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We deal with the blowup properties of the solution to the degenerate and singular par-
abolic system with nonlocal source and homogeneous Dirichlet boundary conditions.
The existence of a unique classical nonnegative solution is established and the sufficient
conditions for the solution that exists globally or blows up in finite time are obtained.
Furthermore, under certain conditions it is proved that the blowup set of the solution is
the whole domain.
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1. Introduction

In this paper, we consider the following degenerate and singular nonlinear reaction-
diffusion equations with nonlocal source:

xq1ut −
(
xr1ux

)
x =

∫ a

0
vp1dx, (x, t)∈ (0,a)× (0,T),

xq2vt −
(
xr2vx

)
x =

∫ a

0
up2dx, (x, t)∈ (0,a)× (0,T),

u(0, t)= u(a, t)= v(0, t)= v(a, t)= 0, t ∈ (0,T),

u(x,0)= u0(x), v(x,0)= v0(x), x ∈ [0,a],

(1.1)

where u0(x),v0(x) ∈ C2+α(D) for some α ∈ (0,1) are nonnegative nontrivial functions.
u0(0) = u0(a) = v0(0) = v0(a) = 0, u0(x) ≥ 0, v0(x) ≥ 0, u0, v0 satisfy the compatibility
condition, T > 0, a > 0, r1,r2 ∈ [0,1), |q1|+ r1 �= 0, |q2|+ r2 �= 0, and p1 > 1, p2 > 1.

LetD = (0,a) andΩt =D× (0, t],D andΩt are their closures, respectively. Since |q1|+
r1 �= 0, |q2|+ r2 �= 0, the coefficients of ut, ux, uxx and vt, vx, vxx may tend to 0 or ∞ as x
tends to 0, we can regard the equations as degenerate and singular.
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2 Blowup for degenerate and singular parabolic system

Floater [9] and Chan and Liu [4] investigated the blowup properties of the following
degenerate parabolic problem:

xqut −uxx = up, (x, t)∈ (0,a)× (0,T),

u(0, t)= u(a, t)= 0, t ∈ (0,T),

u(x,0)= u0(x), x ∈ [0,a],

(1.2)

where q > 0 and p > 1. Under certain conditions on the initial datum u0(x), Floater [9]
proved that the solution u(x, t) of (1.2) blows up at the boundary x = 0 for the case 1 <
p ≤ q + 1. This contrasts with one of the results in [10], which showed that for the case
q = 0, the blowup set of solution u(x, t) of (1.2) is a proper compact subset of D.

The motivation for studying problem (1.2) comes from Ockendon’s model (see [14])
for the flow in a channel of a fluid whose viscosity depends on temperature

xut = uxx + eu, (1.3)

where u represents the temperature of the fluid. In [9] Floater approximated eu by up and
considered (1.2). Budd et al. [2] generalized the results in [9] to the following degenerate
quasilinear parabolic equation:

xqut =
(
um
)
xx +up, (1.4)

with homogeneous Dirichlet conditions in the critical exponent q = (p− 1)/m, where q >
0, m ≥ 1, and p > 1. They pointed out that the general classification of blowup solution
for the degenerate equation (1.4) stays the same for the quasilinear equation (see [2, 17])

ut =
(
um
)
xx +up. (1.5)

For the case p > q+ 1, in [4] Chan and Liu continued to study problem (1.2). Under
certain conditions, they proved that x = 0 is not a blowup point and the blowup set is a
proper compact subset of D.

In [7], Chen and Xie discussed the following degenerate and singular semilinear para-
bolic equation:

ut −
(
xαux

)
x =

∫ a

0
f
(
u(x, t)

)
dx, (x, t)∈ (0,a)× (0,T),

u(0, t)= u(a, t)= 0, t ∈ (0,T),

u(x,0)= u0(x), x ∈ [0,a],

(1.6)

they established the local existence and uniqueness of a classical solution. Under appro-
priate hypotheses, they obtained some sufficient conditions for the global existence and
blowup of a positive solution.
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In [6], Chen et al. consider the following degenerate nonlinear reaction-diffusion
equation with nonlocal source:

xqut −
(
xγux

)
x =

∫ a

0
updx, (x, t)∈ (0,a)× (0,T),

u(0, t)= u(a, t)= 0, t ∈ (0,T),

u(x,0)= u0(x), x ∈ [0,a],

(1.7)

they established the local existence and uniqueness of a classical solution. Under appro-
priate hypotheses, they also got some sufficient conditions for the global existence and
blowup of a positive solution. Furthermore, under certain conditions, it is proved that
the blowup set of the solution is the whole domain.

In this paper, we generalize the results of [6] to parabolic system and investigate the
effect of the singularity, degeneracy, and nonlocal reaction on the behavior of the solution
of (1.1). The difficulties are the establishment of the corresponding comparison principle
and the construction of a supersolution of (1.1). It is different from [4, 9] that under
certain conditions the blowup set of the solution of (1.1) is the whole domain. But this is
consistent with the conclusions in [1, 18, 19].

This paper is organized as follows: in the next section, we show the existence of a
unique classical solution. In Section 3, we give some criteria for the solution (u(x, t),v(x,
t)) to exist globally or blow up in finite time and in the last section, we discuss the blowup
set.

2. Local existence

In order to prove the existence of a unique positive solution to (1.1), we start with the
following comparison principle.

Lemma 2.1. Let b1(x, t) and b2(x, t) be continuous nonnegative functions defined on [0,a]×
[0,r] for any r ∈ (0,T), and let (u(x, t),v(x, t))∈ (C(Ωr)∩C2,1(Ωr))2 satisfy

xq1ut −
(
xr1ux

)
x ≥

∫ a

0
b1(x, t)v(x, t)dx, (x, t)∈ (0,a)× (0,r],

xq2vt −
(
xr2vx

)
x ≥

∫ a

0
b2(x, t)u(x, t)dx, (x, t)∈ (0,a)× (0,r],

u(0, t)≥ 0, u(a, t)≥ 0, v(0, t)≥ 0, v(a, t)≥ 0, t ∈ (0,r],

u(x,0)≥ 0, v(x,0)≥ 0, x ∈ [0,a].

(2.1)

Then, u(x, t)≥ 0, v(x, t)≥ 0 on [0,a]× [0,T).

Proof. At first, similar to the proof of Lemma 2.1 in [20], by using [15, Lemma 2.2.1], we
can easily obtain the following conclusion.
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IfW(x, t) and Z(x, t)∈ C(Ωr)∩C2,1(Ωr) satisfy

xq1Wt −
(
xr1Wx

)
x ≥

∫ a

0
b1(x, t)Z(x, t)dx, (x, t)∈ (0,a)× (0,r],

xq2Zt −
(
xr2Zx

)
x ≥

∫ a

0
b2(x, t)W(x, t)dx, (x, t)∈ (0,a)× (0,r],

W(0, t) > 0, W(a, t)≥ 0, Z(0, t) > 0, Z(a, t)≥ 0, t ∈ (0,r],

W(x,0)≥ 0, Z(x,0)≥ 0, x ∈ [0,a],

(2.2)

then,W(x, t) > 0, Z(x, t) > 0, (x, t)∈ (0,a)× (0,r].
Next let r′1 ∈ (r1,1), r′2 ∈ (r2,1) be positive constants and

W(x, t)= u(x, t) +η
(
1+ xr

′
1−r1)ect, Z(x, t)= v(x, t) +η

(
1+ xr

′
2−r2)ect, (2.3)

where η > 0 is sufficiently small and c is a positive constant to be determined. Then
W(x, t) > 0, Z(x, t) > 0 on the parabolic boundary of Ωr , and in (0,a)× (0,r], we have

xq1Wt −
(
xr1Wx

)
x −
∫ a

0
b1(x, t)Z(x, t)dx

≥ xq1η
(
1+ xr

′
1−r1)cect +

(
r′1− r1

)(
1− r′1

)
ηect

x2−r′1
−
∫ a

0
b1(x, t)η

(
1+ xr

′
2−r2)ectdx

≥ ηect
[

cxq1 +

(
r′1− r1

)(
1− r′1

)

x2−r′1
− a
(
1+ ar

′
2−r2) max

(x,t)∈[0,a]×[0,r]
b1(x, t)

]

,

xq2Zt −
(
xr2Zx

)
x −
∫ a

0
b2(x, t)W(x, t)dx

≥ ηect
[

cxq2 +

(
r′2− r2

)(
1− r′2

)

x2−r′2
− a
(
1+ ar

′
1−r1) max

(x,t)∈[0,a]×[0,r]
b2(x, t)

]

.

(2.4)

We will prove that the above inequalities are nonnegative in three cases.

Case 1. When

max
(x,t)∈[0,a]×[0,r]

b1(x, t)≤
(
r′1− r1

)(
1− r′1

)

a3−r′1
(
1+ ar

′
2−r2
) ,

max
(x,t)∈[0,a]×[0,r]

b2(x, t)≤
(
r′2− r2

)(
1− r′2

)

a3−r′2
(
1+ ar

′
1−r1
) .

(2.5)

It is obvious that

xq1Wt −
(
xr1Wx

)
x −
∫ a

0
b1(x, t)Z(x, t)dx ≥ 0,

xq2Zt −
(
xr2Zx

)
x −
∫ a

0
b2(x, t)W(x, t)dx ≥ 0.

(2.6)
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Case 2. If

max
(x,t)∈[0,a]×[0,r]

b1(x, t) >

(
r′1− r1

)(
1− r′1

)

a3−r′1
(
1+ ar

′
2−r2
) ,

max
(x,t)∈[0,a]×[0,r]

b2(x, t) >

(
r′2− r2

)(
1− r′2

)

a3−r′2
(
1+ ar

′
1−r1
) .

(2.7)

Let x0 and y0 be the root of the algebraic equations

a
(
1+ ar

′
2−r2) max

(x,t)∈[0,a]×[0,r]
b1(x, t)=

(
r′1− r1

)(
1− r′1

)

x2−r′1
,

a
(
1+ ar

′
1−r1) max

(x,t)∈[0,a]×[0,r]
b2(x, t)=

(
r′2− r2

)(
1− r′2

)

y2−r′2
,

(2.8)

and C1,C2 > 0 be sufficient large such that

C1 >

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
max

(x,t)∈[0,a]×[0,r]
b1(x, t)

)
a
(
1+ ar

′
2−r2)

x
q1
0

for q1 ≥ 0,

(
max

(x,t)∈[0,a]×[0,r]
b1(x, t)

)
a
(
1+ ar

′
2−r2)

aq1
for q1 < 0,

C2 >

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
max

(x,t)∈[0,a]×[0,r]
b2(x, t)

)
a
(
1+ ar

′
1−r1)

y
q2
0

for q2 ≥ 0,

(
max

(x,t)∈[0,a]×[0,r]
b2(x, t)

)
a
(
1+ ar

′
1−r1)

aq2
for q2 < 0.

(2.9)

Set c =max{C1,C2}, then we have

xq1Wt −
(
xr1Wx

)
x −
∫ a

0
b1(x, t)Z(x, t)dx

≥

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ηect
[(

r′1− r1
)(
1− r′1

)

x2−r′1
− a
(
1+ ar

′
2−r2) max

(x,t)∈[0,a]×[0,r]
b1(x, t)

]
for x ≤ x0,

ηect
[
cxq1 − a

(
1+ ar

′
2−r2) max

(x,t)∈[0,a]×[0,r]
b1(x, t)

]
for x > x0,

≥ 0,

xq2Zt −
(
xr2Zx

)
x −
∫ a

0
b2(x, t)W(x, t)dx

≥

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ηect
[(

r′2− r2
)(
1− r′2

)

x2−r′2
− a
(
1+ ar

′
1−r1) max

(x,t)∈[0,a]×[0,r]
b2(x, t)

]
for x ≤ y0,

ηect
[
cxq2 − a

(
1+ ar

′
1−r1) max

(x,t)∈[0,a]×[0,r]
b2(x, t)

]
for x > y0,

≥ 0.
(2.10)
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Case 3. When

max
(x,t)∈[0,a]×[0,r]

b1(x, t)≤
(
r′1− r1

)(
1− r′1

)

a3−r′1
(
1+ ar

′
2−r2
) ,

max
(x,t)∈[0,a]×[0,r]

b2(x, t) >

(
r′2− r2

)(
1− r′2

)

a3−r′2
(
1+ ar

′
1−r1
) ,

(2.11)

or

max
(x,t)∈[0,a]×[0,r]

b2(x, t)≤
(
r′2− r2

)(
1− r′2

)

a3−r′2
(
1+ ar

′
1−r1
) ,

max
(x,t)∈[0,a]×[0,r]

b1(x, t) >

(
r′1− r1

)(
1− r′1

)

a3−r′1
(
1+ ar

′
2−r2
) .

(2.12)

Combining Cases 1 with 2, it is easy to prove

xq1Wt −
(
xr1Wx

)
x −
∫ a

0
b1(x, t)Z(x, t)dx ≥ 0,

xq2Zt −
(
xr2Zx

)
x −
∫ a

0
b2(x, t)W(x, t)dx ≥ 0,

(2.13)

so we omit the proof here.

From the above three cases, we know that W(x, t) > 0, Z(x, t) > 0 on [0,a]× [0,r].
Letting η→ 0+, we have u(x, t) ≥ 0, v(x, t) ≥ 0 on [0,a]× [0,r]. By the arbitrariness of
r ∈ (0,T), we complete the proof of Lemma 2.1. �

Obviously, (u,v) = (0,0) is a subsolution of (1.1), we need to construct a supersolu-
tion.

Lemma 2.2. There exists a positive constant t0 (t0 < T) such that the problem (1.1) has a
supersolution (h1(x, t),h2(x, t))∈ (C(Ωt0 )∩C2,1(Ωt0 ))

2.

Proof. Let

ψ(x)=
(
x

a

)1−r1(
1− x

a

)
+
(
x

a

)(1−r1)/2(
1− x

a

)1/2
,

ϕ(x)=
(
x

a

)1−r2(
1− x

a

)
+
(
x

a

)(1−r2)/2(
1− x

a

)1/2
,

(2.14)

and let K0 be a positive constant such that K0ψ(x)≥ u0(x), K0ϕ(x)≥ v0(x).
Denote the positive constant

∫ 1
0 [s

1−r1 (1− s) + s(1−r1)/2(1− s)1/2]p2ds by b20 and
∫ 1
0 [s

1−r2 (1 − s) + s(1−r2)/2(1 − s)1/2]p1ds by b10. Let K10 ∈ (0,(1 − r1)/(2 − r1)), K20 ∈
(0,(1− r2)/(2− r2)) be positive constants such that

K10 ≤
(
2p1+1a3−r1b10K

p1−1
0

)−2/(1−r1),

K20 ≤
(
2p2+1a3−r2b20K

p2−1
0

)−2/(1−r2).
(2.15)
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Let (K1(t), K2(t)) be the positive solution of the following initial value problem:

K ′1(t)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

b10K
p1
2 (t)

aq1−1Kq1
10

[
K10
(
1−K10

)1−r1 +K1/2
10

(
1−K10

)(1−r1)/2] , q1 ≥ 0,

b10K
p1
2 (t)

aq1−1
(
1−K10

)q1[K10
(
1−K10

)1−r1 +K1/2
10

(
1−K10

)(1−r1)/2] , q1 < 0,

K1(0)= K0,

K ′2(t)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

b20K
p2
1 (t)

aq2−1Kq2
20

[
K20
(
1−K20

)1−r2 +K1/2
20

(
1−K20

)(1−r2)/2] , q2 ≥ 0,

b20K
p2
1 (t)

aq2−1
(
1−K20

)q2[K20
(
1−K20

)1−r2 +K1/2
20

(
1−K20

)(1−r2)/2] , q2 < 0,

K2(0)= K0.
(2.16)

Since K1(t), K2(t) are increasing functions, we can choose t0 > 0 such that K1(t) ≤ 2K0,
K2(t)≤ 2K0 for all t ∈ [0, t0]. Set h1(x, t)= K1(t)ψ(x), h2(x, t)= K2(t)ϕ(x), then h1(x, t)≥
0, h2(x, t) ≥ 0 on Ωt0 . We would like to show that (h1(x, t),h2(x, t)) is a supersolution of
(1.1) in Ωt0 . To do this, let us construct two functions J1, J2 by

J1 = xq1h1t −
(
xr1h1x

)
x −
∫ a

0
h
p1
2 dx, (x, t)∈Ωt0 ,

J2 = xq2h2t −
(
xr2h2x

)
x −
∫ a

0
h
p2
1 dx, (x, t)∈Ωt0 .

(2.17)

Then,

J1 = xq1h1t −
(
xr1h1x

)
x −
∫ a

0
h
p1
2 dx

= xq1K ′1ψ(x)+

[
2− r1
a2−r1

+

((
1− r1

)2

4
x(r1−3)/2(a− x)1/2 +

1
2
x(r1−1)/2(a− x)−1/2

+
1
4
x(1+r1)/2(a− x)−3/2

)

× 1
a1−r1/2

]

K1(t)− ab10K
p1
2 (t)

≥ xq1K ′1(t)ψ(x) + x(r1−1)/2(a− x)−1/2
K1(t)
2a1−r1/2

− ab10K
p1
2 (t),

J2 ≥ xq2K ′2(t)ϕ(x) + x(r2−1)/2(a− x)−1/2
K2(t)
2a1−r2/2

− ab20K
p2
1 (t).

(2.18)
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For (x, t)∈ (0,aK10)× (0, t0]∪ (a(1−K10),a)× (0, t0], by (2.15), we have

J1 ≥ x(r1−1)/2(a− x)−1/2
K1(t)
2a1−r1/2

− ab10K
p1
2 (t)

≥
[
K (r1−1)/2
10

2a2−r1

]

K1(t)− ab10K
p1
2

(
t0
)

≥
[
K (r1−1)/2
10

2a2−r1

]

K0− ab10
(
2K0

)p1

≥ 0.

(2.19)

For (x, t)∈ (0,aK20)× (0, t0]∪ (a(1−K20),a)× (0, t0], by (2.15), we have

J2 ≥
[
K (r2−1)/2
20

2a2−r2

]

K0− ab20
(
2K0

)p2 ≥ 0. (2.20)

For (x, t)∈ [aK10,a(1−K10)]× (0, t0] by (2.16), we have

J1 ≥ xq1K ′1(t)ψ(x)− ab10K
p1
2 (t)

≥

⎧
⎪⎪⎨

⎪⎪⎩

aq1K
q1
10K

′
1(t)

[
K10
(
1−K10

)1−r1 +K1/2
10

(
1−K10

)(1−r1)/2]− ab10K
p1
2 (t), q1≥0,

aq1
(
1−K10

)q1K ′1(t)
[
K10
(
1−K10

)1−r1 +K1/2
10

(
1−K10

)(1−r1)/2]− ab10K
p1
2 (t), q1<0,

≥ 0,
(2.21)

For (x, t)∈ [aK20,a(1−K20)]× (0, t0] by (2.16), we have

J2 ≥ xq2K ′2(t)ϕ(x)− ab20K
p2
1 (t)

≥

⎧
⎪⎪⎨

⎪⎪⎩

aq2K
q2
20K

′
2(t)

[
K20
(
1−K20

)1−r2 +K1/2
20

(
1−K20

)(1−r2)/2]− ab20K
p2
1 (t), q2≥0,

aq2
(
1−K20

)q2K ′2(t)
[
K20
(
1−K20

)1−r2 +K1/2
20

(
1−K20

)(1−r1)/2]− ab20K
p2
1 (t), q2<0,

≥ 0.
(2.22)

Thus, J1(x, t)≥0, J2(x, t)≥0 inΩt0 . It follows from h1(0, t)=h1(a, t)=h2(0, t)=h2(a, t)=0
and h1(x,0)= K0ψ(x)≥ u0(x), h2(x,0)= K0ϕ(x)≥ v0(x) that (h1(x, t),h2(x, t)) is a super-
solution of (1.1) in Ωt0 . The proof of Lemma 2.2 is complete. �

To show the existence of the classical solution (u(x, t),v(x, t)) of (1.1), let us intro-
duce a cutoff function ρ(x). By Dunford and Schwartz [8, page 1640], there exists a
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nondecreasing ρ(x) ∈ C3(R) such that ρ(x) = 0 if x ≤ 0 and ρ(x) = 1 if x ≥ 1. Let 0 <
δ <min{(1− r1)/(2− r1)a, (1− r2)/(2− r2)a},

ρδ(x)=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, x ≤ δ,

ρ
(
x

δ
− 1
)
, δ < x < 2δ,

1, x ≥ 2δ,

(2.23)

and u0δ(x)= ρδ(x)u0(x), v0δ(x)= ρδ(x)v0(x). We note that

∂u0δ(x)
∂δ

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, x ≤ δ,

− x

δ2
ρ′
(
x

δ
− 1
)
u0(x), δ < x < 2δ,

0, x ≥ 2δ,

∂v0δ(x)
∂δ

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, x ≤ δ,

− x

δ2
ρ′
(
x

δ
− 1
)
v0(x), δ < x < 2δ,

0, x ≥ 2δ.

(2.24)

Since ρ is nondecreasing, we have ∂u0δ(x)/∂δ ≤ 0, ∂v0δ(x)/∂δ ≤ 0. From 0≤ ρ(x)≤ 1, we
have u0(x)≥ u0δ(x), v0(x)≥ v0δ(x) and limδ→0u0δ(x)= u0(x), limδ→0 v0δ(x)= v0(x).

Let Dδ = (δ,a), let wδ =Dδ × (0, t0], let Dδ and wδ be their respective closures, and let
Sδ = {δ,a}× (0, t0]. We consider the following regularized problem:

xq1uδt −
(
xr1uδx

)
x =

∫ a

δ
v
p1
δ dx, (x, t)∈wδ ,

xq2vδt −
(
xr2vδx

)
x =

∫ a

δ
u
p2
δ dx, (x, t)∈wδ ,

uδ(δ, t)= uδ(a, t)= vδ(δ, t)= vδ(a, t)= 0, t ∈ (0, t0
]
,

uδ(x,0)= u0δ(x), vδ(x,0)= v0δ(x), x ∈Dδ.

(2.25)

By using Schauder’s fixed point theorem, we have the following.

Theorem 2.3. The problem (2.25) admits a unique nonnegative solution (uδ ,vδ) ∈
(C2+α,1+α/2(wδ))2. Moreover, 0≤ uδ ≤ h1(x, t), 0≤ vδ ≤ h2(x, t), (x, t)∈wδ , where h1(x, t),
h2(x, t) are given by Lemma 2.2.

Proof. By the proof of Lemma 2.1, we know that there exists at most one nonnegative
solution (uδ ,vδ). To prove existence, we use Schauder’s fixed point theorem.

Let

X1 =
{
v1 ∈ Cα,α/2(wδ

)
: 0≤ v1(x, t)≤ h2(x, t), (x, t)∈wδ

}
,

X2 =
{
u1 ∈ Cα,α/2(wδ) : 0≤ u1(x, t)≤ h1(x, t), (x, t)∈wδ

}
.

(2.26)
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Obviously, X1, X2 are closed convex subsets of Banach space Cα,α/2(wδ). In order to get
the conclusion, we have to define another set: X = X1×X2. Obviously (Cα,α/2(wδ))2 is a
Banach space with the norm

∥
∥(v1,u1

)∥∥
α,α/2 =

∥
∥v1
∥
∥
α,α/2 +

∥
∥u1

∥
∥
α,α/2, for any

(
v1,u1

)∈ (Cα,α/2(wδ
))2

, (2.27)

and X is a closed convex subset of Banach space (Cα,α/2(wδ))2. For any v1 ∈ X1, u1 ∈ X2,
let us consider the following linearized uniformly parabolic problem:

xq1Wδt −
(
xr1Wδx

)
x =

∫ a

δ
v
p1
1 dx, (x, t)∈wδ ,

xq2Zδt −
(
xr2Zδx

)
x =

∫ a

δ
u
p2
1 dx, (x, t)∈wδ ,

Wδ(δ, t)=Wδ(a, t)= Zδ(δ, t)= Zδ(a, t)= 0, t ∈ (0, t0
]
,

Wδ(x,0)= u0δ(x), Zδ(x,0)= v0δ(x), x ∈ [δ,a].

(2.28)

It is easy to see that (W(x, t),Z(x, t)) = (0,0) and (W(x, t),Z(x, t)) = (h1(x, t),h2(x, t))
are subsolution and supersolution of problem (2.28). We also note that x−q1+r1 , x−q1−1+r1 ,
x−q1 , x−q2+r2 , x−q2−1+r2 , x−q2 ∈ Cα,α/2(wδ), and x−q1

∫ a
δ v

p1
1 dx, x−q2

∫ a
δ u

p2
1 dx ∈

Cα,α/2(wδ), u0δ(x),v0δ(x)∈ C2+α(Dδ). It follows from Theorem 4.2.2 of Laddle et al. [11,
page 143] that the problem (2.28) has a unique solution (Wδ(x, t;v1,u1),Zδ(x, t;v1,u1))∈
(C2+α,1+α/2(wδ))2, which satisfies 0≤Wδ(x, t;v1,u1)≤ h1(x, t), 0≤Zδ(x, t;v1,u1)≤h2(x, t).
Thus, we can define a mapping Y from X into (C2+α,1+α/2(wδ)2, such that

Y
(
v1(x, t),u1(x, t)

)= (Wδ
(
x, t;v1,u1

)
,Zδ
(
x, t;v1,u1

))
, (2.29)

where (Wδ(x, t;v1,u1),Zδ(x, t;v1,u1)) denotes the unique solution of (2.28) correspond-
ing to (v1(x, t),u1(x, t))∈ X . To use Schauder’s fixed point theorem, we need to verify the
fact that Y maps X into itself is continuous and compact.

In fact, YX ⊂ X and the embedding operator form Banach space (C2+α,1+α/2(wδ))2 to
the Banach space (Cα,α/2(wδ))2 is compact. Therefore Y is compact. To show Y is contin-
uous in X1 let us consider a sequence {v1n(x, t)} which converges to v1(x, t) uniformly in
the norm ‖ · ‖α,α/2. We know that v1(x, t)∈ X1. Analogously, inX2 we consider a sequence
{u1n(x, t)} which converges to u1(x, t) uniformly in the norm ‖ · ‖α,α/2 and u1(x, t)∈ X2.
So we get a sequence {(v1n(x, t),u1n(x, t))} ⊂ X , which converges to (v1(x, t),u1(x, t)) uni-
formly in the norm ‖(·,·)‖α,α/2 and (v1(x, t),u1(x, t))∈ X . Let (Wδn(x, t),Zδn(x, t)) and
(Wδ(x, t),Zδ(x, t)) be the solution of problem (2.28) corresponding to (v1n(x, t),u1n(x, t))
and (v1(x, t),u1(x, t)), respectively. Without loss of generality, let us assume that

∥
∥v1n(x, t)

∥
∥
α,α/2 ≤

∥
∥v1(x, t)

∥
∥
α,α/2 + 1, for any n≥ 1,

∥
∥u1n(x, t)

∥
∥
α,α/2 ≤

∥
∥u1(x, t)

∥
∥
α,α/2 + 1, for any n≥ 1.

(2.30)
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LetW(x, t)=Wδn(x, t)−Wδ(x, t), Z(x, t)= Zδn(x, t)−Zδ(x, t). Then we have

xq1Wt −
(
xr1Wx

)
x =

∫ a

δ

(
v
p1
1n− v

p1
1

)
dx, (x, t)∈wδ ,

xq2Zt −
(
xr2Zx

)
x =

∫ a

δ

(
u
p2
1n−u

p2
1

)
dx, (x, t)∈wδ ,

W(δ, t)=W(a, t)= Z(δ, t)= Z(a, t)= 0, t ∈ (0, t0
]
,

W(x,0)= 0, Z(x,0)= 0, x ∈Dδ.

(2.31)

From Theorem 4.5.2 of Ladyženskaja et al. [12, page 320], there exist positive constants
C1 (independent of v1n and v1), C2 (independent of u1n and u1) such that

‖W‖2+α,1+α/2 ≤ C1

∥
∥
∥
∥

∫ a

δ

(
v
p1
1n− v

p1
1

)
dx
∥
∥
∥
∥
α,α/2

≤ C1ap1
∥
∥(v1 + τ

(
v1n− v1

))p1−1∥∥
α,α/2

∥
∥v1n− v1

∥
∥
α,α/2

≤ C1ap1
[
3
(∥∥v1

∥
∥
α,α/2 + 1

)]p1−1∥∥v1n− v1
∥
∥
α,α/2,

‖Z‖2+α,1+α/2 ≤ C2ap2
[
3
(∥∥u1

∥
∥
α,α/2 + 1

)]p2−1∥∥u1n−u1
∥
∥
α,α/2,

(2.32)

where τ ∈ (0,1). So,

∥
∥(W ,Z)

∥
∥
2+α,1+α/2 = ‖W‖2+α,1+α/2 +‖Z‖2+α,1+α/2

≤ C1ap1
[
3
(∥∥v1

∥
∥
α,α/2 + 1

)]p1−1∥∥v1n− v1
∥
∥
α,α/2

+C2ap2
[
3
(∥∥u1

∥
∥
α,α/2 + 1

)]p2−1∥∥u1n−u1
∥
∥
α,α/2

≤ C
∥
∥(v1n− v1,u1n−u1

)∥∥
α,α/2.

(2.33)

This shows that the mapping Y is continuous. By Schauder’s fixed point theorem, we
complete the proof of Theorem 2.3. �

Now we can prove the following local existence result.

Theorem 2.4. There exists some t0 (< T) such that problem (1.1) has a unique nonnegative
solution (u(x, t),v(x, t))∈ (C(Ωt0 )∩C2,1(Ωt0 ))

2.

Proof. By Theorem 2.3, the problem (2.25) has a unique nonnegative solution (uδ ,vδ)∈
(C2+α,1+α/2(wδ))2. It follows from Lemma 2.1 that (uδ1,vδ1)≤ (uδ2,vδ2) if δ1 > δ2. There-
fore, limδ→0(uδ(x, t),vδ(x, t)) exists for all (x, t) ∈ (0,a]× [0, t0]. Let (u(x, t),v(x, t)) =
limδ→0(uδ(x, t),vδ(x, t)), (x, t)∈(0,a]×[0, t0] and define (u(0, t),v(0, t))=(0,0), t∈[0, t0].
We would like to show that (u(x, t),v(x, t)) is a classical solution of (1.1) in Ωt0 . For any
(x1, t1) ∈ Ωt0 , there exist three domains Q′ = (a′1,a

′
2)× (t′2, t

′
3], Q

′′ = (a′′1 ,a
′′
2 )× (t′′2 , t

′′
3 ],

and Q′′′ = (a′′′1 ,a′′′2 )× (t′′′2 , t′′′3 ] such that (x1, t1)∈ Q′ ⊂ Q′′ ⊂ Q′′′ ⊂ (0,a)× (0, t0] with
0 < a′′′1 < a′′1 < a′1 < x1 < a′2 < a′′2 < a′′′2 < a, 0≤ t′′′2 ≤ t′′2 ≤ t′2 < t1 < t′3 ≤ t′′3 ≤ t′′′3 ≤ t0. Since
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(uδ(x, t),vδ(x, t))≤ (h1(x, t),h2(x, t)) inQ′′′ and h1(x, t), h2(x, t) are finite onQ
′′′
, for any

constant q̃ > 1 and some positive constants K3, K4, we have

(i)
∥
∥uδ

∥
∥
Lq̃(Q′′′) ≤

∥
∥h1
∥
∥
Lq̃(Q′′′) ≤ K3,

∥
∥vδ
∥
∥
Lq̃(Q′′′) ≤

∥
∥h2
∥
∥
Lq̃(Q′′′) ≤ K3,

(ii)
∥
∥x−q1

∫ a

δ
v
p1
δ dx

∥
∥
Lq̃(Q′′′) ≤

(
a∗1
)−q1

∥
∥
∥
∥

∫ a

0
h
p1
2 dx

∥
∥
∥
∥
Lq̃(Q′′′)

≤ K4,

∥
∥
∥
∥x

−q2
∫ a

δ
u
p2
δ dx

∥
∥
∥
∥
Lq̃(Q′′′)

≤ (a∗2
)−q2

∥
∥
∥
∥

∫ a

0
h
p2
1 dx

∥
∥
∥
∥
Lq̃(Q′′′)

≤ K4,

(2.34)

where a∗1 = a′′′1 if q1 ≥ 0, a∗1 = a′′′2 if q1 < 0, and a∗2 = a′′′1 if q2 ≥ 0, a∗2 = a′′′2 if q2 < 0.
By the local Lp estimate of Ladyženskaja et al. [12, pages 341-342, 352], (uδ ,vδ) ∈

(W2,1
q̃ (Q′′))2. By the embedding theorem in [12, pages 61 and 80],W2,1

q̃ (Q′′)↩Hα,α/2(Q′′)
if we choose q̃ > 2/(1−α). Then, ‖uδ‖Hα,α/2(Q′′) ≤ K5 and ‖vδ‖Hα,α/2(Q′′) ≤ K5 for some pos-
itive constant K5, and we have
∥
∥
∥
∥x

−q1
∫ a

δ
v
p1
δ dx

∥
∥
∥
∥
Hα,α/2(Q′′)

≤ (a∗1
)−q1

∥
∥
∥
∥

∫ a

δ
h
p1
2 dx

∥
∥
∥
∥
∞
+ sup

(x,t)∈Q′′ (x̃,t)∈Q′′

∣
∣
∫ a
δ v

p1
δ dx

∣
∣ ·∣∣x−q1 − x̃−q1

∣
∣

|x− x̃|α

+ sup
(x̃,t)∈Q′′ (x̃,t̃)∈Q′′

∣
∣x̃−q1

∣
∣·∣∣∫ aδ p1

(
vδ(x, t̃) + τ

(
vδ(x, t)− vδ(x, t̃)

))p1−1(vδ(x, t)− vδ(x, t̃)
)
dx|

|t− t̃|α/2

≤ (a∗1
)−q1

∥
∥
∥
∥

∫ a

0
h
p1
2 dx

∥
∥
∥
∥
∞
+
∥
∥
∥
∥

∫ a

0
h
p1
2 dx

∥
∥
∥
∥
∞
·∥∥x−q1∥∥Hα(a′′1 ,a

′′
2 )

+
(
a∗1
)−q1

∥
∥
∥
∥

∫ a

0
p1h

p1−1
2 dx

∥
∥
∥
∥
∞
·∥∥vδ

∥
∥
Hα,α/2(Q′′) ≤ K6,

∥
∥
∥
∥x

−q2
∫ a

δ
u
p2
δ dx

∥
∥
∥
∥
Hα,α/2(Q′′)

≤ K6,

(2.35)

for some positive constantK6, which is independent of δ, where τ∈(0,1). By Ladyženskaja
et al. [12, Theorem 4.10.1, pages 351-352], we have

∥
∥uδ

∥
∥
H2+α,1+α/2(Q′) ≤ K7,

∥
∥vδ
∥
∥
H2+α,1+α/2(Q′) ≤ K7, (2.36)

for some positive constant K7 independent of δ. This implies that uδ , uδt, uδx, uδxx and
vδ , vδt, vδx, vδxx are equicontinuous in Q′. By the Ascoli-Arzela theorem, we know that

‖u‖H2+α′ ,1+α′/2(Q′) ≤ K8, ‖v‖H2+α′ ,1+α′ /2(Q′) ≤ K8, (2.37)

for some α′ ∈ (0,α) and some positive constant K8 independent of δ, and that the
derivatives of u and v are uniform limits of the corresponding partial derivatives of uδ
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and vδ , respectively. Hence (u(x, t),v(x, t)) satisfies (1.1), and limt→0(u(x, t),v(x, t)) =
limt→0 limδ→0(uδ(x, t),vδ(x, t))= limδ→0(u0δ(x, t),v0δ(x, t))=(u0(x),v0(x)). It follows from
0≤ u(x, t)≤ h1(x, t), 0≤ v(x, t)≤ h2(x, t) and h1(x, t)→ 0, h2(x, t)→ 0 as x→ 0 or x→ a
that limx→0(u(x, t),v(x, t))= limx→a(u(x, t),v(x, t))= (0,0), thus (u,v)∈C(Ωt0 )∩C2,1(Ωt0 )
is the solution of (1.1) in Ωt0 . We complete the proof of Theorem 2.4. �

By using Lemma 2.1, there exists at most one nonnegative solution of (1.1). Similar to
the proof of [9, Theorem 2.5], we obtain the following constitutional result.

Theorem 2.5. Let T be the supremum over t0 for which there is a unique nonnegative so-
lution (u(x, t),v(x, t)) ∈ (C(Ωt0 )∩C2,1(Ωt0 ))

2 of (1.1). Then (1.1) has a unique nonnega-
tive solution (u(x, t),v(x, t))∈ (C([0,a]× [0,T))∩C2,1((0,a)× (0,T)))2. If T < +∞, then
limsupt→Tmaxx∈[0,a](|u(x, t)|+ |v(x, t)|)= +∞.

3. Blowup of solution

In this section, we give some global existence and blowup result of the solution of (1.1).

3.1. Existence and nonexistence of the global solution. In this subsection, we would
assume q1 > r1− 1, q2 > r2− 1.

First, the solution of the following elliptic boundary value problem:

−(xr1ψ′(x))′ = 1, x ∈ (0,a); ψ(0)= ψ(a)= 0, (3.1)

is given by ψ(x)= (a2−r1 /(2− r1))(x/a)1−r1 (1− x/a).
Analogously, the solution of the following elliptic boundary value problem:

−(xr2ϕ′(x))′ = 1, x ∈ (0,a); ϕ(0)= ϕ(a)= 0, (3.2)

is given by ϕ(x)= (a2−r2 /(2− r2))(x/a)1−r2 (1− x/a).
By direction computation, we have

∫ a

0
ψp2dx = a(2−r1)p2+1B

(
p2
(
1− r1

)
+1, p2 + 1

)

(
2− r1

)p2 ,

∫ a

0
ϕp1dx = a(2−r2)p1+1B

(
p1
(
1− r2

)
+1, p1 + 1

)

(
2− r2

)p1 ,

(3.3)

where B(l,m) is a Beta function defined by B(l,m)= ∫ 10 xl−1(1− x)m−1dx.
Let

a1 = a
p1
2

[
a(2−r2)p1+1B

(
p1
(
1− r2

)
+1, p1 + 1

)]

(
2− r2

)p1 ,

a2 = a
p2
1

[
a(2−r1)p2+1B

(
p2
(
1− r1

)
+1, p2 + 1

)]

(
2− r1

)p2 ,

(3.4)

then we have the following global existence result.
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Theorem 3.1. Let (u(x, t),v(x, t)) be the solution of (1.1). If u0(x)≤a1ψ(x), v0(x)≤a2ϕ(x),
then (u(x, t),v(x, t)) exists globally.

Proof. Let u= a1ψ(x), v = a2ϕ(x), then we have

xq1ut(x, t)−
(
xr1ux(x, t)

)
x

=−(xr1a1ψ′(x)
)′ = a1

= a
p1
2

[

a(2−r2)p1+1B
(
p1
(
1− r2

)
+1, p1 + 1

)

(
2− r2

)p1

]

=
∫ a

0

(
a2ϕ

)p1dx =
∫ a

0
vp1 (x, t)dx, (x, t)∈ (0,a)× (0,T),

xq2vt(x, t)−
(
xr2vx(x, t)

)
x =

∫ a

0
up2 (x, t)dx, (x, t)∈ (0,a)× (0,T),

u(0, t)= u(a, t)= v(0, t)= v(a, t)= 0, t ∈ (0,T),

u(x,0)= a1ψ(x)≥ u0(x), v(x,0)= a2ϕ(x)≥ v0(x), x ∈ [0,a],

(3.5)

that is to say (u(x, t),v(x, t)) = (a1ψ(x),a2ϕ(x)) is a supersolution of (1.1). By Theorem
2.5, T = +∞, that is, (u(x, t),v(x, t)) exists globally. The proof of Theorem 3.1 is complete.

�

Next we consider the following eigenvalue problem:

−(xr1ϕ′1(x)
)′ = λ1x

q1ϕ1(x), x ∈ (0,a),

ϕ1(0)= ϕ1(a)= 0.
(3.6)

By transformation ϕ1(x)= x(1−r1)/2y1(x), the above differential equation becomes

x2y′′1 (x) + xy′1(x)−
(
1− r1

)2

4
y1(x) + λ1x

q1+2−r1 y1(x)= 0, x ∈ (0,a). (3.7)

Again, by transformation x = z2/(q1+2−r1), the problem (3.6) becomes

z2y′′1 (z) + zy′1(z) +

[
4λ21z

2

(
q1 + 2− r1

)2 −
(
1− r1

)2

(
q2 + 2− r1

)2

]

y1(z)= 0, z ∈ (0,b1
)
,

y1(0)= y1
(
b1
)= 0,

(3.8)

where b1 = a(q1+2−r1)/2. Equation (3.8) is a Bessel equation. Its general solution is given by

y1(z)= AJ(1−r1)/(q1+2−r1)

(
2
√
λ1

q1 + 2− r1
z

)

+BJ−(1−r1)/(q1+2−r1)

(
2
√
λ1

q1 + 2− r1
z

)

, (3.9)

where A and B are arbitrary constants, J(1−r1)/(q1+2−r1) and J−(1−r1)/(q1+2−r1) denote Bessel
functions of the first kind of orders (1− r1)/(q1 + 2− r1) and −(1− r1)/(q1 + 2− r1), re-
spectively. Let μ1 be the first root of J(1−r1)/(q1+2−r1)(2

√
λ1b1/(q1 + 2− r1)). By Mclachlan
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[13, pages 29 and 75], it is positive. It is obvious that μ1 is the first eigenvalue of problem
(3.6); also we can easily obtain the corresponding eigenfunction

ϕ1(x)= k1x
(1−r1)/2J(1−r1)/(q1+2−r1)

(
2√μ1

q1 + 2− r1
x(q1+2−r1)/2

)

, (3.10)

which is positive for x ∈ (0,a). Since q1 > r1− 1, we can choose k1 > 0 such that

max
x∈[0,a]

xq1ϕ1(x)= 1. (3.11)

Analogously, we consider the following eigenvalue problem:

−(xr2ϕ′2(x)
)′ = λ2x

q2ϕ2(x), x ∈ (0,a),

ϕ2(0)= ϕ2(a)= 0.
(3.12)

By using the same method as above, let μ2 be the first root of J(1−r2)/(q2+2−r2)(2
√
λ2b2/(q2 +

2− r2)), where b2 = a(q2+2−r2)/2. By Mclachlan [13, pages 29 and 75], it is positive. It is
obvious that μ2 is the first eigenvalue of problem (3.12); also we can easily obtain the
corresponding eigenfunction

ϕ2(x)= k2x
(1−r2)/2J(1−r2)/(q2+2−r2)

(
2√μ2

q2 + 2− r2
x(q2+2−r2)/2

)

, (3.13)

which is positive for x ∈ (0,a). Since q2 > r2− 1, we can choose k2 > 0 such that

max
x∈[0,a]

xq2ϕ2(x)= 1. (3.14)

Since u0(x), v0(x) are both nonnegative nontrivial functions, there exists a constant δ >
0, such that

∫ a
0 x

q1ϕ1(x)u0(x)dx ≥ δ,
∫ a
0 x

q2ϕ2(x)v0(x)dx ≥ δ. Then, we have the following
theorem.

Theorem 3.2. Let (u(x, t),v(x, t)) be the solution of the problem (1.1), then the solution of
(1.1) blows up in finite time if

∫ a

0
ϕ1(x)dx

(∫ a

0
xq2ϕ2(x)dx

)1−p1(∫ a

0
xq2ϕ2(x)v0(x)dx

)p1

>max
{
μ1,μ2

}
∫ a

0
xq1ϕ1(x)u0(x)dx,

∫ a

0
ϕ2(x)dx

(∫ a

0
xq1ϕ1(x)dx

)1−p2(∫ a

0
xq1ϕ1(x)u0(x)dx

)p2

>max
{
μ1,μ2

}
∫ a

0
xq2ϕ2(x)v0(x)dx.

(3.15)

Proof. We set

U(t)=
∫ a

0
xq1ϕ1(x)u(x, t)dx, V(t)=

∫ a

0
xq2ϕ2(x)v(x, t)dx. (3.16)
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Multiplying (1.1) by ϕ1(x) and integrating it over x from 0 to a, we have

∫ a

0
xq1utϕ1dx =

∫ a

0

(
xr1ux

)
xϕ1dx+

∫ a

0
ϕ1dx

∫ a

0
vp1dx. (3.17)

Integrating by part, using Jensen’s inequality, we have

U ′(t)=
∫ a

0
xq1utϕ1dx

≥−μ1
∫ a

0
xq1ϕ1(x)u(x, t)dx+

∫ a

0
ϕ1(x)dx

∫ a

0
xq2ϕ2(x)vp1dx

≥−μ1U(t) +
∫ a

0
ϕ1(x)dx

(∫ a

0
xq2ϕ2(x)dx

)1−p1(∫ a

0
xq2ϕ2(x)vdx

)p1

=−μ1U(t) +
∫ a

0
ϕ1(x)dx

(∫ a

0
xq2ϕ2(x)dx

)1−p1
V p1 (t),

V ′(t)≥−μ2V(t) +
∫ a

0
ϕ2(x)dx

(∫ a

0
xq1ϕ1(x)dx

)1−p2
Up2 (t).

(3.18)

If we set

C1 =
∫ a

0
ϕ1(x)dx

(∫ a

0
xq2ϕ2(x)dx

)1−p1
, C2 =

∫ a

0
ϕ2(x)dx

(∫ a

0
xq1ϕ1(x)dx

)1−p2
,

(3.19)

then we have

U ′(t)≥−μ1U(t) +C1V
p1 (t),

V ′(t)≥−μ2V(t) +C2U
p2 (t).

(3.20)

If we set Ũ = (C1C
p1
2 )1/(p1p2−1)U , Ṽ = (C2C

p2
1 )1/(p1p2−1)V , μ=max{μ1,μ2}, then we have

Ũ ′(t)≥−μŨ(t) + Ṽ p1 (t),

Ṽ ′(t)≥−μṼ(t) + Ũ p2 (t).
(3.21)

Since Ũ(0) > 0, Ṽ(0) > 0 and Ũ p2 (0)/μ > Ṽ(0) > μŨ1/p1 (0), we get from [16, Corollary
1] that (Ũ ,Ũ) blows up in finite time. Therefore, the solution of (1.1) blows up in finite
time. The proof of Theorem 3.2 is complete. �

Remark 3.3. Since the system (1.1) is completely coupled, we know that if the solution
(u,v) blows up in finite time, then u and v blow up simultaneously.

3.2. Global blowup. In this subsection, we discuss the global blowup in two special cases.

Case 1. q1 > 0, r1 = 0 or q2 > 0, r2 = 0.
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Chan et al. [3, 5] proved that there exists Green’s functionG(x,ξ, t− τ) associated with
the operator L= xq1 (∂/∂t)− ∂2/∂x2 with the first boundary condition, and obtained the
following lemmas.

Lemma 3.4. (a) For t > τ, G(x,ξ, t − τ) is continuous for (x, t,ξ,τ) ∈ ([0,a]× (0,T])×
((0,a]× [0,T)).

(b) For each fixed (ξ,τ)∈ (0,a]× [0,T), Gt(x,ξ, t− τ)∈ C([0,a]× (τ,T]).
(c) In {(x, t,ξ,τ) : x and ξ are in (0,a), T ≥ t > τ ≥ 0}, G(x,ξ, t− τ) is positive.

Lemma 3.5. For fixed x0 ∈ (0,a], given any x ∈ (0,a) and any finite time T , there exist
positive constants C1 (depending on x and T) and C2 (depending on T) such that

∫ a

0
G(x,ξ, t)dξ > C1,

∫ a

0
G
(
x0,ξ, t

)
dξ < C2, for 0≤ t ≤ T. (3.22)

Now we give the global blowup result

Theorem 3.6. Under the assumption of Case 1, if the solution of (1.1) blows up at the point
x0 ∈ (0,a), then the blowup set of the solution of (1.1) is [0,a].

Proof. From the remark, we know that u and v blow up simultaneously if the solution
(u,v) blows up in finite time. Without loss of generality, we assume q1 > 0, r1 = 0, and
u(x, t) blows up in finite time T . By Green’s second identity we have

u(x, t)=
∫ a

0
ξq1G(x,ξ, t)u0(ξ)dξ +

∫ t

0

∫ a

0
G(x,ξ, t− τ)

∫ a

0
vp1 (y,τ)dydξ dτ (3.23)

for any (x, t)∈ (0,a)× (0,T). According to the conditions, u(x, t) blows up at x = x0, then
limsupt→T u(x0, t)= +∞. By (3.23) and Lemma 3.5, we have

u
(
x0, t

)=
∫ a

0
ξq1G

(
x0,ξ, t

)
u0(ξ)dξ +

∫ t

0

∫ a

0
G
(
x0,ξ,τ

)
∫ a

0
vp1 (y, t− τ)dydξ dτ

≤ C2a
q1 max

x∈[0,a]
u0(x) +C2

∫ t

0

∫ a

0
vp1 (y, t− τ)dydτ.

(3.24)

Since limsupt→T u(x0, t)= +∞, we have

lim
t→T

∫ t

0

∫ a

0
vp1 (y, t− τ)dydτ = +∞. (3.25)

On the other hand, for any x ∈ (0,a), we have

u(x, t)≥
∫ a

0
ξq1G(x,ξ, t)u0(ξ)dξ +C1

∫ t

0

∫ a

0
vp1 (y, t− τ)dydτ

≥ C1

∫ t

0

∫ a

0
vp1 (y, t− τ)dydτ, t ∈ (0,T).

(3.26)

It follows from the above inequality and (3.25) that limsupt→T u(x, t)= +∞.
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For any x̃ ∈ {0,a}, we can choose a sequence {(xn, tn)} such that (xn, tn)→ (x̃,T) (n→
+∞) and limn→∞u(xn, tn)= +∞. Thus the blowup set is the whole domain [0,a], and we
complete the proof of Theorem 3.6. �

Case 2. q1 = 0, 0≤ r1 < 1 or q2 = 0, 0≤ r2 < 1.

We will prove that the blowup set is the whole domain under the following assump-
tion:

(H) there exists M (0 < M < +∞) such that (xr1u0x(x))x ≤M or (xr2v0x(x))x ≤M in
(0,a).

Theorem 3.7. Under the assumptions of (H) and Case 2, if the solution of (1.1) blows up
at the point x0 ∈ (0,a), then the blowup set of the solution of (1.1) is [0,a].

Proof. The proof is similar to the proof of [7, Theorem 4.3], so we omit it. The proof of
Theorem 3.7 is complete. �
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