(r)dr

∫1

0
g(r)

∫ r

0
φ−1

(∫δ

s

f
(
τ, u(τ), u′(τ)

)
dτ

)

dsdr

+
∫δ

0
φ−1

(∫δ

s

f
(
τ, u(τ), u′(τ)

)
dτ

)

ds

=
1

1 − ∫1
0 h(r)dr

∫1

0
h(r)

∫1

r

φ−1
(∫s

δ

f
(
τ, u(τ), u′(τ)

)
dτ

)
dsdr

+
∫1

δ

φ−1
(∫s

δ

f
(
τ, u(τ), u′(τ)

)
dτ

)
ds

≥ min

⎧
⎨

⎩
1

1 − ∫1
0 g(r)dr

∫1

0
g(r)

∫ r

0
φ−1

(∫δ

s

f
(
τ, u(τ), u′(τ)

)
dτ

)

dsdr

+
∫1/2

0
φ−1

(∫1/2

s

f
(
τ, u(τ), u′(τ)

)
dτ

)

ds,

1

1 − ∫1
0 h(r)dr

∫1

0
h(r)

∫1

r

φ−1
(∫s

δ

f
(
τ, u(τ), u′(τ)

)
dτ

)
dsdr

+
∫1

1/2
φ−1

(∫s

1/2
f
(
τ, u(τ), u′(τ)

)
dτ

)
ds

}

≥ min

{∫1/2

0
φ−1

(∫1/2

s

f
(
τ, u(τ), u′(τ)

)
dτ

)

ds,
∫1

1/2
φ−1

(∫s

1/2
f
(
τ, u(τ), u′(τ)

)
dτ

)
ds

}

≥ min

{∫1/2

0
φ−1

(
φ
( r

N

)(1
2
− s

))
ds,

∫1

1/2
φ−1

(
φ
( r

N

)(
s − 1

2

))
ds

}

≥ r

N
min

{∫1/2

0
ψ−1
2

(
1
2
− s

)
ds,

∫1

1/2
ψ−1
2

(
s − 1

2

)
ds

}

= r = ‖u‖1.
(3.2)

This implies that

‖Tu‖1 ≥ ‖u‖1 for u ∈ ∂Ω1. (3.3)
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Next, for u ∈ ∂Ω2, we have f(t, u, v) ≤ φ(R/L). Thus, by (2.12) and Lemma 2.6,

‖Tu‖c = max
0≤t≤1

|Tu(t)|

≤ 1

1 − ∫1
0 g(r)dr

∫1

0
g(r)

∫1

0
φ−1

(∫1

s

f
(
τ, u(τ), u′(τ)

)
dτ

)

dsdr

+
∫1

0
φ−1

(∫1

s

f
(
τ, u(τ), u′(τ)

)
dτ

)

ds

≤ 1

1 − ∫1
0 g(r)dr

∫1

0
φ−1

(
(1 − s)φ

(
R

L

))
ds

≤ R

L

∫1
0 ψ

−1
1 (1 − s)ds

1 − ∫1
0 g(r)dr

≤ R = ‖u‖1.

(3.4)

From (2.13), we have

∥∥(Tu)′
∥∥
c = max

{

φ−1
(∫δ

0
f
(
τ, u(τ), u′(τ)

)
dτ

)

, φ−1
(∫1

δ

f
(
τ, u(τ), u′(τ)

)
dτ

)}

≤ φ−1
(∫1

0
f
(
τ, u(τ), u′(τ)

)
dτ

)

≤ φ−1
(
φ

(
R

L

))

≤ R = ‖u‖1.

(3.5)

This implies that

‖Tu‖1 ≤ ‖u‖1 for u ∈ ∂Ω2. (3.6)

Therefore, by Theorem 2.8, it follows that T has a fixed point in Ω2 \Ω1. That is BVP(1.1) has
at least one positive solution such that 0 < r ≤ ‖u‖1 ≤ R.

(ii) Considering f∞ < ψ1(1/2L), there exists ρ0 > 0 such that

f(t, u, v) ≤ ψ1

(
1
2L

)
φ(‖u‖c + ‖v‖c) for t ∈ [0, 1], ‖u‖c + ‖v‖c ≥ 2ρ0. (3.7)

Choosing M > ρ0 such that

max
{
f(t, u, v) | ‖u‖c + ‖v‖c ≤ 2ρ0

} ≤ ψ1

(
1
2L

)
φ
(
M

)
, (3.8)
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then for all ρ > M, let Ω3 = {u ∈ K | ‖u‖1 < ρ}. For every u ∈ ∂Ω3, we have ‖u‖c + ‖u′‖c ≤ 2ρ.
In the following, we consider two cases.

Case 1 (‖u‖c + ‖u′‖c ≤ 2ρ0). In this case,

f
(
t, u, u′) ≤ ψ1

(
1
2L

)
φ
(
M

)
≤ φ

(
M

2L

)

≤ φ
(ρ

L

)
. (3.9)

Case 2 (2ρ0 ≤ ‖u‖c + ‖u′‖c ≤ 2ρ). In this case,

f
(
t, u, u′) ≤ ψ1

(
1
2L

)
φ
(‖u‖c +

∥
∥u′∥∥

c

) ≤ ψ1

(
1
2L

)
φ
(
2ρ

) ≤ φ
(ρ

L

)
. (3.10)

Then it is similar to the proof of (3.6); we have ‖Tu‖1 ≤ ‖u‖1 for u ∈ ∂Ω3.

Next, turning to f0 > ψ2(1/N), there exists 0 < ξ < ρ such that

f(t, u, v) ≥ ψ2

(
1
N

)
φ(‖u‖c + ‖v‖c) for t ∈ [0, 1], ‖u‖c + ‖v‖c ≤ 2ξ. (3.11)

Let Ω4 = {u ∈ K | ‖u‖1 < ξ}. For every u ∈ ∂Ω4, we have ‖u‖c + ‖u′‖c ≤ 2ξ. So

f
(
t, u, u′) ≥ ψ2

(
1
N

)
φ
(‖u‖c +

∥∥u′∥∥
c

) ≥ ψ2

(
1
N

)
φ(‖u‖1) ≥ φ

(
ξ

N

)
. (3.12)

Then like in the proof of (3.3), we have ‖Tu‖1 ≥ ‖u‖1 for u ∈ ∂Ω4. Hence, BVP(1.1) has at least
one positive solution such that 0 < ξ ≤ ‖u‖1 ≤ ρ.

(iii) The proof is similar to the (i) and (ii); here we omit it.

In the following, we present a result for the existence of at least two positive solutions
of BVP(1.1).

Theorem 3.2. Assume that (H1) and (H2) hold. In addition, suppose that one of following conditions
is satisfied.

(I) f0 < ψ1(1/2L), f∞ < ψ1(1/2L), and there existsm1 > 0 such that

f(t, u, v) ≥ φ
(m1

N

)
for t ∈ [0, 1], m1 ≤ ‖u‖c + ‖v‖c ≤ 2m1; (3.13)

(II) f0 > ψ2(1/N), f∞ > ψ2(1/N), and there existsm2 > 0 such that

f(t, u, v) ≤ φ
(m2

L

)
for t ∈ [0, 1], ‖u‖c + ‖v‖c ≤ 2m2. (3.14)

Then BVP(1.1) has at least two positive solutions.
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4. The Existence of Three Positive Solutions

In this section, we impose growth conditions on f which allow us to apply Theorem 2.9 of
BVP(1.1).

Let the nonnegative continuous concave functional α, the nonnegative continuous
convex functionals γ , θ, and nonnegative continuous functional ψ be defined on cone K by

γ(u) = max
0≤t≤1

∣
∣u′(t)

∣
∣, ψ(u) = θ(u) = max

0≤t≤1
|u(t)|, α(u) = min

η≤t≤1−η
|u(t)|. (4.1)

By Lemmas 2.1 and 2.2, the functionals defined above satisfy

ηθ(u) ≤ α(u) ≤ ψ(u) = θ(u), ‖u‖1 = max
{
γ(u), θ(u)

} ≤ Mγ(u), (4.2)

for all u ∈ K. Therefore, the condition (2.19) of Theorem 2.9 is satisfied.

Theorem 4.1. Assume that (H1) and (H2) hold. Let 0 < a < b ≤ dη/(1+((1−∫10 h(t)dt)/(
∫1
0 h(t)(1−

t)dt))) and suppose that f satisfies the following conditions:

(P1) f(t, u, v) ≤ φ(d) for (t, u, v) ∈ [0, 1] × [0,Md] × [−d, d];
(P2) f(t, u, v) > φ(b/ηK) for (t, u, v) ∈ [η, 1 − η] × [b, (b/η)(1+ (1 − ∫1

0 h(t)dt)/
∫1
0 h(t)(1 −

t)dt)] × [−d, d].
(P3) f(t, u, v) < φ(a/L) for (t, u, v) ∈ [0, 1] × [0, a] × [−d, d];

Then BVP(1.1) has at least three positive solutions u1, u2, and u3 satisfying

max
0≤t≤1

∣∣u′
i(t)

∣∣ ≤ d for i = 1, 2, 3, min
η≤t≤1−η

|u1(t)| > b,

max0≤t≤1|u2(t)| > a with minη≤t≤1−η|u2(t)| < b, max0≤t≤1|u3(t)| < a,

(4.3)

where L defined as (3.1), K = min{∫1/2η ψ−1
2 (1/2 − s)ds,

∫1−η
1/2 ψ

−1
2 (s − 1/2)ds}.

Proof. We will show that all the conditions of Theorem 2.9 are satisfied.
If u ∈ P(γ, d), then γ(u) = max0≤t≤1|u′(t)| ≤ d. With Lemma 2.2 implying

max0≤t≤1|u(t)| ≤ Md, so by (P1), we have f(t, u(t), u′(t)) ≤ φ(d)when 0 ≤ t ≤ 1. Thus

γ(Tu) = max
0≤t≤1

∣∣(Tu)′(t)
∣∣

= max

{

φ−1
(∫δ

0
f
(
τ, u(τ), u′(τ)

)
dτ

)

, φ−1
(∫1

δ

f
(
τ, u(τ), u′(τ)

)
dτ

)}

≤ φ−1
(∫1

0
f
(
τ, u(τ), u′(τ)

)
dτ

)

≤ φ−1(φ(d)
)
= d.

(4.4)

This proves that T : P(γ, d) → P(γ, d).
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To check condition (S1) of Theorem 2.9, we choose

u0(t) =
b

η
+

b
(
1 − ∫1

0 h(t)dt
)

η
(∫1

0 h(t)(1 − t)dt
) (1 − t), 0 ≤ t ≤ 1. (4.5)

Let

c =
b

η

⎛

⎝1 +
1 − ∫1

0 h(t)dt
∫1
0 h(t)(1 − t)dt

⎞

⎠. (4.6)

Then u0(t) ∈ P(γ, θ, α, b, c, d) and α(u0) > b, so {u ∈ P(γ, θ, α, b, c, d) | α(u) > b}/= ∅. Hence,
for u ∈ P(γ, θ, α, b, c, d), there is b ≤ u(t) ≤ c, |u′(t)| ≤ d when η ≤ t ≤ 1 − η. From assumption
(P2), we have

f
(
t, u(t), u′(t)

)
> φ

(
b

ηK

)
for t ∈ [

η, 1 − η
]
. (4.7)

It is similar to the proof of assumption (i) of Theorem 3.1; we can easily get that

α(Tu) = min
η≤t≤1−η

|(Tu)(t)| ≥ ηmax
0≤t≤1

|(Tu)(t)| > b for u ∈ P
(
γ, θ, α, b, c, d

)
. (4.8)

This shows that condition (S1) of Theorem 2.9 is satisfied.
Secondly, for u ∈ P(γ, α, b, d)with θ(Tu) > c, we have

α(Tu) ≥ ηθ(Tu) ≥ ηc > b. (4.9)

Thus condition (S2) of Theorem 2.9 holds.
Finally, as ψ(0) = 0 < a, there holds 0 /∈ R(γ, ψ, a, d). Suppose that u ∈ R(γ, ψ, a, d)with

ψ(u) = a; then by the assumption (P3),

f
(
t, u(t), u′(t)

)
< φ

(a

L

)
for t ∈ [0, 1]. (4.10)

So like in the proof of assumption (i) of Theorem 3.1, we can get

ψ(Tu) = max
0≤t≤1

|(Tu)(t)| < a. (4.11)

Hence condition (S3) of Theorem 2.9 is also satisfied.



Boundary Value Problems 13

Thus BVP(1.1) has at least three positive solutions u1, u2, and u3 satisfying

max
0≤t≤1

∣
∣u′

i(t)
∣
∣ ≤ d for i = 1, 2, 3, min

η≤t≤1−η
|u1(t)| > b,

max
0≤t≤1

|u2(t)| > a with min
η≤t≤1−η

|u2(t)| < b, max
0≤t≤1

|u3(t)| < a.
(4.12)

5. Examples

In this section, we give three examples as applications.

Example 5.1. Let φ(u) = |u|u, g(t) = h(t) = 1/2. Now we consider the BVP

(
φ
(
u′))′ + f

(
t, u(t), u′(t)

)
= 0, t ∈ [0, 1],

u(0) =
1
2

∫1

0
u(t)dt, u(1) =

1
2

∫1

0
u(t)dt,

(5.1)

where f(t, u, v) = (1 + t)(18 + u)(4 + cosv) for (t, u, v) ∈ [0, 1] × [0,∞) × (−∞,∞).
Let ψ1(u) = ψ2(u) = u2, u > 0. Choosing r = 1, R = 100. By calculations we obtain

L =
4
3
, N =

2
3

(
1
2

)3/2

, φ
( r

N

)
= 18, φ

(
R

L

)
= 752. (5.2)

For (t, u, v) ∈ [0, 1] × [0, 1] × [−1, 1],

f(t, u, v) = (1 + t)(18 + u)(4 + cosv)

≥ 18 × 4 > 18,
(5.3)

for (t, u, v) ∈ [0, 1] × [0, 100] × [−100, 100],

f(t, u, v) = (1 + t)(18 + u)(4 + cosv)

≤ 2 × 118 × 5 < 752.
(5.4)

Hence, by Theorem 3.1, BVP(5.1) has at least one positive solution.

Example 5.2. Let φ(u) = u, g(t) = h(t) = 1/2. Consider the BVP

(
φ
(
u′))′ + f

(
t, u(t), u′(t)

)
= 0, t ∈ [0, 1],

u(0) =
1
2

∫1

0
u(t)dt, u(1) =

1
2

∫1

0
u(t)dt,

(5.5)

where f(t, u, v) = (1+ t)(1/10+u)(1/100+v2)[1+(‖u‖c +‖v‖c)2] for (t, u, v) ∈ [0, 1]× [0,∞)×
(−∞,∞).
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Let ψ1(u) = ψ2(u) = u, u > 0. Then L = 1,N = 1/8. It easy to see

f0 = f∞ = ∞ > ψ2

(
1
N

)
= 8. (5.6)

Choosing m2 = 1/10, for t ∈ [0, 1], ‖u‖c + ‖v‖c ≤ 2m2.

f(t, u, v) = (1 + t)
(

1
10

+ u

)(
1

100
+ v2

)[
1 + (‖u‖c + ‖v‖c)2

]

≤ 2
(

1
10

+
1
5

)(
1

100
+

1
25

)(
1 +

1
25

)
.

=
39

1250
<

1
10

= φ
(m2

L

)
.

(5.7)

Hence, by Theorem 3.2, BVP(5.5) has at least two positive solutions.

Example 5.3. Let φ(u) = |u|u, g(t) = h(t) = 1/2; consider the boundary value problem

(∣∣u′∣∣u′)′ + f
(
t, u(t), u′(t)

)
= 0, t ∈ [0, 1],

u(0) = u(1) =
1
2

∫1

0
u(t)dt,

(5.8)

where

f(t, u, v) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

sin t
104

+ 2500u6 +
1
104

(
v

105

)3

, u ≤ 12,

sin t
104

+ 2500 · 126 + 1
104

(
v

105

)3

, u > 12.

(5.9)

Choosing a = 1/10, b = 1, η = 1/4, d = 105, then by calculations we obtain that

L =
4
3
, K =

2
3

(
1
4

)3/2

, φ

(
b

ηK

)
= 2304, φ

(a

L

)
=

9
1600

. (5.10)

It is easy to check that

f(t, u, v) < φ(d) = 1010 for 0 ≤ t ≤ 1, 0 ≤ u ≤ 3 · 105, −105 ≤ v ≤ 105,

f(t, u, v) > 2304 for
1
4
≤ t ≤ 3

4
, 1 ≤ u ≤ 12, −105 ≤ v ≤ 105,

f(t, u, v) <
9

1600
for 0 ≤ t ≤ 1, 0 ≤ u ≤ 1

10
, −105 ≤ v ≤ 105.

(5.11)
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Thus, according to Theorem 4.1, BVP(5.8) has at least three positive solutions u1, u2, and u3

satisfying

max
0≤t≤1

∣
∣u′

i(t)
∣
∣ ≤ 105 for i = 1, 2, 3, min

1/4≤t≤3/4
|u1(t)| > 1,

max
0≤t≤1

|u2(t)| > 1
10

with min
1/4≤t≤3/4

|u2(t)| < 1, max
0≤t≤1

|u3(t)| < 1
10

.

(5.12)
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