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A new formula expressing explicitly the derivatives of Bernstein polynomials of any degree and
for any order in terms of Bernstein polynomials themselves is proved, and a formula expressing
the Bernstein coefficients of the general-order derivative of a differentiable function in terms
of its Bernstein coefficients is deduced. An application of how to use Bernstein polynomials
for solving high even-order differential equations by Bernstein Galerkin and Bernstein Petrov-
Galerkin methods is described. These two methods are then tested on examples and compared
with other methods. It is shown that the presented methods yield better results.

1. Introduction

Bernstein polynomials [1] havemany useful properties, such as, the positivity, the continuity,
and unity partition of the basis set over the interval [0, 1]. The Bernstein polynomial bases
vanish except the first polynomial at x = 0, which is equal to 1 and the last polynomial at
x = 1, which is also equal to 1 over the interval [0, 1]. This provides greater flexibility in
imposing boundary conditions at the end points of the interval. The moments xm is nothing
but Bernstein polynomial itself. With the advent of computer graphics, Bernstein polynomial
restricted to the interval x ∈ [0, 1] becomes important in the form of Bezier curves [2].
Many properties of the Bézier curves and surfaces come from the properties of the Bernstein
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polynomials. Moreover, Bernstein polynomials have been recently used for the solution of
differential equations, (see, e.g., [3]).

The Bernstein polynomials are not orthogonal; so their uses in the least square
approximations are limited. To overcome this difficulty, two approaches are used. The
first approach is the basis transformation, for the transformation matrix between Bernstein
polynomial basis and Legendre polynomial basis [4], between Bernstein polynomial basis
and Chebyshev polynomial basis [5], and between Bernstein polynomial basis and Jacobi
polynomial basis [6]. The second approach is the dual basis functions for Bernstein
polynomials (see Jüttler [7]). Jüttler [7] derived an explicit formula for the dual basis function
of Bernstein polynomials. The construction of the dual basis must be repeated at each time
the approximation polynomial increased.

For spectral methods [8, 9], explicit formulae for the expansion coefficients of
a general-order derivative of an infinitely differentiable function in terms of those of
the original expansion coefficients of the function itself are needed. Such formulae are
available for expansions in Chebyshev [10], Legendre [11], ultraspherical [12], Hermite
[13], Jacobi [14], and Laguerre [15] polynomials. These polynomials have been used
in both the solution of boundary value problems [16–19] and in computational fluid
dynamics [8]. In most of these applications, use is made of formulae relating the expansion
coefficients of derivatives appearing in the differential equation to those of the function
itself, (see, e.g., [16–19]). This process results in an algebraic system or a system of
differential equations for the expansion coefficients of the solution which then must be
solved.

Due to the increasing interest on Bernstein polynomials, the question arises of how to
describe their properties in terms of their coefficients when they are given in the Bernstein
basis. Up to now, and to the best of our Knowledge, many formulae corresponding to
those mentioned previously are unknown and are traceless in the literature for Bernstein
polynomials. This partially motivates our interest in such polynomials.

Another motivation is concerned with the direct solution techniques for solving high
even-order differential equations, using the Bernstein Galerkin approximation. Also, we
use Bernstein Petrov-Galerkin approximation; we choose the trial functions to satisfy the
underlying boundary conditions of the differential equations, and the test functions to be
dual Bernstein polynomials which satisfy the orthogonality condition. The method leads to
linear systems which are sparse for problemswith constant coefficients. Numerical results are
presented in which the usual exponential convergence behavior of spectral approximations
is exhibited.

The remainder of this paper is organized as follows. In Section 2, we give an
overview of Bernstein polynomials and the relevant properties needed in the sequel,
and in Section 3, we prove the main results of the paper which are: (i) an explicit
expression for the derivatives of Bernstein polynomials of any degree and for any order
in terms of the Bernstein polynomials themselves and (ii) an explicit formula for the
expansion coefficient of the derivatives of an infinitely differentiable function in terms
of those of the original expansion coefficients of the functions itself. In Section 4, we
discuss separately Bernstein Galerkin and Bernstein Petrov-Galerkin methods and describe
how they are used to solve high even-order differential equations. Finally, Section 5 gives
some numerical results exhibiting the accuracy and efficiency of our proposed numerical
algorithms.
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2. Relevant Properties of Bernstein Polynomials

The Bernstein polynomials of nth degree form a complete basis over [0, 1], and they are
defined by

Bi,n(x) =

(
n

i

)
xi(1 − x)n−i, 0 ≤ i ≤ n, (2.1)

where the binomial coefficients are given by ( n
i ) = n!/i!(n − i)!.

The derivatives of the nth degree Bernstein polynomials are polynomials of degree
n − 1 and are given by

DBi,n(x) = n(Bi−1,n−1(x) − Bi,n−1(x)), D ≡ d

dx
. (2.2)

The multiplication of two Bernstein basis is

Bi,j(x)Bk,m(x) =

(
j
i

)
(m
k )(

j+m
i+k

) Bi+k,j+m(x), (2.3)

and the moments of Bernstein basis are

xmBi,n(x) =
( n
i )

( n+m
i+m )

Bi+m,n+m(x). (2.4)

Like any basis of the space Πn, the Bernstein polynomials have a unique dual basis
(D0,n, D1,n, . . . , Dn,n) (also called the inverse or reciprocal basis) which consists of the n + 1
dual basis functions

Di,n(x) =
n∑
j=0

ci,jBj,n(x),
(
j = 0, 1, . . . , n

)
, (2.5)

where

ci,j =
(−1)i+j
( n
i )
( n

j

)min(i,j)∑
k=0

(2k + 1)

(
n + k + 1

n − i

)(
n − k

n − i

)(
n + k + 1

n − j

)(
n − k

n − j

)
,

(
i, j = 0, 1, . . . , n

)
.

(2.6)

Jüttler [7] represented the dual basis function with respect to the Bernstein basis. The dual
basis functions must satisfy the relation of duality

∫1

0
Bi,n(x)Dk,n(x)dx = δi,k. (2.7)
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Indefinite integral of Bernstein basis is given by

∫
Bi,n(x)dx =

1
n + 1

n+1∑
j=i+1

Bj,n+1(x), (2.8)

and all Bernstein basis function of the same order have the same definite integral over the
interval [0, 1], namely,

∫1

0
Bi,n(x)dx =

1
n + 1

. (2.9)

3. Derivatives of Bernstein Polynomials

The main objective of this section is to prove the following two theorems for the derivatives
of Bi,n(x) and Bernstein coefficients of the qth derivative of f(x).

Theorem 3.1.

DpBi,n(x) =
n!(

n − p
)
!

min(i,p)∑
k=max(0,i+p−n)

(−1)k+p
(
p

k

)
Bi−k,n−p(x). (3.1)

Proof. For p = 1, (3.1) leads us to go back to (2.2).
If we apply induction on p, assuming that (3.1) holds, we want to show that

Dp+1Bi,n(x) =
n!(

n − p − 1
)
!

min(i,p+1)∑
k=max(0,i+p+1−n)

(−1)k+p+1
(
p + 1

k

)
Bi−k,n−p−1(x). (3.2)

If we differentiate (3.1), then we have (with application of relation (2.2))

Dp+1Bi,n(x) = D(DpBi,n(x))

= D

⎛
⎝ n!(

n − p
)
!

min(i,p)∑
k=max(0,i+p−n)

(−1)k+p
(
p

k

)
Bi−k,n−p(x)

⎞
⎠

=
n!(

n − p
)
!

min(i,p)∑
k=max(0,i+p−n)

(−1)k+p
(
p

k

)
D
(
Bi−k,n−p(x)

)

=
n!
(
n − p

)
(
n − p

)
!

min(i,p)∑
k=max(0,i+p−n)

(−1)k+p
(
p

k

)(
Bi−k−1,n−p−1(x) − Bi−k,n−p−1(x)

)
,

(3.3)
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which can be written as

Dp+1Bi,n(x) =
n!(

n − p − 1
)
!

min(i,p)∑
k=max(0,i+p−n)

(−1)k+p
(
p

k

)
Bi−k−1,n−p−1(x)

− n!(
n − p − 1

)
!

min(i,p)∑
k=max(0,i+p+1−n)

(−1)k+p
(
p

k

)
Bi−k,n−p−1(x).

(3.4)

Set k = k − 1 in the first term of the right-hand side of relation (3.4) to get

Dp+1Bi,n(x) =
n!(

n − p − 1
)
!

min(i,p+1)∑
k=max(1,i+p+1−n)

(−1)k+p+1
(

p

k − 1

)
Bi−k,n−p−1(x)

+
n!(

n − p − 1
)
!

min(i,p)∑
k=max(0,i+p+1−n)

(−1)k+p+1
(
p

k

)
Bi−k,n−p−1(x).

(3.5)

It can be easily shown that

Dp+1Bi,n(x) =
n!(

n − p − 1
)
!

min(i,p+1)∑
k=max(0,i+p+1−n)

(−1)k+p+1
((

p

k − 1

)
+

(
p

k

))
Bi−k,n−p−1(x)

=
n!(

n − p − 1
)
!

min(i,p+1)∑
k=max(0,i+p+1−n)

(−1)k+p+1
(
p + 1

k

)
Bi−k,n−p−1(x)

=
n!(

n − p − 1
)
!

min(i,p+1)∑
k=max(0,i+p+1−n)

(−1)k+p+1
(
p + 1

k

)
Bi−k,n−p−1(x),

(3.6)

which completes the induction and proves the theorem.

We can express the Bernstein polynomial of any degree Bk,n(x) in terms of any higher
degree basis Bk,n+p(x) using the following lemma.

Lemma 3.2.

Bk,n(x) =
k+p∑
j=k

( n
k )
(

p
j−k

)
(

n+p
j

) Bj,n+p(x). (3.7)

For proof, see, Farouki and Rajan [20].
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Let f(x) be a differentiable function of degree n defined on the interval [0, 1], then we
can write

f(x) =
n∑
i=0

ai,nBi,n(x). (3.8)

Further, let a(q)
i,n denote the Bernstein coefficients of the qth derivative of f(x), that is,

f (q)(x) =
dqf(x)
dxq

=
n∑
i=0

a
(q)
i,n Bi,n(x), a

(0)
i,n = ai,n. (3.9)

Then, we can state and prove the following theorem.

Theorem 3.3.

a
(q)
i,n =

q∑
k=−q

Ck

(
i, n, q

)
ai−k,n, (3.10)

where

Ck

(
i, n, q

)
= q!

q∑
m=0

(−1)m+q

(
q

m

)(
i

m + k

)(
n − i

q −m − k

)
. (3.11)

Proof. Since

f(x) =
n∑
i=0

ai,nBi,n(x),

f (q)(x) =
dqf(x)
dxq

=
n∑
i=0

ai,nD
(q)Bi,n(x),

(3.12)

then making use of Theorem 3.1 (formula (3.1)) immediately yields

f (q)(x) =
n∑
i=0

ai,n
n!(

n − q
)
!

min(i,q)∑
k=max(0,i+q−n)

(−1)k+q
(
q

k

)
Bi−k,n−q(x)

=
n∑
i=0

ai,n
n!(

n − q
)
!

q∑
k=0

(−1)k+q
(
q

k

)
Bi−k,n−q(x).

(3.13)
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If we change the degree of Bernstein polynomials using (3.7), then we can write

f (q)(x) =
n∑
i=0

ai,n
n!(

n − q
)
!

q∑
k=0

(−1)k+q
(
q

k

)
q∑

m=0

( n−q
i−k

)
( q
m )

( n
i−k+m )

Bi+m−k,n(x)

=
n∑
i=0

ai,n
n!(

n − q
)
!

(
q∑

k=0

(−1)k+q
(
q

k

)
q∑

m=0

( n−q
i−k

)
( q
m )

( n
i−k+m )

)
Bi+m−k,n(x)

=
n!(

n − q
)
!

n∑
i=0

ai,n

[
q∑

k=0

(−1)k+q
(
q

k

)(
n − q

i − k

)
q∑

m=0

( q
m )

( n
i−k+m )

Bi+m−k,n(x)

]
.

(3.14)

Expanding the two summation
∑q

k=0

∑q

m=0 and rearranging the coefficients of Bi+k,n from −q ≤
k ≤ q, we get

f (q)(x) =
n!(

n − q
)
!

n∑
i=0

ai,n

⎡
⎣ q∑

k=−q

1
( n
i+k )

Bi+k,n(x)
q∑

m=0
(−1)m+q

(
q

m

)(
n − q

i −m

)(
q

m + k

)⎤
⎦

=
n!(

n − q
)
!

n+k∑
i=k

ai−k,n
q∑

k=−q

1
( n
i )
Bi,n(x)

q∑
m=0

(−1)m+q

(
q

m

)(
n − q

i − k −m

)(
q

m + k

)

=
n!(

n − q
)
!

n∑
i=0

ai−k,n
q∑

k=−q

1
( n
i )
Bi,n(x)

q∑
m=0

(−1)m+q

(
q

m

)(
n − q

i − k −m

)(
q

m + k

)

=
n∑
i=0

⎡
⎣ n!(

n − q
)
!

q∑
k=−q

1
( n
i )

q∑
m=0

(−1)m+q

(
q

m

)(
n − q

i − k −m

)(
q

m + k

)
ai−k,n

⎤
⎦Bi,n(x)

=
n∑
i=0

⎡
⎣q! q∑

k=−q

q∑
m=0

(−1)m+q

(
q

m

)(
i

m + k

)(
n − i

q −m − k

)
ai−k,n

⎤
⎦Bi,n(x)

=
n∑
i=0

a
(q)
i,n Bi,n(x),

(3.15)

and this completes the proof of Theorem 3.3.
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The following two corollaries will be of fundamental importance in what follows.

Corollary 3.4.

∫1

0
B
(p)
i,n (x)Bj,n(x)dx =

n!
( n

j
)

(
2n − p + 1

)(
n − p

)
!

min(i,p)∑
k=max(0,i+p−n)

(−1)k+p
( p
k

)( n−p
i−k

)
(

2n−p
i+j−k

) . (3.16)

Proof. We can express explicitly the pth derivatives of Bernstein polynomials from
Theorem 3.1 to obtain

∫1

0
B
(p)
i,n (x)Bj,n(x)dx =

∫1

0

n!(
n − p

)
!

min(i,p)∑
k=max(0,i+p−n)

(−1)k+p
(
p

k

)
Bi−k,n−p(x)Bj,n(x)dx

=
n!(

n − p
)
!

min(i,p)∑
k=max(0,i+p−n)

(−1)k+p
(
p

k

)∫1

0
Bi−k,n−p(x)Bj,n(x)dx.

(3.17)

Now, (3.16) can be easily derived by using (2.3). Thanks to (2.9), we have

∫1

0
B
(p)
i,n (x)Bj,n(x)dx =

n!(
n − p

)
!

min(i,p)∑
k=max(0,i+p−n)

(−1)k+p
(
p

k

)∫1

0

( n−p
i−k

)( n
j

)
(

2n−p
i+j−k

) Bi+j−k,2n−p(x)dx

=
n!(

n − p
)
!

min(i,p)∑
k=max(0,i+p−n)

(−1)k+p
(
p

k

)( n−p
i−k

)( n
j

)
(

2n−p
i+j−k

) ∫1

0
Bi+j−k,2n−p(x)dx

=
n!(

n − p
)
!

min(i,p)∑
k=max(0,i+p−n)

(−1)k+p
(
p

k

)( n−p
i−k

)( n
j

)
(

2n−p
i+j−k

) 1
2n − p + 1

.

(3.18)

Corollary 3.5.

∫1

0
B
(p)
i,n (x)Dj,n(x)dx =

n!(
n − p

)
!

min(i,p)∑
k=max(0,i+p−n)

(−1)k+p
( p
k

)( n−p
i−k

)( p
j−i+k

)
( n

j

) . (3.19)

Proof. Using Theorem 3.1, we get

∫1

0
B
(p)
i,n (x)Dj,n(x)dx =

∫1

0

n!(
n − p

)
!

min(i,p)∑
k=max(0,i+p−n)

(−1)k+p
(
p

k

)
Bi−k,n−p(x)Dj,n(x)dx. (3.20)
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It follows immediately from (3.7) and (2.7) that

∫1

0
B
(p)
i,n (x)Dj,n(x)dx =

n!(
n − p

)
!

min(i,p)∑
k=max(0,i+p−n)

(−1)k+p
(
p

k

)
i−k+p∑
q=i−k

( n−p
i−k

)( p
q−i+k

)
( n
q
)

×
∫1

0
Bq,n(x)Dj,n(x)dx

=
n!(

n − p
)
!

min(i,p)∑
k=max(0,i+p−n)

(−1)k+p
(
p

k

)
i−k+p∑
q=i−k

( n−p
i−k

)( p
q−i+k

)
( n
q
) δq,j

=
n!(

n − p
)
!

min(i,p)∑
k=max(0,i+p−n)

(−1)k+p
(
p

k

)( n−p
i−k

)( p
j−i+k

)
( n

j

) .

(3.21)

4. An Application for the Solution of High
Even-Order Differential Equations

4.1. Bernstein Galerkin Method

Consider the solution of the differential equation

u(2m) +
2m−1∑
i=1

γiu
(i) + γ0u = f(x), x ∈ [0, 1], (4.1)

subject to the following boundary conditions

u(q)(0) = 0, u(q)(1) = 0, 0 ≤ q ≤ m − 1. (4.2)

Let us first introduce some basic notation which will be used in the sequel. We set

SN = {B0,N(x), B1,N(x), . . . , BN,N(x)},

WN =
{
ν ∈ SN : ν(q)(0) = ν(q)(1) = 0; 0 ≤ q ≤ m − 1

}
,

(4.3)

then the Bernstein-Galerkin approximation to (4.1) is to find uN ∈ WN such that

(
u
(2m)
N , vN

)
+

2m−1∑
i=1

γi
(
u
(i)
N , vN

)
+ γ0(uN, vN) =

(
f, vN

)
, ∀vN ∈ WN, (4.4)

where (u, ν) =
∫
I u(x)ν(x)dx is the inner product in L2(I), and its norm will be denoted by

‖ · ‖.
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It is of fundamental importance to note here that the crucial task in applying the
Galerkin-spectral Bernstein approximations is how to choose an appropriate basis for WN

such that the linear system resulting from the Bernstein-Galerkin approximation to (4.4) is as
simple as possible.

We can choose the basis functions φk(x) to be of the form

φk(x) = Bk,N(x), (4.5)

where φk(x) ∈ WN for all k = m,m + 1, . . . ,N −m. The 2m boundary conditions lead to the
first m and the last m expansion coefficients to be zero.

Therefore, for N ≥ 2m, we have

WN = span
{
φm(x), φm+1(x), . . . , φN−m(x)

}
. (4.6)

It is now clear that (4.4) is equivalent to

(
u
(2m)
N , φk(x)

)
+

2m−1∑
i=1

γi
(
u
(i)
N , φk(x)

)
+ γ0

(
uN, φk(x)

)
=
(
f, φk(x)

)
, ∀k = m,m + 1, . . . ,N −m.

(4.7)

Let us denote

fk =
(
f, φk(x)

)
, f =

(
fm, fm+1, . . . , fN−m

)T
,

uN(x) =
N−m∑
k=m

akφk(x), a = (am, am+1, . . . , aN−m)T ,

A =
(
akj

)
, Bi =

(
bikj

)
, m ≤ k, j ≤ N −m.

(4.8)

Then, (4.7) is equivalent to the following matrix equation

(
A +

2m−1∑
i=1

γiBi + γ0B0

)
a = f, (4.9)

where the elements of the matricesA, Bi, and B0, i = 1, 2, . . . , 2m− 1 are given explicitly using
Corollary 3.4, as follows:

akj =
(
B
(2m)
j,N , Bk,N

)
=
∫1

0
B
(2m)
j,N (x)Bk,N(x)dx

=
N!

(
N
k

)
(2N − 2m + 1)(N − 2m)!

min(j,2m)∑
r=max(0,j−N+2m)

(−1)r
(
2m
r

)(N−2m
j−r

)
(

2N−2m
j+k−r

) ,
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bikj =
(
B
(i)
j,N, Bk,N

)
=
∫1

0
B
(i)
j,N(x)Bk,N(x)dx

=
N!

(
N
k

)
(2N − i + 1)(N − i)!

min(j,i)∑
r=max(0,j−N+i)

(−1)r
(

i
r

)(N−i
j−r

)
(

2N−i
j+k−r

) ,

b0kj =
(
Bj,N, Bk,N

)
=
∫1

0
Bj,N(x)Bk,N(x)dx

=
1

2N + 1

(
N
j

)(
N
k

)
(

2N
j+k

) .

(4.10)

4.2. Bernstein Petrov-Galerkin Method

The Petrov-Galerkin method generates a sequence of approximate solutions that satisfy a
weak form of the original differential equation as tested against polynomials in a dual space.
To describe this method and the full discretization more precisely, we introduce some basic
notation. We set

WN =
{
v ∈ SN : u(q)(0) = u(q)(1) = 0, 0 ≤ q ≤ m − 1

}
,

W∗
N =

{
v ∈ S∗

N

}
.

(4.11)

Denoting by SN and S∗
N the spaces of Bernstein polynomials of degree ≤ N and dual

Bernstein of degree ≤ N, then the Bernstein Petrov-Galerkin approximation to (4.1) is, to
find uN ∈ WN such that

(
u
(2m)
N , vN

)
+

2m−1∑
i=1

γi
(
u
(i)
N , vN

)
+ γ0(uN, vN) =

(
f, vN

)
, ∀vN ∈ W∗

N. (4.12)

We choose the trial Bernstein functions to satisfy the underlying boundary conditions of
the differential equation, and we choose the test dual Bernstein functions to satisfy the
orthogonality condition. Consider the test and trial functions of expansion φk(x) and ψk(x)
to be of the form

φk(x) = Bk,N(x),

ψk(x) = Dk,N(x),
(4.13)

where φk(x) ∈ WN and ψk(x) ∈ W∗
N , for all k = m,m + 1, . . . ,N − m. The 2m boundary

conditions lead to the first m and the last m expansion coefficients to be zero.
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Therefore, for N ≥ 2m, we have

WN = span
{
φm(x), φm+1(x), . . . , φN−m(x)

}
,

W∗
N = span

{
ψm(x), ψm+1(x), . . . , ψN−m(x)

}
,

(4.14)

and, accordingly, (4.12) is equivalent to

(
u
(2m)
N , ψk(x)

)
+

2m−1∑
i=1

γi
(
u
(i)
N , ψk(x)

)
+ γ0

(
uN, ψk(x)

)
=
(
f, ψk(x)

)
, ∀k = m,m + 1, . . . ,N −m.

(4.15)

Let us denote

f̂k =
(
f, ψk(x)

)
, f̂ =

(
f̂m, f̂m+1, . . . , f̂N−m

)T
,

uN(x) =
N−m∑
n=m

vnφn(x), v = (vm, vm+1, . . . , vN−m)T .

Ã =
(
âkj

)
, B̂i =

(
b̂ikj

)
, m ≤ k, j ≤ N −m, 0 ≤ i ≤ 2m − 1.

(4.16)

Then, (4.15) is equivalent to the following matrix equation:

(
Â +

2m−1∑
i=1

γiB̂i + γ0B̂0

)
v = f̂. (4.17)

If we take φk(x) and ψk(x) as defined in (4.13) and if we denote âkj = (φ(2m)
j (x), ψk(x)) and

b̂ikj = (φ(i)
j (x), ψk(x)). Then, the elements (âkj), (b̂ikj), and (b̂0kj) for m ≤ k, j ≤ N − m, i =

1, 2, . . . , 2m − 1 are given explicitly by using Corollary 3.5, as follows:

âkj =
(
B
(2m)
j,N ,Dk,N

)
=
∫1

0
B
(2m)
j,N (x)Dk,N(x)dx

=
N!

(N − 2m)!
(
N
k

) min(j,2m)∑
r=max(0,j−N+2m)

(−1)r
(
2m

r

)(
N − 2m

j − r

)(
2m

r − j + k

)
,

b̂ikj =
(
B
(i)
j,N,Dk,N

)
=
∫1

0
B
(i)
j,N(x)Dk,N(x)dx

=
N!

(N − i)!
(
N
k

) min(j,i)∑
r=max(0,j−N+i)

(−1)r
(
i

r

)(
N − i

j − r

)(
i

r − j + k

)
,

b̂0kj =
(
Bj,N,Dk,N

)
= δk,j .

(4.18)
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4.3. Using Coefficients of Differentiated Expansions

Here, we shall use Theorem 3.3 for the solution of the 2mth-order differential (4.1)-(4.2). We
approximate u(x) by an expansion of Bernstein polynomials

uN(x) =
N∑
i=0

ai,NBi,N(x). (4.19)

We seek to determine ai,N , i = m, 1, . . . ,N −m, using Petrov-Galerkin method. Note here that
we set ai = an−i = 0, 0 ≤ i ≤ m − 1 to ensure that the boundary conditions (4.2) are satisfied.

Since u
(2m)
N (x) and u

(i)
N (x) are polynomials of degree at most N − 2m and N − i, respectively,

we may write

u
(s)
N (x) =

N−m∑
i=m

a
(s)
i,NBi,N(x), (4.20)

where

a
(s)
i,N = s!

s∑
k=−s

s∑
j=0

(−1)j+s
(
s

j

)(
i

j + k

)(
N − i

s − j − k

)
ai−k,N. (4.21)

It is to be noted here that (4.21) is obtained by making use of relation (3.11). The coefficients
ai,N are chosen so that uN(x) satisfies

u
(2m)
N (x) +

2m−1∑
i=1

γiu
(i)
N (x) + γ0uN(x) = f(x). (4.22)

Substituting (4.19) and (4.20) into (4.22), multiplying by Dm,N , and integrating over the
interval [0, 1] yield

a
(2m)
k,N

+
2m−1∑
i=1

γia
(i)
k,N

+ γ0ak,N = fk, k = m,m + 1, . . . ,N −m, (4.23)

where

fm =
∫1

0
f(x)Dm,Ndx. (4.24)

Thus, there are (N−2m+1) equations for the (N−2m+1) unknowns am,N, am+1,N, . . . , aN−m,N ,
in order to obtain a solution; it is only necessary to solve (4.23) with the help of (4.21) for the
(N − 2m + 1) unknowns coefficients ai,N , (m ≤ i ≤ N −m).
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Table 1: Ep and Er for N = 2, 4, . . . , 18.

N BGM (Ep) BPGM (Ep) BGM (Er) BPGM (Er)
2 3.639 × 10−2 1.494 × 10−1 4.052 × 10−1 9.598 × 10−1

4 3.830 × 10−4 1.534 × 10−2 8.845 × 10−3 1.428 × 10−1

6 1.217 × 10−6 6.194 × 10−4 4.213 × 10−5 7.191 × 10−3

8 1.827 × 10−9 1.264 × 10−5 7.901 × 10−8 1.732 × 10−4

10 1.594 × 10−12 1.547 × 10−7 7.483 × 10−11 2.425 × 10−6

12 1.110 × 10−15 1.260 × 10−9 4.042 × 10−14 2.214 × 10−8

14 3.331 × 10−16 7.326 × 10−12 1.356 × 10−14 1.422 × 10−10

16 2.220 × 10−16 3.197 × 10−14 3.165 × 10−15 6.763 × 10−13

18 2.220 × 10−16 4.163 × 10−16 7.299 × 10−15 1.189 × 10−14

5. Numerical Results

We solve in this section several numerical examples by using the algorithms presented in the
previous section. Comparisons between Bernstein Galerkinmethod (BGM), Bernstein Petrov-
Galerkin method (BPGM), and other methods proposed in [21–24] aremade.We consider the
following examples.

Example 5.1. Consider the boundary value problem (see, [22])

u(2)(x) − u(x) =
(
4 − 2x2

)
sinx + 4x cosx, x ∈ [0, 1], (5.1)

subject to the boundary conditions u(0) = u(1) = 0, with the exact solution u(x) = (x2 −
1) sin(x).

Table 1 lists the maximum pointwise error (Ep) and maximum absolute relative error
(Er) of u − uN using the BGM and BPGM with various choices of N. Table 1 shows that
our methods have better accuracy compared with the quintic nonpolynomial spline method
developed in [22]; it is also shown that, in the case of solving linear system of order 14, we
obtain a maximum absolute error of order 10−16. It is worthy noting here that the method of
[22] gives the maximum absolute error 6.5 × 10−14 but by solving a linear system of order 64
instead of order 14 in our case.

Example 5.2. We consider the fourth-order two point boundary value problem (see, [21])

u(4)(x) − 3u(x) = −2ex, x ∈ [0, 1],

u(0) = 1, u(1) = e, u′(0) = 1, u′(1) = e,
(5.2)

with the analytical solution u(x) = ex.

Table 2 lists the maximum pointwise error and maximum absolute relative error of
u−uN using the BGM and BPGMwith various choices ofN. In Table 3, a comparison between
the error obtained by using BGM, BPGM, the sinc-Galerkin, and modified decomposition
methods (see, [21]) is displayed. This definitely shows that our methods are more accurate.
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Table 2: (Ep) and (Er) for N = 4, 6, . . . , 18.

N BGM (Ep) BPGM (Ep) BGM (Er) BPGM (Er)
4 1.259 × 10−4 3.134 × 10−4 9.394 × 10−5 1.684 × 10−4

6 1.575 × 10−7 8.646 × 10−6 1.089 × 10−7 4.477 × 10−6

8 1.256 × 10−10 1.246 × 10−7 8.392 × 10−11 6.341 × 10−8

10 6.817 × 10−14 1.121 × 10−9 4.463 × 10−14 5.637 × 10−10

12 1.332 × 10−15 6.944 × 10−12 6.563 × 10−16 3.465 × 10−12

14 1.332 × 10−15 3.286 × 10−14 6.498 × 10−16 1.594 × 10−14

16 1.332 × 10−15 1.332 × 10−15 6.609 × 10−16 6.193 × 10−16

18 1.776 × 10−15 1.776 × 10−15 6.849 × 10−16 7.707 × 10−16

Table 3: Comparison between different methods for Example 5.2.

Error BGM BPGM Sinc-Galerkin in [21] Decomposition in [21]
Ep 1.8 × 10−15 1.8 × 10−15 3.7 × 10−9 2.5 × 10−8

Table 4: (Ep) and (Er) for N = 6, 8, . . . , 18.

N BGM (Ep) BPGM (Ep) BGM (Er) BPGM (Er)
6 4.037 × 10−6 1.201 × 10−5 6.889 × 10−6 1.723 × 10−5

8 3.314 × 10−9 3.025 × 10−7 4.796 × 10−9 4.591 × 10−7

10 1.973 × 10−12 4.086 × 10−9 2.755 × 10−12 6.391 × 10−9

12 1.110 × 10−15 3.463 × 10−11 2.104 × 10−15 5.528 × 10−11

14 4.441 × 10−16 2.031 × 10−13 7.014 × 10−16 3.289 × 10−13

16 4.441 × 10−16 1.110 × 10−15 1.693 × 10−15 1.598 × 10−15

18 4.441 × 10−16 4.441 × 10−16 1.563 × 10−15 1.172 × 10−15

Table 5: Comparison between the errors of different methods in Example 5.3.

Error BGM BPGM Sinc-Galerkin [21] Septic spline [23] Decomposition [24]
Ep 4.4 × 10−16 4.4 × 10−16 9.2 × 10−6 2.1 × 10−4 1.3 × 10−4

Er 1.6 × 10−14 1.2 × 10−16 0.1 × 10−3 1.8 × 10−3 —

Example 5.3. Consider the sixth-order BVP (see, [21, 23, 24])

u(6)(x) − u(x) = −6ex, x ∈ [0, 1],

u(0) = 1, u′(0) = 0, u′′(0) = −1,
u(1) = 0, u′(1) = −e, u′′(1) = −2e,

(5.3)

with the exact solution u(x) = (1 − x)ex.

Table 4 lists the maximum pointwise error and maximum absolute relative error of
u−uN using BGM and BPGwith various choices ofN. Table 5 exhibits a comparison between
the error obtained by using BGM, BPGM, and Sinc-Galerkin in [21], septic splines in [23] and
modified decomposition in [24]. From this Table, one can check that our methods are more
accurate.
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