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For a class of nonlinear elliptic boundary value problems in divergence form, we con-
struct some general elliptic inequalities for appropriate combinations of u(x) and |∇u|2,
where u(x) are the solutions of our problems. From these inequalities, we derive, using
Hopf ’s maximum principles, some maximum principles for the appropriate combina-
tions of u(x) and |∇u|2, and we list a few examples of problems to which these maximum
principles may be applied.
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1. Introduction

Let u(x) be the classical solution of the following nonlinear boundary value problems:

(
g
(
u,
∣
∣∇u∣∣2)u,i

)
,i +h(x) f

(
u,|∇u|2)= 0, x ∈Ω, (1.1)

u= 0, x ∈ ∂Ω, (1.2)

whereΩ is a bounded domain in RN , N ≥ 2, with smooth boundary ∂Ω∈ C2,ε, and f , g,
and h are given functions assumed to satisfy the following conditions:

f ,h≥ 0, g > 0,

f ,h∈ C1, g ∈ C2.
(1.3)

Moreover, we assume that (1.1) is uniformly elliptic, that is, we impose throughout the
strong ellipticity condition

G(u,s) := g(u,s) + 2s
∂g

∂s
> 0, s > 0, x ∈Ω. (1.4)
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2 Maximum principles for a class of elliptic problems

Under these assumptions, a minimum principle for the solutions u(x) of the nonlinear
equation (1.1) follows immediately, that is, u(x) must assume its minimum value on ∂Ω.

Sufficient conditions on the data, for the existence of classical solutions of the non-
linear equation (1.1), are known and have been well studied in the literature. See, for
instance, Ladyženskaja and Ural’ceva [5] for an account on this topic. Consequently, we
will tacitly assume the existence of classical solutions of the problems considered in this
paper.

Maximum principles for some particular cases of the boundary value problems
(1.1)-(1.2) have been considered and investigated by various authors. For references on
these topics we refer, for instance, to Payne and Philippin [6, 7], to Enache and Philippin
[2], or to the book of Sperb [10]. In this paper, we will focus our attention on the follow-
ing two particular cases, which do not seem to have been considered in the literature: the
case g = g(u), f = f (u), in Section 2, respectively, the case g = g(|∇u|2), f = f (|∇u|2),
in Section 3. In both cases, we will derive somemaximumprinciples for appropriate com-
binations of u and |∇u|2. These combinations will be of the following form:

Φ(x,a,b) := g2(u)|∇u|2 + 2a
∫ u

0
f (s)g(s)ds+2b

∫ u

0
sg(s)ds, (1.5)

in Section 2, where a and b are some real positive parameters to be appropriately chosen,
respectively,

Ψ(x,α,β) :=
∫ |∇u|2

0

G(s)
f (s)

ds+2αu+βu2, (1.6)

in Section 3, with G(s) := g(s) + 2sg′(s) > 0, where α and β are also some real positive
parameters to be appropriately chosen.

Here and in the rest of the paper, we adopt the following notations:

u,i := ∂u

∂xi
, u,i j := ∂2u

∂xi∂xj
. (1.7)

Moreover, we adopt the summation convention, that is, summation from 1 to N is un-
derstood on repeated indices. Using these notations, we have, for example,

u,i ju,iu, j =
N∑

i=1

N∑

j=1

∂2u

∂xi∂xj

∂u

∂xi

∂u

∂xj
. (1.8)

2. Derivation of maximum principles forΦ

In this section, we focus our attention on the boundary value problems (1.1)-(1.2), with
g = g(u) and f = f (u). Since the particular case h ≡ const has already been treated by
Payne and Philippin in [7], we consider only the general case when h(x) is a nonconstant
function.
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Differentiating (1.5), we successively obtain

Φ,k = 2gg′|�u|2u,k +2g2u,iku,i +2a f gu,k +2bugu,k, (2.1)

1
2

(
g(u)Φ,k

)
,k = g(g′)2|�u|4 + g2g′′|�u|4− gg′h f |�u|2

+ 4g2g′u,iku,iu,k + g2
(
gu,ik

)
,ku,i + g3u,iku,ik

+ a
(
f ′g + f g′

)
g|�u|2− a f 2gh+ bg2|�u|2

+ bgg′u|�u|2− bu f gh.

(2.2)

Next, we differentiate (1.1) to obtain

(
g′u,iu,k + gu,ki

)
,k =

(
gu,k

)
,ki =−h,i f −h f ′u,i, (2.3)

from which we compute

(
gu,ik

)
,ku,i =− f∇h∇u−h f ′|∇u|2− g′′|∇u|4− g′u,iku,ku,i− g′|∇u|2Δu. (2.4)

Making use of the Cauchy-Schwarz inequality in the following form:

|�u|2u,iku,ik ≥ u,iku,ku,i ju, j , (2.5)

and of (2.1), we obtain

u,iku,ik ≥ 1
g2
[
g′|∇u|2 + (a f + bu)

]2
+ . . . , in Ω�ω. (2.6)

In (2.6),ω := {x ∈Ω :∇u(x)= 0} is the set of critical points of u and dots stand for terms
containing Φ,k. We also make use of (2.1) to obtain the following identity:

u,iku,iu,k =−1
g

[
g′|∇u|2 + (a f + bu)

]|∇u|2 + . . . , (2.7)

where dots have the same meaning as above.
Next, using the differential equation (1.1) in the equivalent form

Δu=−h f

g
− g′

g
|∇u|2, (2.8)

and inserting (2.4), (2.6), (2.7), and (2.8) in (2.2), we obtain after some reductions that
the second-order differential operator

LΦ := 1
2

(
g(u)Φ,k

)
,k (2.9)
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satisfies the following inequality:

LΦ+ |∇u|−2WkΦ,k

≥ g2
{
[
(a−h) f ′ + b

]|∇u|2− f h,iu,i +
1
g

[
(a f + bu)2− f h(a f + bu)

]
}

, in Ω�ω,

(2.10)

whereWk is the kth component of a vector field regular throughout Ω.
Now, we consider the following two inequalities:

(a f + bu)2− f h(a f + bu)≥
[(

a− h

2

)2
− h2

2

]
f 2,

g|∇u|2− f h,iu,i ≥−|∇h|
2 f 2

4g
.

(2.11)

Using (2.11), we obtain, in Ω�ω, the following inequality:

LΦ+ |�u|−2WkΦ,k ≥ g f 2
{(

a− h

2

)2
− h2

2
− |∇h|

2

4

}

, (2.12)

if b+ (a−h) f ′ ≥ g. Consequently,

LΦ+ |�u|−2WkΦ,k ≥ 0, in Ω�ω, (2.13)

if the positive constants a and b are chosen to satisfy the following two conditions:

a≥max
Ω

(
h(x)
2

+

√
h2(x)
2

+
|∇h|2
4

)

:= a1, (2.14)

b+ (a−h) f ′ ≥ g. (2.15)

The following result is now a direct consequence of Hopf ’s first maximum principle
[1, 3, 8, 9].

Theorem 2.1. Let u(x) be a classical solution of (1.1), with g = g(u) and f = f (u), in a
bounded domain Ω ⊂ RN , N ≥ 2, and let Φ(x,a,b) be the function defined in (1.5). If the
positive parameters a and b are chosen to satisfy (2.14)-(2.15), then the function Φ(x,a,b)
takes its maximum value either on ∂Ω or at a critical point of u (i.e., a point in Ω where
∇u= 0).

Remark 2.2. (i) In the case N = 2, we may replace the inequality (2.5) by the following
identity:

u,iku,ik|∇u|2 = |∇u|2(Δu)2 + 2u,iu,i ju,ku,k j − 2Δuu,i ju,iu, j . (2.16)
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This identity leads to the same result if we replace the condition (2.14) by the following
one:

a≥max
Ω

(
3h(x)
4

+

√
10h2(x)

16
+
|∇h|2
4

)

:= a2. (2.17)

(ii) The parameter b, satisfying (2.15), may be difficult to compute if g is not a bounded
function. However, there are situations when b could be taken to be 0. For instance when
f ′ > 0 and g/ f ′ ≤M, withM a positive constant, the following choice for the real param-
eter a will be sufficient for the conclusion of Theorem 2.1:

a≥max

{

max
Ω
{h+M},max

Ω

{
h

2
+

√
h2

2
+
|∇h|2
4

}}

. (2.18)

(iii) Theorem 2.1 holds independently of the boundary conditions for u(x). However,
in what follows, we will show that themaximum value ofΦ(x,a,b) must occur at a critical
point of u, if Ω is a convex domain in RN .

Suppose that Φ(x,a,b) takes its maximum value at P on ∂Ω. Then, by Hopf ’s second
maximum principle [4, 8], we must have Φ≡ cte in Ω or ∂Φ/∂n > 0 at P. We now com-
pute the outward normal derivative ∂Φ/∂n at an arbitrary point of ∂Ω. Since u = 0 on
∂Ω, we obtain

∂Φ

∂n
= 2gg′u3n +2g2unnun +2a f gun. (2.19)

From the differential equation (1.1), evaluated on ∂Ω∈ C2,ε, we have

g′u2n + g
[
unn + (N − 1)Kun

]
+h f = 0. (2.20)

In (2.19) and (2.20), un and unn are the first and second outward normal derivatives of u
on ∂Ω, and K is the average curvature of ∂Ω. The insertion of (2.20) in (2.19) leads to

∂Φ

∂n
= 2 f g(a−h)un− 2(N − 1)Kg2u2n, on ∂Ω. (2.21)

Clearly, if a satisfies (2.14) or (2.17), we have ∂Φ/∂n ≤ 0 on ∂Ω, so that Φ cannot take
its maximum value on ∂Ω. Note that ∇u 	= 0 on ∂Ω in view of Hopf ’s second principle
[1, 4, 8, 9]. We formulate these results in the following theorem.

Theorem 2.3. Let u(x) be a classical solution of (1.1)-(1.2), with g = g(u) and f = f (u)
in a bounded convex domain Ω ⊂ RN , N ≥ 2, and let Φ(x,a,b) be the function defined in
(1.5) with a and b as in Theorem 2.1. Then the function Φ(x,a,b) takes its maximum value
at a critical point of u.
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Remark 2.4. (i) Theorems 2.1 and 2.3 also hold in the case f (s)≤ 0, s > 0.
(ii) Theorem 2.3 requires that Ω be a convex domain. This restriction can, of course,

be relaxed requiring that at each point of ∂Ω, the average curvature is nonnegative.

3. Derivation of maximum principles forΨ

In this section, we focus our attention on the boundary value problems (1.1)-(1.2), with
g = g(|∇u|2) and f = f (|∇u|2). Since the particular case h ≡ const has already been
treated by Payne and Philippin in [6], we consider only the general case when h(x) is
a nonconstant function.

From (1.6), we successively compute

Ψ,k = 2
G

f
u,iku,i +2αu,k +2βuu,k, (3.1)

Ψ,k j = 4
[
G′

f
− f ′

f 2
G
]
u,iku,iu,l ju,l +2

G

f

[
u,ik ju,i +u,iku,i j

]

+2αu,k j +2βu, ju,k +2βuu,k j ,

(3.2)

ΔΨ= 4
[
G′

f
− f ′

f 2
G
]
u,iku,iu,lku,l +2

G

f

[
(Δu),iu,i +u,iku,ik

]

+2αΔu+2β|∇u|2 + 2βuΔu.

(3.3)

Next, we replace Δu and (Δu),iu,i in (3.3) using the differential equation (1.1) in the
equivalent form

Δu=−2g
′

g
u,lku,lu,k − h f

g
. (3.4)

Differentiating (3.4), we obtain

(Δu),iui =−4
(
g′

g

)′
(
u,lku,lu,k

)2− 2
g′

g

(
u,ilku,lu,ku,i +2u,lku,liu,ku,i

)

− f

g
h,iu,i−h

f ′

g
2u,iku,ku,i +2

g′

g2
h f u,iku,ku,i.

(3.5)

Now, we would like to construct a second-order elliptic differential inequality for Ψ
that contains no third-order derivatives of u. This will be achieved if we consider the
following operator:

LΨ := ΔΨ+2
g′

g
Ψ,k ju,ku, j , (3.6)
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for which we obtain after some reductions

LΨ= 2
G

f
u,iku,ik +4

[
G′

f
− f ′

f 2
G− G

f

g′

g

]

u,iku,iu,lku,l

+8

[
g′

g

(
G′

f
− f ′

f 2
G

)

− G

f

(
g′

g

)′]
(
u,lku,lu,k

)2
+ 4h

G

g

[
g′

g
− f ′

f

]

u,iku,iu,k

− 2
G

g
h,iu,i− 2(α+βu)

h f

g
+2β

G

g
|∇u|2.

(3.7)

Making use of (3.1), we now compute

u,iku,iu,k =−(α+βu)
f

G
|�u|2 + . . . ,

(
u,iku,iu,k

)2 = (α+βu)2
f 2

G2
|�u|4 + . . . ,

(3.8)

u,iku,iu,lku,l = (α+βu)2
f 2

G2
|�u|2 + . . . , (3.9)

where dots stand for terms containing Ψ,k. Combining (3.9) with (2.5), we obtain the
inequality

u,iku,ik ≥ (α+βu)2
f 2

G2
+ . . . , in Ω�ω, (3.10)

where ω := {x ∈Ω :∇u(x) = 0} is the set of critical points of u and dots have the same
meaning as above.

It then follows from (3.7), (3.8), (3.9), and (3.10) that the following inequality holds:

LΨ+ |∇u|−2WkΨ,k ≥ 2G
g

{[

β− 2
f ′

G

[
(α+βu)2− (α+βu)h

]
]

|∇u|2

−h,iu,i +
f

g

[
(α+βu)2− (α+βu)h

]
}

, in Ω�ω,

(3.11)

whereWk is the kth component of a vector field regular throughout Ω.
Now, we consider the following two inequalities:

(α+βu)2−h(α+βu)≥
[(

α− h

2

)2
− h2

2

]

,

g

f
|∇u|2−∇h∇u≥− f

4g
|∇h|2.

(3.12)

Inserting (3.12) in (3.11), we obtain, in Ω�ω, the following inequality:

LΨ+ |�u|−2WkΨ,k ≥ 2G
g2

2

f

{(
α− h

2

)2
− h2

2
− |∇h|

2

4

}

, (3.13)
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valid if β ≥ g/ f and f ′ ≤ 0. Consequently,

LΨ+ |�u|−2WkΨ,k ≥ 0, in Ω�ω, (3.14)

if the positive constants α and β are chosen to satisfy the following two conditions:

α≥max
Ω

(
h(x)
2

+

√
h2(x)
2

+
|∇h|2
4

)

:= α1, (3.15)

β ≥max
Ω

(
g

f
+

f ′

G

|∇h|2
2

)

, (3.16)

and the function f satisfies

f ′ ≤ 0. (3.17)

The following result is now a direct consequence of Hopf ’s first maximum principle
[1, 3, 8, 9].

Theorem 3.1. Let u(x) be a classical solution of (1.1), with g = g(|∇u|2) and f =
f (|∇u|2), in a bounded domain Ω⊂RN , N ≥ 2, and let Ψ(x,α,β) be the function defined
in (1.6). If the positive parameters α and β are chosen to satisfy (3.15)-(3.16) and f satisfies
(3.17), then the function Ψ(x,α,β) takes its maximum value either on ∂Ω or at a critical
point of u (i.e., a point in Ω where∇u= 0).

Remark 3.2. (i) The parameter β, satisfying (3.16), may be difficult to compute if g/ f is
not a bounded function.

(ii) Theorem 3.1 holds independently of the boundary conditions for u(x). However,
in what follows, we will show that themaximum value ofΨ(x,α,β) must occur at a critical
point of u, if Ω is a convex domain in RN .

Suppose that Ψ(x,α,β) takes its maximum value at P on ∂Ω. Then, by Hopf ’s second
maximum principle [4, 8], we must have Ψ≡ cte in Ω or ∂Ψ/∂n > 0 at P. We now com-
pute the outward normal derivative ∂Ψ/∂n at an arbitrary point of ∂Ω. Since u = 0 on
∂Ω, we obtain

∂Ψ

∂n
= 2

G

f
ununn +2αun. (3.18)

From the differential equation (1.1), evaluated on ∂Ω∈ C2,ε, we have

Gunn + g(N − 1)Kun +h f = 0. (3.19)

In (3.18) and (3.19), un and unn are the first and second outward normal derivatives of u
on ∂Ω, and K is the average curvature of ∂Ω. The insertion of (3.19) in (3.18) leads to

∂Ψ

∂n
=−2 g

f
(N − 1)Ku2n +2(α−h)un, on ∂Ω. (3.20)
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Clearly, if α satisfies (3.15), we have ∂Ψ/∂n≤ 0 on ∂Ω, so thatΨ cannot take its maximum
value on ∂Ω. Note that ∇u 	= 0 on ∂Ω in view of Hopf ’s second principle [1, 4, 8, 9]. We
formulate these results in the following theorem.

Theorem 3.3. Let u(x) be a classical solution of (1.1)-(1.2), with g = g(|∇u|2) and f =
f (|∇u|2), in a bounded convex domain Ω⊂ RN , N ≥ 2, and let Ψ(x,α,β) be the function
defined in (1.6) with α and β as in Theorem 3.1. Then the function Ψ(x,α,β) takes its max-
imum value at a critical point of u.

4. Examples

In this section, we list a few examples of problems for which the maximum principles
obtained in the Theorems 2.3 and 3.3 may be applied. In general, we would expect the
maximum principle derived for Φ(x,a,b), respectively, Ψ(x,α,β), to yield upper bounds
for solutions, for the magnitude of its gradient, or for the distance from a critical point
of solution to the boundary of the domainΩ, assumed to be bounded and convex in RN ,
N ≥ 2, with smooth boundary ∂Ω∈ C2,ε.

Example 4.1. Let u(x) be the classical solution of the boundary value problem

Δu+ p|∇u|2 +h(x)= 0, x ∈Ω, (4.1)

u= 0, x ∈ ∂Ω, (4.2)

where p = const > 0 (the case p = 0 was studied in [2]) and h ∈ C1(Ω) is a nonnegative
function satisfying the following condition:

a :=max

{

max
Ω

{

h+
1
p

}

,max
Ω

{
h

2
+

√
h2

2
+
|∇h|2
4

}}

<
π

4d2p
, (4.3)

where d is the radius of the largest ball inscribed in Ω.
Multiplying (4.1) by epu we obtain

(
epuu,i

)
,i + epuh(x)= 0, (4.4)

that is, (1.1) with f (u)= g(u)= epu. Theorem 2.3 implies that the auxiliary function

Φ(x,a,0)= e2pu|∇u|2 + a

p

(
e2pu− 1

)
(4.5)

takes its maximum value at a critical point of u. This leads to the following inequality:

e2pu|∇u|2 ≤ a

p

(
e2pum − e2pu

)
, (4.6)

where um :=maxΩu(x). Inequality (4.6) may be used to derive an upper bound for um.
To this end, let P be a point where u= um andQ a point on ∂Ω nearest to P. Let r measure
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the distance from P along the ray connecting P and Q. Clearly, we have

−du

dr
≤ |∇u|. (4.7)

Integrating (4.7) from Q to P and making use of (4.6), we obtain

∫ um

0

epudu√
e2pum − e2pu

≤
√

a

p

∫ Q

P
dr =

√
a

p
δ ≤

√
a

p
d, (4.8)

where δ = d(P,Q), We obtain

um ≤ 1
p
log

(
1

cos(
√
apd)

)

, (4.9)

and, consequently,

|∇u|2 ≤ a

p

(
1

cos2(
√
apd)

− 1

)

. (4.10)

Example 4.2. Let u(x) be the classical solution of the boundary value problems

uΔu+ p|∇u|2 +h(x)u2 = 0, x ∈Ω, (4.11)

u= 0, x ∈ ∂Ω, (4.12)

where p = const∈ (−1,1) and h∈ C1(Ω) is a nonnegative function.
Multiplying (4.11) by up−1, we obtain

(
upu,i

)
,i +h(x)up+1 = 0, (4.13)

that is, (1.1) with f (u)= up+1, g(u)= up. Theorem 2.3 implies that the auxiliary function

Φ(x,a,0)= u2p|∇u|2 + a

p+1
u2p+2, (4.14)

with

a :=max

{

max
Ω

{
h+

1
p+1

}
,max

Ω

{
h

2
+

√
h2

2
+
|∇h|2
4

}}

(4.15)

takes its maximum value at a critical point of u. This leads to the following inequality:

u2p|∇u|2 ≤ a

p+1

(
u
2p+2
m −u2p+2

)
, (4.16)
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where um :=maxΩu(x). Integrating (4.16) in the same way as in the previous examples,
we obtain

π

2(p+1)
=
∫ um

0

updu
√
u
2p+2
m −u2p+2

≤
√

a

p+1
δ, (4.17)

where δ = d(P,Q). This shows that the critical points of u(x) are at distance δ ≥ π/

2
√
(p+1)a from the boundary.

Example 4.3. Let u(x) be the classical solution of the boundary value problems

(
u,i√

1+ |∇u|2
)

,i

+h(x)
1

√
1+ |∇u|2 = 0, x ∈Ω,

u= 0, x ∈ ∂Ω,

(4.18)

where h∈ C1(Ω) is a nonnegative function satisfying the following conditions:

|∇h|2 ≥ 4,

α :=max
Ω

{
h

2
+

√
h2

2
+
|∇h|2
4

}

<
π

2d

(4.19)

where d is the radius of the largest ball inscribed in Ω.
In this case, we have (1.1) with g(|∇u|2) = f (|∇u|2) = (1 + |∇u|2)−1/2. Theorem 3.3

implies that the auxiliary function

Ψ(x,α,0)= log
(
1+ |∇u|2)+2αu, (4.20)

takes its maximum value at a critical point of u. This leads to the following inequality:

log
(
1+ |∇u|2)≤ 2α

(
um−u

)
(4.21)

or

e2αu|∇u|2 ≤ e2αum − e2αu, (4.22)

where um :=maxΩu(x). Integrating (4.22), as in the previous applications, we obtain

um ≤ 1
α
log

(
1

cos(αd)

)

(4.23)

and, consequently,

|∇u|2 ≤ tan(αd). (4.24)



12 Maximum principles for a class of elliptic problems

Example 4.4. Let u(x) be the classical solution of the boundary value problems

(
exp

(
1

1+ |∇u|2
)
u,i

)

,i
+h(x)exp

(
1

1+ |∇u|2
)
= 0, x ∈Ω,

u= 0, x ∈ ∂Ω,
(4.25)

where h∈ C1(Ω) is a nonnegative function and d, the radius of the largest ball inscribed
in Ω, satisfies

d <
π

2
√
2
. (4.26)

In this case, we have (1.1) with g(|∇u|2)= f (|∇u|2)= exp(1/(1+ |∇u|2)). Theorem 3.3
implies that the auxiliary function

Ψ(x,α,1)=
∫ |∇u|2

0

s2 + 1
(s+1)2

ds+2αu+u2 (4.27)

takes its maximum value at a critical point of u if the parameter α is chosen to satisfy

α≥max
Ω

(
h(x)
2

+

√
h2(x)
2

+
|∇h|2
4

)

. (4.28)

This leads to the following inequality:

1
2
|∇u|2 ≤

∫ |∇u|2

0

s2 + 1
(s+1)2

ds≤ 2α
(
um−u

)
+
(
u2m−u2

)= (um +α
)2− (u+α)2, (4.29)

where um :=maxΩu(x). Integrating (4.29) in the same way as in the previous applica-
tions, we obtain the following upper bound for um:

um ≤ α

(
1

cos(d
√
2)
− 1

)

. (4.30)
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