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The second-order nonlinear elliptic system −Δu = f1(x)uα + g1(x)u−β + h1(x)uγP(v),
−Δv = f2(x)vα + g2(x)v−β + h2(x)vγP(u) with 0 < α,β,γ < 1 , is considered in RN . Un-
der suitable hypotheses on functions fi, gi, hi (i= 1,2), and P, it is shown that this system
possesses an entire positive solution (u,v) ∈ C2,θ

loc(R
N )×C2,θ

loc(R
N ) (0 < θ < 1) such that

both u and v are bounded below and above by positive constant multiples of |x|2−N for
all |x| ≥ 1.
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1. Introduction

This paper is concerned with the second-order nonlinear elliptic system

−Δu= f1(x)uα + g1(x)u−β +h1(x)uγP(v),

−Δv = f2(x)vα + g2(x)v−β +h2(x)vγP(u),
x ∈RN (N ≥ 3), (1.1)

where Δ is the Laplacian operator, 0 < α,β,γ < 1 are constants, the functions fi, gi, hi (i=
1,2) are nonnegative and locally Hölder continuous with exponent θ ∈ (0,1) in RN , and
P :R+→R+ is a continuous differentiable function, where R+ = (0,+∞),R+ = [0,+∞).

We are interested in the study of the existence of entire positive solutions (u(x),v(x))
to (1.1) which satisfy the condition that each of its elements decays between two positive
multiples of |x|2−N as x tends to infinity. By an entire solution of (1.1) is meant a pair of
functions (u,v)∈ C2,θ

loc(R
N )×C2,θ

loc(R
N ) which satisfies (1.1) at every point x in RN .

The existence of entire positive solutions of the equation

Δu+ f (x,u)= 0, x ∈RN , N ≥ 3, (1.2)
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has been proved under various hypotheses, see [6, 7, 10–12, 14, 17]. In Particular, for the
generalized Emden-Fowler equation

Δu+K(x)uλ = 0, x ∈RN , N ≥ 3, (1.3)

where λ is a constant, and K is a positive locally θ-Hölder continuous function in RN ,
Fukagai [7] has proved for λ∈ (0,1) that if

∫ +∞

1
sN−1−λ(N−2)K∗(s)ds < +∞, K∗(s)=max

|x|=s
K(x), (1.4)

then there is an entire positive solution of (1.3) that is minimal, that is, bounded below
and above, respectively, by a positive constant times |x|2−N as x tends to infinity.

Equation (1.3) with λ∈ (0,1) is said to be of sublinear type; if λ is negative, then (1.3)
is said to be of singular type, and such equations arise from the boundary layer theory of
viscous fluids, see [3, 13]. In this paper, we focus on elliptic systems of mixed type.

It is well known that some reaction-diffusion equations have been investigated in con-
nection with models of population dynamics [2, 5, 9, 15]. To mention some, in [15], the
equation ∂u/∂t− dΔum = f (x,u) is studied. For some mutualistic symbiosis population
models of two species, it may be necessary to study equation systems such as

∂u

∂t
−d1Δu

m = f1(x)uρ + g1(x)uσ +h1(x)uμP(v),

∂v

∂t
−d2Δv

m = f2(x)vρ + g2(x)vσ +h2(x)vμP(u),

x ∈RN , (1.5)

where 0 < ρ, μ < m, −m< σ < 0, and d1,d2 > 0. Obviously, the positive equilibrium solu-
tions to system (1.5) in RN are corresponding to the entire positive solutions of a system
in the form of (1.1).

Some existence results of elliptic system

Δu+F1(x,u,v)= 0,

Δv+F2(x,u,v)= 0
(1.6)

have been established in [4, 11, 16, 19–21]. In particular, in [20], the existence of the
equilibrium solutions is established for the Volterra-Lotka mutualistic symbiosis model
in the case of equal linear birth rates, using the method of upper and lower solutions.
However, for so-called mixed type in which F1 and F2 involve both singular and sublinear
terms, results regarding the existence of positive entire solutions cannot be derived from
those in the literature.

The aim of this article is to develop the theory of existence of positive solutions for
nonlinear elliptic systems. Based on a comparison principle, using the Schauder-
Tychonoff fixed point theorem, we establish one main theorem regarding the existence
of entire positive solutions for the system (1.1). Our results are applicable to systems such
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as

−Δu= f1(x)uα + g1(x)u−β +h1(x)uγvδ ,

−Δv = f2(x)vα + g2(x)v−β +h2(x)vγuδ ,
x ∈RN , (1.7)

or

−Δu= f1(x)uα + g1(x)u−β +h1(x)uγ
(
c0 + v

)−δ
,

−Δv = f2(x)vα + g2(x)v−β +h2(x)vγ
(
c0 +u

)−δ
,

x ∈RN , (1.8)

with 0 < α,β,γ < 1, c0 ≥ 0, 0 < δ < 1− γ, and some other kinds of systems even more
general (see Remark 2.2). Moreover, our method can be used to deal with similar systems
on a bounded domain.

2. Main results

First, we denote by φ the function defined on R:

φ(t)= 1, if 0≤ t < 1; φ(t)= t2−N , if t ≥ 1. (2.1)

A solution (u(x),v(x)) for equation system (1.1) is usually called aminimal positive entire
solution if both u(x) and v(x) are between two positive constant multiples of function
φ(|x|) in whole RN . This term comes from the fact that no positive solution of Δu≤ 0 in
an exterior domain can decay more rapidly than a constant multiple of |x|2−N , see [18].
Theorem 2.1. Suppose that 0 < α, β, γ < 1 are constants and the functions gi, hi (i= 1,2),
and P satisfy the following conditions:
(T) fi, gi, hi are locally Hölder continuous with exponent θ ∈ (0, 1) in RN and

∫ +∞

1
sN−1−α(N−2) f ∗i (s)ds < +∞, f ∗i (s)=max

|x|=s
fi(x),

∫ +∞

1
sN−1+β(N−2)g∗i (s)ds < +∞, g∗i (s)=max

|x|=s
gi(x),

∫ +∞

1
sN−1−γ(N−2)h∗i (s)P

∗(s)ds < +∞, h∗i (s)=max
|x|=s

hi(x), P∗(s)=max
|x|=s

P
(
φ
(|x|)),

fi∗(s) + gi∗(s) +hi∗(s) �≡ 0 for s≥ 0,

fi∗(s)=min
|x|=s

fi(x), gi∗(s)=min
|x|=s

gi(x); hi∗(s)=min
|x|=s

hi(x);

(2.2)

(P) P : R+ → R+ is a continuous differentiable function satisfying that there exists a λ∈
(0,1− γ) such that for all k ≥ 1 and c ∈ [k−1,k],

P(cs)≤ kλP(s), ∀s > 0. (2.3)
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Then the system (1.1) possesses a positive entire solution (u,v)∈ C2,θ
loc(R

N )×C2,θ
loc(R

N ) such
that each of u and v decays between two positive constant multiples of φ(|x|) as x tends to
infinity, that is, the solution is minimal.

Remark 2.2. Examples of function P(s) satisfying the condition (P) are

P(s)= (c0 + s
)−δ

,
(
c0 > 0, 0 < δ ≤ λ

)
(2.4)

as suggested in (1.8),

P(s)= sδ + s−σ ,
(
0 < δ ≤ λ, 0 < σ ≤ λ

)
(2.5)

or

P(s)= sδ(
c0 + s

)σ , (
c0 > 0, δ > 0, σ > 0, 0 < δ + σ ≤ λ

)
(2.6)

and so on.

3. Proof of results

Lemma 3.1. Consider the equation

−Δu= f (x)uα + g(x)u−β +h(x)uγ. (3.1)

Suppose that f , g, h are nonnegative functions defined on RN , and 0 < α,β,γ < 1 are con-
stants. If f , g, h are locally Hölder continuous with exponent θ ∈ (0,1) in RN and
(T′)

∫ +∞

1
sN−1−α(N−2) f ∗(s)ds < +∞, f ∗(s)=max

|x|=s
f (x),

∫ +∞

1
sN−1+β(N−2)g∗(s)ds < +∞, g∗(s)=max

|x|=s
g(x),

∫ +∞

1
sN−1−γ(N−2)h∗(s)ds < +∞, h∗(s)=max

|x|=s
h(x),

f∗(s) + g∗(s) +h∗(s) �≡ 0, for s≥ 0,

f∗(s)=min
|x|=s

f (x), g∗(s)=min
|x|=s

g(x), h∗(s)=min
|x|=s

h(x),

(3.2)

then (3.1) possesses a unique positive entire solution u ∈ C2,θ
loc(R

N ) such that u decays be-
tween two positive constant multiples of φ(|x|) as x tends to infinity, that is, the solution is
minimal.

Lemma 3.2. Suppose that f : RN ×R+ → R is a continuous function such that one of the
following assumptions is satisfied:
(F1) s−1 f (x,s) is strictly decreasing in s for each x ∈RN ,
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(F2) s−1 f (x,s) is strictly decreasing in s for each x in a subset Ω0 of RN and both f (x,s)
and s−1 f (x,s) are nonincreasing in s for all x in the remainder part RN −Ω0.

Let w,v ∈ C2(RN ) satisfy
(a) Δw+ f (x,w)≤ 0≤ Δv+ f (x,v) in RN ,
(b) w,v > 0 in RN and liminf |x|→∞(w(x)− v(x))≥ 0,
(c) Δv in L1(RN ).

Then w ≥ v ∈RN .

The proof of Lemma 3.1 is given for completeness in the appendix of this article.
Lemma 3.2 is an extension of [17, Lemma 1], so the proof is omitted here for briefness.

Proof of Theorem 2.1. Consider the equation

−Δu= f1(x)uα + g1(x)u−β +h1(x)uγP
(
φ
(|x|)), x ∈RN . (3.3)

In view of (T) and Lemma 3.1, we find that there exists, for (3.3), a unique entire positive
solution u0(x)∈ C2,θ

loc(R
N ). With the same argument, for the equation

−Δv = f2(x)vα + g2(x)v−β +h2(x)vγP
(
φ
(|x|)), x ∈RN , (3.4)

there exists a unique entire positive solution v0(x) ∈ C2,θ
loc (R

N ). Moreover, it is obvious
that there is a constant c0 > 1 such that for any x ∈RN ,

c−10 φ
(|x|)≤ u0(x)≤ c0φ

(|x|),
c−10 φ

(|x|)≤ v0(x)≤ c0φ
(|x|). (3.5)

For any constant E ≥ 1, denote

UE ≡
{
u∈ C0,θ

loc

(
RN
) | E−1u0(x)≤ u(x)≤ Eu0(x), x ∈RN

}
,

VE ≡
{
v ∈ C0,θ

loc

(
RN
) | E−1v0(x)≤ v(x)≤ Ev0(x), x ∈RN

}
,

Q ≡UE×VE.

(3.6)

Obviously,Q is closed and convex. For each (u,v)∈UE×VE, by Poisson equations theory
and (T), the problem

−Δũ= f1(x)uα + g1(x)u−β +h1(x)uγP(v), x ∈RN , (3.7)

has a unique solution ũ∈ C2,θ
loc(R

N )⊂ C0,θ
loc(R

N ), and the problem

−Δṽ = f2(x)vα + g2(x)v−β +h2(x)vγP(u), x ∈RN , (3.8)

has a unique solution ṽ∈C2,θ
loc(R

N )⊂C0,θ
loc(R

N ). Defining the mappings A1 :Q→C0,θ
loc(R

N )

by A1(u,v)= ũ and A2 :Q→ C0,θ
loc(R

N ) by A2(u,v)= ṽ, we have that Ai(u,v)∈ C2,θ
loc(R

N ),
i= 1,2, and hence

Φ(Q)⊂ C2,θ
loc

(
RN
)×C2,θ

loc

(
RN
)
. (3.9)
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We claim that if E is a positive constant large enough, then

E−1u0(x)≤ ũ(x)≤ Eu0(x), x ∈RN ,

E−1v0(x)≤ ṽ(x)≤ Ev0(x), x ∈RN ,
(3.10)

hence we have A1(Q)⊂UE and A2(Q)⊂VE. In fact, we have

(
Ec0
)−1

φ
(|x|)≤ E−1u0(x)≤ u(x)≤ Eu0(x)≤

(
Ec0
)
φ
(|x|),

−Δũ= f1(x)uα + g1(x)u−β +h1(x)uγP(v)

≤ f1(x)Eαuα0 + g1(x)Eβu
−β
0 +h1(x)u

γ
0E

γP
(

v(x)
φ
(|x|)φ

(|x|)
)

≤ f1(x)Euα0 + g1(x)Eu
−β
0 +h1(x)u

γ
0E

γ
(
Ec0
)λ
P
(
φ
(|x|)),

(3.11)

while on the other hand, we have

−Δ(Eu0)= f1(x)Euα0 + g1(x)Eu
−β
0 +h1(x)u

γ
0EP

(
φ
(|x|)). (3.12)

Thus, if E is so large that E(1−r−λ)/λ ≥ c0, then we have Δũ ≥ Δ(Eu0). It follows from the
maximum principle for the operator −Δ that

ũ(x)≤ Eu0(x), x ∈RN . (3.13)

Similarly, we have

ũ(x)≥ E−1u(x), x ∈RN . (3.14)

With the same argument, we conclude that

E−1v0(x)≤ ṽ(x)≤ Ev0(x), x ∈RN . (3.15)

Fix this E and define Φ :Q→Q by

Φ(u,v)= (A1(u,v),A2(u,v)
)
, ∀(u,v)∈Q, (3.16)

and now we only need to prove that Φ has a fixed point in Q.
In order to use the Schauder-Tychonoff fixed point theorem, we will prove that the

operator Φ satisfies the conditions through three steps.
(1) Φ(Q)⊂Q. This is a direct conclusion of (3.10).
(2) Φ : Q→ Q is continuous. Obviously, it suffices to prove that A1 and A2 are both

continuous in the sense that for wn → w in Q, it holds true that ‖Aiwn −Aiw‖0,θ → 0,
n→∞, i = 1,2, here, for any sequence {un} ⊂ C0,θ

loc(R
N ), by writing ‖un‖0,θ → 0, n→∞,

we mean that, for any closed bounded domain G⊂RN , ‖un‖C0,θ(G)→ 0, n→∞.
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Denote

F(x)≡ f1(x)uα + g1(x)u−β +h1(x)uγP(v),

Fn(x)≡ f1(x)uαn + g1(x)u
−β
n +h1(x)u

γ
nP(vn).

(3.17)

We have obviously that

∥∥Fn−F
∥∥
0,θ −→ 0, as

∥∥un−u
∥∥
0,θ +

∥∥vn− v
∥∥
0,θ −→ 0, n−→∞. (3.18)

By Lemma 3.1, we may let ũ be the unique solution of the equation Δũ = F(x) and let
ũn be the unique solution of the equation Δũn = Fn(x). Then by the Schauder estimation
theory, we know that for any bounded domain G⊂RN , there exists a constant C > 0 such
that

∥∥ũn− ũ
∥∥
C2,θ(G) ≤ C

∥∥Fn−F
∥∥
C0,θ(G), (3.19)

and hence

∥∥ũn− ũ
∥∥
C0,θ(G) ≤ C

∥∥Fn−F
∥∥
C0,θ(G). (3.20)

Therefore,

∥∥ũn− ũ
∥∥
0,θ −→ 0, as

∥∥un−u
∥∥
0,θ +

∥∥vn− v
∥∥
0,θ −→ 0, n−→∞, (3.21)

that is, A1 is a continuous mapping from Q to UE. Similarly, A2 is also a continuous
mapping from Q to VE.

(3) Φ(Q) is relatively compact in C0,θ
loc(R

N )×C0,θ
loc(R

N ).
We first recall the gradient estimates for Poisson’s equation (see [8]). For any bounded

domain Ω⊂RN , if Δu= f in Ω, then

sup
Ω

dx
∣∣Du(x)∣∣≤ C

(
sup
Ω
|u|+ sup

Ω
d2x
∣∣ f (x)∣∣

)
, (3.22)

where dx = dist(x,∂Ω) and C= C(N).
Denote Bm ≡ {x ∈RN ;‖x‖ < m}, m= 1,2, . . . . For each u∈ A1(Q), we have by (3.22)

that

sup
Bm

∣∣Du(x)∣∣≤ sup
Bm

dx
∣∣Du(x)∣∣≤ sup

Bm+1

dx
∣∣Du(x)∣∣

≤ C
(
sup
Bm+1

∣∣u(x)∣∣+ sup
Bm+1

d2x
∣∣F(x)∣∣

)

≤ C
(
sup
Bm+1

∣∣Eφ(x)∣∣+ (m+1)2 sup
Bm+1

∣∣F(x)∣∣
)
≤ Km,

(3.23)

where Km depends only onm and N .
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Furthermore, by (3.23), we know that

∣∣u(x)−u(y)
∣∣

|x− y| ≤ ∣∣Du(t0x+ (1− t0
)
y
)∣∣≤ Km, ∀x, y ∈ Bm. (3.24)

This shows that A1(Q), restricted on Bm, is a bounded subset of C0,1(Bm). By the compact
embedding result (see [1]); C0,1(Ω)↩↩C0,θ(Ω), for any bounded domain Ω⊂RN , it is
seen that A1(Q), restricted on Bm, is a relative compact subset of C0,θ(Bm). Therefore, for
any arbitrary sequence {un}n≥1 ⊂ A1(Q), there exists a subsequence {u(m)

n }n≥1 ⊂ A1(Q)
which is convergent on Bm in the sense of the norm ‖ · ‖C0,θ(Bm). The case for A2(Q) is
similar.

Considering
⋃∞

m=1Bm =RN , by the diagonal method, we conclude, for i= 1 and i= 2,
respectively, that for an arbitrary sequence {un}n≥1 ⊂ Ai(Q), there exists a subsequence,

say, {u(n)n }n≥1 ⊂ Ai(Q), which is convergent in the sense of the norm ‖ · ‖C0,θ(K) on any

compact subset K of RN , that is, Ai(Q) is relatively compact in C0,θ
loc(R

N ). Therefore,

Φ(Q)=A1(Q)×A2(Q) is a relatively compact subset of C0,θ
loc(R

N )×C0,θ
loc(R

N ).
Therefore, by the Schauder-Tychonoff fixed point theorem, there exists an element

(u,v)∈Q such thatΦ(u,v)= (u,v), that is, (u,v) satisfies the system (1.1). This completes
the proof of Theorem 2.1. �

Appendix

Proof of Lemma 3.1. Let

F(x,u)= f (x)uα + g(x)u−β +h(x)uγ,

G(t,u)= f ∗(t)uα + g∗(t)u−β +h∗(t)uγ,

g(t,u)= f∗(t)uα + g∗(t)u−β +h∗(t)uγ,

(A.1)

then g(|x|,u)≤ F(x,u)≤G(|x|,u), x ∈RN , u > 0. It follows from (T′) that

0 <
∫ +∞

0
sN−1g

(
s,φ(s)

)
ds <

∫ +∞

0
sN−1G

(
s,φ(s)

)
ds < +∞. (A.2)

Then we define two functions by

y(t)=�
[
G
(
t,φ(t)

)]
, z(t)=�

[
g
(
t,φ(t)

)]
, t > 0, (A.3)

where � is the integral operator defined by

�[E](t)= 1
N − 2

[∫ t

0

(
s

t

)N−2
sE(s)ds+

∫ +∞

t
sE(s)ds

]
, t > 0. (A.4)
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By the simple calculation, we have

y′′ +
N − 1
t

y′ = −G(t,φ(t)), z′′ +
N − 1
t

z′ = −g(t,φ(t)), t > 0, (A.5)

l1φ(t)≤ y(t), z(t)≤ l2φ(t), t > 0, (A.6)

for some positive constants l1 and l2.
Take λ=max{α,β,γ}, then for any k ≥ 1, if k−1 ≤ c ≤ k, then

G(t,cu)≤ kλG(t,u), t ≥ 0, u > 0,

g(t,cu)≥ k−λg(t,u), t ≥ 0, u > 0.
(A.7)

Moreover, letting y∗(x)= kλ1 y(x), and k1 is a number such that l1kλ1 ≥ 1, we have

y′′∗ +
N − 1
t

y′∗ = −kλ1G
(
t,φ(t)

)
, t > 0,

φ(t)≤ y∗(t)≤ kλ1 l2φ(t), t > 0,

(A.8)

by (A.5) and (A.6). Hence,

G
(
t, y∗

)= f ∗(t)yα∗ + g∗(t)y−β∗ +h∗(t)yγ∗

≤ f ∗(t)
(
l2k

λ
1

)α
φα + g∗(t)φ−β +h∗(t)

(
l2k

λ
1

)γ
φγ

≤ kλ1
[
f ∗(t)φα + g∗(t)φ−β +h∗(t)φγ

]= kλ1G(t,φ),

(A.9)

where we take k1 so big that k1 ≥ lα/λ(1−α)2 and k1 ≥ l
γ/λ(1−γ)
2 , that is, (l2kλ1)

α ≤ kλ1 and
(l2kλ1)

γ ≤ kλ1.
Therefore, it follows that

y′′∗ +
N − 1
t

y′∗ ≤ −G
(
t, y∗

)
. (A.10)

Similarly, letting z∗(x)= k−λ2 z(x) with constant k−λ2 l2 ≤ 1, we obtain

z′′∗ +
N − 1
t

z′∗ ≥ −g
(
t,z∗

)
, (A.11)

such that z∗(t) < δ for any t > 0 and

z∗(t)≤ y∗(t), t > 0. (A.12)

Define y∗(0) and z∗(0) by continuity with (A.3), and let v(x) = y∗(|x|) and w(x) =
z∗(|x|) for x ∈RN , then from (A.10) and (A.11) v andw are, respectively, a supersolution
and a subsolution of (3.1), with v(x) ≥ w(x) satisfied. Therefore, by super-subsolution
principle, (3.1) has a positive entire solution u such that

w(x)≤ u(x)≤ v(x), x ∈RN . (A.13)



10 Entire positive solution to systems

For proving the uniqueness of such solutions, we suppose that v and w are two positive
entire solutions of (3.1), then it is easily seen that the conditions (a) and (b) in Lemma 3.2
are satisfied even when v interchanges with w.

Moreover, since |Δv| and |Δw| are, respectively, given by f (x,v) and f (x,w), and both
v and w are between two constant multiples of φ(|x|), we have, by (A.5) for some k > 0,

∣∣Δv(x)∣∣,∣∣Δw(x)∣∣≤ kλG
(
x,φ
(|x|)), (A.14)

hence it follows from (A.2) that both Δv and Δw are in L1(RN ).
Therefore, using Lemma 3.2, we have v ≥ w as well as w ≥ v in RN , and hence v ≡w.

�
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