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Abstract

In this paper, we first present a class of first-order nonlinear impulsive integral
boundary value problems on time scales. Then, using the well-known Guo-
Krasnoselskii fixed point theorem and Legget-Williams fixed point theorem, some
criteria for the existence of at least one, two, and three positive solutions are
established for the problem under consideration, respectively. Finally, examples are
presented to illustrate the main results.
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1 Introduction
In fact, continuous and discrete systems are very important in implementing and appli-

cations. It is well known that the theory of time scales has received a lot of attention,

which was introduced by Stefan Hilger in order to unify continuous and discrete ana-

lyses. Therefore, it is meaningful to study dynamic systems on time scales, which can

unify differential and difference systems.

In recent years, a great deal of work has been done in the study of the existence of

solutions for boundary value problems on time scales. For the background and results,

we refer the reader to some recent contributions [1-5] and references therein. At the

same time, boundary value problems for impulsive differential equations and impulsive

difference equations have received much attention [6-12], since such equations may

exhibit several real-world phenomena in physics, biology, engineering, etc. see [13-15]

and the references therein.

In paper [16], Sun studied the first-order boundary value problem on time scales{
x�(t) = f (x(σ (t))), t ∈ [0,T]T,

x(0) = βx(σ (T)),
(1:1)

where 0 < b <1. By means of the twin fixed point theorem due to Avery and Hen-

derson, some existence criteria for at least two positive solutions were established.

Tian and Ge [17] studied the first-order three-point boundary value problem on time

scales
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{
x�(t) + p(t)x(σ (t)) = f (t, x(σ (t))), t ∈ [0,T]T,

x(0) − αx(ξ) = βx(σ (T)).
(1:2)

Using several fixed point theorems, the existence of at least one positive solution and

multiple positive solutions is obtained.

However, except BVP of differential and difference equations, that is, for particular

time scales (T = R or T = Z), there are few papers dealing with multi-point boundary

value problems more than three-point for first-order systems on time scales. In addi-

tion, problems with integral boundary conditions arise naturally in thermal conduction

problems [18], semiconductor problems [19], hydrodynamic problems [20]. In continu-

ous case, since integral boundary value problems include two-point, three-point,..., n-

point boundary value problems, such boundary value problems for continuous systems

have received more and more attention and many results have worked out during the

past ten years, see Refs. [21-27] for more details. To the best of authors’ knowledge, up

to the present, there is no paper concerning the boundary value problem with integral

boundary conditions on time scales. This paper is to fill the gap in the literature.

In this paper, we are concerned with the following first-order nonlinear impulsive

integral boundary value problem on time scales:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x�(t) + p(t)x(σ (t)) = f (t, x(σ (t))), t ∈ J := [0,T]T\{t1, t2, . . . , tm},
�x(ti) = x(t+i ) − x(t−i ) = Ii(x(ti)), i = 1, 2, . . . ,m,

αx(0) − βx(σ (T)) =
∫ σ (T)

0
g(s)x(s)�s,

(1:3)

where T is a time scale which is a nonempty closed subset of ℝ with the topology

and ordering inherited from ℝ, 0, and T are points in T, an interval

[0,T]T := [0,T] ∩ T which has finite right-scattered points,

p ∈ C([0, σ (T)]T, p ∈ C([0, σ (T)]T and p is regressive, ℝ+), Ii(1 ≤ i ≤ m) Î C([0, +∞),

[0, +∞)), g is a nonnegative integrable function on [0, σ (T)]T and

� := α − βep(0, σ (T)) − ∫ σ (T)
0 g(s)ep(0, s)�s > 0, ep(0,s(T)) is the exponential function

on time scale T, which will be introduced in the next section, ti(1 ≤ i ≤ m) ∈ [0,T]T, 0

< t1 < · · · <tm < T, and for each i = 1, 2, . . . ,m, x(t+i ) = limh→0+ x(ti + h) and

x(t−i ) = limh→0− x(ti + h) represent the right and left limits of x(t) at t = ti, x(t−i ) = x(ti).

Remark 1.1. Let Trs = {θ1, θ2, ..., θq} denote the set of right-scattered points in interval

[0,T]T, 0 ≤ θ1 <· · · < θq ≤ T, s(θ0) = 0, θq+1 = T. By some basic concepts and time scale

calculus formulae in the book by Bohner and Peterson [28], we have

∫ σ (T)

0
g(s)x(s)�s =

q∑
k=0

∫ θk+1

σ (θk)
g(s)x(s)�s +

q+1∑
k=1

∫ σ (θk)

θk

g(s)x(s)�s

=
q∑

k=0

∫ θk+1

σ (θk)
g(s)x(s)ds +

q+1∑
k=1

μ(θk)g(θk)x(θk).

(1:4)

The main purpose of this paper is to establish some sufficient conditions for the

existence of at least one, two, or three positive solutions for BVP (1.3) using Guo-Kras-

noselskii and Legget-Williams fixed point theorem, respectively.
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For convenience, we introduce the following notation:

max f0 = lim
x→0

max
t∈[0,σ (T)]

T

f (t, x)
x

, min f0 = lim
x→0

min
t∈[0,σ (T)]T

f (t, x)
x

, Ii0 = lim
x→0

Ii(x)
x

,

max f∞ = lim
x→∞ max

t∈[0,σ (T)]T

f (t, x)
x

, min f∞ = lim
x→∞ min

t∈[0,σ (T)]T

f (t, x)
x

, Ii∞ = lim
x→∞

Ii(x)
x

,

where i = 1, 2,..., m.

This paper is organized as follows. In Section 2, some basic definitions and lemmas

on time scales are introduced without proofs. In Section 3, some useful lemmas are

established. In particular, Green’s function for BVP (1.3) is established. We prove the

main results in Sections 4-6.

2 Preliminaries
In this section, we shall first recall some basic definitions, lemmas that are used in

what follows. For the details of the calculus on time scales, we refer to books by Boh-

ner and Peterson [28,29].

Definition 2.1. [28]A time scale Tis an arbitrary nonempty closed subset of the real

set ℝ with the topology and ordering inherited from ℝ. The forward and backward

jump operators σ ,ρ : T → Tand the graininess μ : T → R+are defined, respectively, by

σ (t) := inf{s ∈ T : s > t}, ρ(t) := sup{s ∈ T : s < t}, μ(t) := σ (t) − t.

In this definition, we put inf∅ = supT (i.e., s(t) = t if Thas a maximum t) and

sup ∅ = infT (i.e., r(t) = t if Thas a minimum t). The point t ∈ Tis called left-dense,

left-scattered, right-dense, or right-scattered if r(t) = t, r(t) < t, s(t) = t, or s(t) > t,

respectively. Points that are right-dense and left-dense at the same time are called

dense. If Thas a left-scattered maximum m1, defined Tk = T − {m1}; otherwise, set
Tk = T. If Thas a right-scattered minimum m2, defined Tk = T − {m2}, otherwise, set
Tk = T.

Definition 2.2. [28]A function f : T → Ris rd continuous provided it is continuous at

each right-dense point in Tand has a left-sided limit at each left-dense point in T. The

set of rd-continuous functions f : T → Rwill be denoted by Crd(T) = Crd(T,R).

Definition 2.3. [28]If f : T → Ris a function and t ∈ Tk, then the delta derivative of f

at the point t is defined to be the number fΔ(t) (provided it exists) with the property

that for each ε >0 there is a neighborhood U of t such that

|f (σ (t)) − f (s) − f�(t)[σ (t) − s]| ≤ ε|σ (t) − s| for all s ∈ U.

Definition 2.4. [28]For a function f : T → R (the range ℝ of f may be actually

replaced by Banach space), the (delta) derivative is defined by

f� =
f (σ (t)) − f (t)

σ (t) − t
,

if f is continuous at t and t is right-scattered. If t is not right-scattered, then the deri-

vative is defined by

f� = lim
s→t

f (σ (t)) − f (s)
σ (t) − s

= lim
s→t

f (t) − f (s)
t − s

provided this limit exists.
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Definition 2.5. [28]If FΔ(t) = f(t), then we define the delta integral by∫ t

a
f (s)�s = F(t) − F(a).

Definition 2.6. [28]A function p : T → Ris said to be regressive provided 1 + μ(t)p(t)

≠ 0 for all t ∈ Tk, where μ(t) = s(t) - t is the graininess function. The set of all regressive

rd-continuous functions f : T → Ris denoted by R, while the set R+is given by

{f ∈ R : 1 + μ(t)f (t) > 0}for allt ∈ T. Let p ∈ R. The exponential function is defined by

ep(t, s) = exp
(∫ t

s
ξμ(τ)(p(τ ))�τ

)
,

where ξh(z) is the so-called cylinder transformation.

Lemma 2.1. [28]Let p, q ∈ R. Then

(1) e0(t, s) ≡ 1 and ep(t, t) ≡ 1;

(2) ep(s(t), s) = (1 + μ(t)p(t))ep(t, s);

(3) 1
ep(t,s)

= e�p(t, s), where �p(t) = − p(t)
1+μ(t)p(t);

(4) ep(t, s)ep(s, r) = ep(t, r),

(5) e�p (·, s) = pep(·, s).
Lemma 2.2. [28]Assume that f , g : T → Rare delta differentiable at t ∈ Tk. Then

(fg)�(t) = f�(t)g(t) + f (σ (t))g�(t) = f (t)g�(t) + f�(t)g(σ (t))

Lemma 2.3. [28]Let a ∈ Tk, b ∈ T, and assume that f : T × Tk → Ris continuous at

(t, t), where t ∈ Tkwith t > a. Also, assume that fΔ(t, ·) is rd-continuous on [a, s(t)].
Suppose that for each ε >0 there exists a neighborhood U of t, independent of τ Î [a, s
(t)], such that

|f (σ (t), τ ) − f (s, τ ) − f�(t, τ )(σ (t) − s)| ≤ ε|σ (t) − s| for all s ∈ U,

where fΔ denotes the derivative of f with respect to the first variable. Then

(1) g(t) :=
∫ t

a
f (t, τ )�τ implies g�(t) =

∫ t

a
f�(t, τ )�τ + f (σ (t), t);

(2) h(t) :=
∫ b
t f (t, τ )�τ implies h�(t) =

∫ b
t f�(t, τ )�τ − f (σ (t), t).

3 Foundational lemmas
In this section, we first introduce some background definitions, fixed point theorems in

Banach space, then present basic lemmas that are very crucial in the proof of the main

results.

We define PC = {x : [0, σ (T))]T → R|x(t) is a piecewise continuous map with first-

class discontinuous points in [0, σ (T)]T ∩ {ti : 1 ≤ i ≤ m} and at each discontinuous

point it is continuous on the left} with the norm ||x|| = supt∈[0,σ (t)]T |x(t)|, then PC is a

Banach Space.

Definition 3.1. A function x is said to be a positive solution of problem (1.3) if x Î
PC satisfying problem (1.3) and x(t) >0 for all t ∈ [0, σ (t)]T.

Definition 3.2. Let X be a real Banach space, the nonempty set K ⊂ X is called a

cone of X, if it satisfies the following conditions.

(1) x Î K and l ≥ 0 implies lx Î K;
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(2) x Î K and -x Î K implies x = 0.

Every cone K ⊂ X induces an ordering in X, which is given by x ≤ y if and only if y -

x Î K.

Definition 3.3. An operator is called completely continuous if it is continuous and

maps bounded sets into precompact sets.

Lemma 3.1. (Guo-Krasnoselskii [30]) Let X be a Banach space and K ⊂ X be a cone

in X. Assume that Ω1, Ω2 are bounded open subsets of X with 0 ∈ 
1 ⊂ 
̄1 ⊂ 
2and

� : K ∩ (
̄2\
1) → Kis a completely continuous operator such that, either

(1) ||Fx|| ≤ ||x||, x Î K ∩ ∂Ω1, and ||Fx|| ≥ ||x||, x Î K ∩ ∂Ω2; or

(2) ||Fx|| ≥ ||x||, x Î K ∩ ∂Ω1, and ||Fx|| ≤ ||x||, x Î K ∩ ∂Ω2.

Then F has at least one fixed point in K ∩ (
̄2\
1).

Lemma 3.2. Suppose h ∈ C([0, σ (T)]T,R), νi Î ℝ, then x is a solution of

x(t) =
∫ σ (T)

0
G(t, s)h(s)�s +

m∑
i=1

G(t, ti)νi, t ∈ [0, σ (T)]T, (3:1)

where

G(t, s) =

{
�−1ep(s, t)[α − ∫ σ (s)

0 g(r)ep(0, r)�r], 0 ≤ s ≤ t ≤ σ (T),

�−1ep(s, t)[βep(0, σ (T)) +
∫ σ (T)
σ (s) g(r)ep(0, r)�r], 0 ≤ t ≤ s ≤ σ (T),

if and only if x is a solution of the boundary value problem
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x�(t) + p(t)x(σ (t)) = h(t), t ∈ J := [0,T]T\{t1, t2, . . . , tm},
�x(ti) = x(t+i ) − x(t−i ) = νi, i = 1, 2, . . . ,m,

αx(0) − βx(σ (T)) =
∫ σ (T)

0
g(s)x(s)�s.

(3:2)

Proof. Assume that x(t) is a solution of (3.2). By the first equation in (3.2), we have

(x(t)ep(t, 0))� = h(t)ep(t, 0). (3:3)

If t Î [0, t1], integrating (3.3) from 0 to t, we get

x(t)ep(t, 0) = x(0) +
∫ t

0
ep(s, 0)h(s)�s,

while t ® t1, we have

x(t−1 )ep(t1, 0) = x(0) +
∫ t1

0
ep(s, 0)h(s)�s,

then

x(t+1)ep(t1, 0) = x(0) +
∫ t1

0
ep(s, 0)h(s)�s + ν1ep(t1, 0).
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Now, let t Î (t1, t2], integrating (3.3) from t1 to t, we obtain

x(t)ep(t, 0) = x(t+1)ep(t1, 0) +
∫ t

t1
ep(s, 0)h(s)�s

= x(0) +
∫ t

0
ep(s, 0)h(s)�s + ν1ep(t1, 0).

For t Î (tk, tk+1], repeating the above process, we can get

x(t)ep(t, 0) = x(0) +
∫ t

0
ep(s, 0)h(s)�s +

∑
0<ti<t

νiep(ti, 0),

that is

x(t) = x(0)ep(0, t) +
∫ t

0
ep(s, t)h(s)�s +

∑
0<ti<t

νiep(ti, t).

It follows from αx(0) − βx(σ (T)) =
∫ σ (T)
0 g(s)x(s)�s that

x(0) = �−1

{
β

∫ σ (T)

0
ep(s, σ (T))h(s)�s +

∫ σ (T)

0
g(s)

∫ s

0
ep(r, s)h(r)�r�s

+β

m∑
i=1

νiep(ti, σ (T)) +
∫ σ (T)

0
g(s)

∑
0<ti<s

νiep(ti, s)�s

⎫⎬
⎭

= �−1

{
β

∫ σ (T)

0
ep(s, σ (T))h(s)�s

+
∫ σ (T)

0

∫ σ (T)

0
g(r)ep(s, r)�rh(s)�s −

∫ σ (T)

0

∫ σ (s)

0
g(r)ep(s, r)�rh(s)�s

+
m∑
i=1

νi

[∫ σ (T)

ti
g(s)ep(ti, s)�s + βep(ti, σ (T))

]}
,

where �−1 = [α − βep(0, σ (T)) −
∫ σ (T)

0
g(s)ep(0, s)�s]−1. Then

x(t) = �−1ep(0, t)

{
β

∫ σ (T)

0
ep(s, σ (T))h(s)�s

+
∫ σ (T)

0

∫ σ (T)

0
g(r)ep(s, r)�rh(s)�s −

∫ σ (T)

0

∫ σ (s)

0
g(r)ep(s, r)�rh(s)�s

+
m∑
i=1

νi

[∫ σ (T)

ti
g(s)ep(ti, s)�s + βep(ti, σ (T))

]}

+
∫ t

0
ep(s, t)h(s)�s +

∑
0<ti<t

νiep(ti, t)

=
∫ σ (T)

0
G(t, s)h(s)�s +

m∑
i=1

G(t, ti)νi.

(3:4)
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This means that if x is a solution of (3.2) then x satisfies (3.1).

On the other hand, if x satisfies (3.1), we have

x(t) =
∫ σ (T)

0
G(t, s)h(s)�s +

m∑
i=1

G(t, ti)νi, t ∈ [0, σ (T)]T.

Then

x(t)ep(t, 0) =
∫ σ (T)

0
H(s)h(s)�s +

m∑
i=1

H(ti)νi, t ∈ [0, σ (T)]T, (3:5)

where

H(s) =

{
�−1ep(s, 0)[α − ∫ σ (s)

0 g(r)ep(0, r)�r], 0 ≤ s ≤ t ≤ σ (T),

�−1ep(s, 0)[βep(0, σ (T)) +
∫ σ (T)
σ (s) g(r)ep(0, r)�r], 0 ≤ t ≤ s ≤ σ (T).

Notice that[∫ σ (T)

0
H(s)h(s)�s

]�

= �−1

[∫ t

0
ep(s, 0)

(
α −

∫ σ (s)

0
g(r)ep(0, r)�r

)
h(s)�s

]�

+�−1

[∫ σ (T)

t
ep(s, 0)

(
βep(0, σ (T)) +

∫ σ (T)

σ (s)
g(r)ep(0, r)�r

)
h(s)�s

]�

= �−1

[
ep(t, 0)

(
α −

∫ σ (t)

0
g(r)ep(0, r)�r

)
h(t)

]

−�−1

[
ep(t, 0)

(
βep(0, σ (T)) +

∫ σ (T)

σ (t)
g(r)ep(0, r)�r

)
h(t)

]

= ep(t, 0)h(t).

Similarly,[
m∑
i=1

H(ti)νi

]�

= 0.

Hence, we get from (3.5) that

(x(t)ep(t, 0))� = h(t)ep(t, 0),

that is

x�(t) + p(t)x(σ (t)) = h(t), t ∈ J.

Finally, we can obtain from (3.1) that

x(t+k ) − x(t−k ) = νk, k = 1, 2, ...,m,
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and

αx(0) − βx(σ (T))

= α

{∫ σ (T)

0
G(0, s)h(s)�s +

m∑
i=1

G(0, ti)νi

}
− β

{∫ σ (T)

0
G(σ (T), s)h(s)�s

+
m∑
i=1

G(σ (T), ti)νi

}

= α

{∫ t

0
�−1ep(s, 0)

[
α −

∫ σ (s)

0
g(r)ep(0, r)�r

]
h(s)�s

+
∑

0<ti<t

�−1ep(ti, 0)

[
α −

∫ σ (ti)

0
g(r)ep(0, r)�r

]
νi

+
∫ σ (T)

t
�−1ep(s, 0)

[
βep(0, σ (T)) +

∫ σ (T)

σ (s)
g(r)ep(0, r)�r

]
h(s)�s

+
∑

t<ti<σ (T)

�−1ep(ti, 0)

[
βep(0, σ (T)) +

∫ σ (T)

σ (ti)
g(r)ep(0, r)�r

]
νi

⎫⎬
⎭

−β

{∫ t

0
�−1ep(s, σ (T))

[
α −

∫ σ (s)

0
g(r)ep(0, r)�r

]
h(s)�s

+
∑

0<ti<t

�−1ep(ti, σ (T))

[
α −

∫ σ (ti)

0
g(r)ep(0, r)�r

]
νi

+
∫ σ (T)

t
�−1ep(s, σ (T))

[
βep(0, σ (T)) +

∫ σ (T)

σ (s)
g(r)ep(0, r)�r

]
h(s)�s

+
∑

t<ti<σ (T)

�−1ep(ti, σ (T))

[
βep(0, σ (T)) +

∫ σ (T)

σ (ti)
g(r)ep(0, r)�r

]
νi

⎫⎬
⎭

=
∫ σ (T)

0
g(s)

[∫ σ (T)

0
G(s, r)h(r)�r +

m∑
i=1

G(s, si)νi

]
�s

=
∫ σ (T)

0
g(s)x(s)�s.

So the proof of this lemma is completed.

Lemma 3.3. Let G(t, s) be defined the same as that in Lemma 3.2, then the following

properties hold.

(1) G(t, s) >0 for all t, s ∈ [0, σ (T)]T;

(2) A ≤ G(t, s) ≤ B for all t, s ∈ [0, σ (T)]T, where

A = �−1βe2p(0, σ (T)), B = �−1ep(σ (T), 0)

(
α + βep(0, σ (T)) +

∫ σ (T)

0
g(s)ep(0, s)�s

)
.

Proof. Since α − βep(0, σ (T)) − ∫ σ (T)
0 g(s)ep(0, s)�s > 0, then it is clear that (1)

holds. Now we will show that (2) holds.

G(t, s) =

{
�−1ep(s, t)[α − ∫ σ (s)

0 g(r)ep(0, r)�r], 0 ≤ s < t ≤ σ (T),

�−1ep(s, t)[βep(0, σ (T)) +
∫ σ (T)
σ (s) g(r)ep(0, r)�r], 0 ≤ t ≤ s ≤ σ (T),

≥
{

�−1ep(s, 0)ep(0, t)[α − ∫ σ (T)
0 g(r)ep(0, r)�r], 0 ≤ s < t ≤ σ (T),

�−1ep(s, 0)ep(0, t)βep(0, σ (T)), 0 ≤ t ≤ s ≤ σ (T),

≥
{

�−1ep(0, σ (T))[α − ∫ σ (T)
0 g(r)ep(0, r)�r], 0 ≤ s < t ≤ σ (T),

�−1βe2p(0, σ (T)), 0 ≤ t ≤ s ≤ σ (T),

≥ �−1βe2p(0, σ (T)) := A.

Hence, the left-hand side of (2) holds. And it is easy to show that the right-hand side

of (2) also holds. The proof is complete. ■
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Define an operator F : PC ® PC by

(�x)(t) =
∫ σ (T)

0
G(t, s)f (s, x(σ (s)))�s +

m∑
i=1

G(t, ti)Ii(x(ti)).

By Lemma 3.2, the fixed points of F are solutions of problem (1.3).

Lemma 3.4. The operator F : PC ® PC is completely continuous.

Proof. The first step we will show that F : PC ® PC is continuous. Let {xn}∞n=1 be a

sequence such that lim
n→∞ xn = x in PC. Then

|(�xn)(t) − (�x)(t)|

=

∣∣∣∣∣
∫ σ (T)

0
G(t, s)[f (s, xn(σ (s))) − f (s, x(σ (s)))]�s +

m∑
i=1

G(t, ti)[Ii(xn(ti)) − Ii(x(ti))]

∣∣∣∣∣
≤ B

{∫ σ (T)

0

∣∣f (s, xn(σ (s))) − f (s, x(σ (s)))
∣∣ �s +

m∑
i=1

∣∣Ii(xn(ti)) − Ii(x(ti))
∣∣} .

Since f(t, x) and Ii(x)(1 ≤ i ≤ m) are continuous in x, we have |(Fxn)(t) - (Fx)(t)| ®
0, which leads to ||Fxn - Fx||PC ® 0, as n ® ∞. That is, F : PC ® PC is continuous.

Next, we will show that F : PC ® PC is a compact operator by two steps.

Let U ⊂ PC be a bounded set.

Firstly, we will show that {Fx : x Î U}is bounded. For any x Î U, we have

∣∣(�x)(t)
∣∣ =

∣∣∣∣∣
∫ σ (T)

0
G(t, s)f (s, x(σ (s)))�s +

m∑
i=1

G(t, ti)Ii(x(ti))

∣∣∣∣∣
≤ B

{∫ σ (T)

0
|f (s, x(σ (s)))|�s +

m∑
i=1

|Ii(x(ti))|
}
.

In virtue of the continuity of f(t, x) and Ii(x)(1 ≤ i ≤ m), we can conclude that {Fx : x

Î U} is bounded from above inequality.

Secondly, we will show that {Fx : x Î U} is the set of equicontinuous functions. For

any x, y Î U, then

|(�x)(t) − (�y)(t)|

=

∣∣∣∣∣
∫ σ (T)

0
G(t, s)[f (s, x(σ (s))) − f (s, y(σ (s)))]�s +

m∑
i=1

G(t, ti)[Ii(x(ti)) − Ii(y(ti))]

∣∣∣∣∣
≤ B

{∫ σ (T)

0
|f (s, x(σ (s))) − f (s, y(σ (s)))|�s +

m∑
i=1

|Ii(x(ti)) − Ii(y(ti))|
}
.

In virtue of the continuity of f(t, x) and Ii(x)(1 ≤ i ≤ m), the right-hand side tends to

zero uniformly as |x - y| ® 0. Consequently, {Fx : x Î U} is the set of equicontinuous

functions.

By Arzela-Ascoli theorem on time scales [31], {Fx : x Î U} is a relatively compact

set. So F maps a bounded set into a relatively compact set, and F is a compact

operator.

From above three steps, it is easy to see that F : PC ® PC is completely continuous.

The proof is complete. ■
Let K = {x ∈ PC : x(t) ≥ δ||x||, t ∈ [0, σ (T)]T} , where δ = A

B ∈ (0, 1). It is not difficult

to verify that K is a cone in PC.
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Lemma 3.5. F maps K into K.

Proof. Obviously, F(K) ⊂ PC. ∀x Î K, we have

(�x)(t) =
∫ σ (T)

0
G(t, s)f (s, x(σ (s)))�s +

m∑
i=1

G(t, ti)Ii(x(ti))

≤ B
∫ σ (T)

0
f (s, x(σ (s)))�s + B

m∑
i=1

Ii(x(ti)), t ∈ [0, σ (T)]T,

which implies

‖�x‖ ≤ B
∫ σ (T)

0
f (s, x(σ (s)))�s + B

m∑
i=1

Ii(x(ti)).

Therefore,

(�x)(t) ≥ A
∫ σ (T)

0
f (s, x(σ (s)))�s + A

m∑
i=1

Ii(x(ti))

=
A
B

[
B

∫ σ (T)

0
f (s, x(σ (s)))�s + B

m∑
i=1

Ii(x(ti))

]

≥ δ ‖�x‖ .

Hence, F(K) ⊂ K. The proof is complete. ■

4 Existence of at least one positive solution
In this section, we will state and prove our main result about the existence of at least

one positive solution of problem (1.3).

Theorem 4.1. Assume that one of the following conditions is satisfied:

(H1) max f0 = 0, min f∞ = ∞, and Ii0 = 0, i = 1, 2,..., m; or

(H2) max f∞ = 0, min f0 = ∞, and Ii∞ = 0, i = 1, 2,..., m.

Then, problem (1.3) has at least one positive solution.

Proof. Firstly, we assume that (H1) holds. In this case, since max f0 = 0 and Ii0 = 0, i

= 1, 2,..., m, for ε ≤ (Bs(T) + Bm)-1, there exists a positive constant r1 such that

f (t, x) ≤ εx and Ii(x) ≤ εx for all x ∈ (0, r1], i = 1, 2, . . . ,m.

In view of min f∞ = ∞, we have that for M ≥ (As(T)δ)-1, there exists a constant

r2 > r1
δ such that

f (t, x) ≥ Mx for all x ∈ [δr2,∞).

Let Ωi = {x Î PC : ||x|| < ri}, i = 1, 2.

On the one hand, if x Î K ∩ ∂Ω1, we have

(�x)(t) =
∫ σ (T)

0
G(t, s)f (s, x(σ (s)))�s +

m∑
i=1

G(t, ti)Ii(x(ti))

≤ B
∫ σ (T)

0
f (s, x(σ (s)))�s + B

m∑
i=1

Ii(x(ti))

≤ B
∫ σ (T)

0
εx�s + Bmεx

≤ Bσ (T)εr1 + Bmεr1 ≤ r1 = ‖x‖ ,
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which yields

‖�x‖ ≤ ‖x‖ for all x ∈ K ∩ ∂
1. (4:1)

On the other hand, if x Î K ∩ ∂Ω2, we have

(�x)(t) =
∫ σ (T)

0
G(t, s)f (s, x(σ (s)))�s +

m∑
i=1

G(t, ti)Ii(x(ti))

≥ A
∫ σ (T)

0
f (s, x(σ (s)))�s + A

m∑
i=1

Ii(x(ti))

≥ A
∫ σ (T)

0
f (s, x(σ (s)))�s

≥ A
∫ σ (T)

0
Mx(s)�s

≥ Aσ (T)Mδ ‖x‖ ≥ Aσ (T)Mδr2 ≥ r2 = ‖x‖ ,

which implies

‖�x‖ ≥ ‖x‖ for all x ∈ K ∩ ∂
2. (4:2)

Therefore, by (4.1), (4.2), and Lemma 3.1, it follows that F has a fixed point in

K ∩ (
̄2\
1).

Next, we assume that (H2) holds. In this case, since max f∞ = 0 and Ii∞ = 0, i = 1,

2,..., m, for ε’ ≤ (Bs(T) + Bm)-1, there exists a positive constant r3 such that

f (t, x) ≤ ε′x and Ii(x) ≤ ε′x for all x ∈ [δr3,∞), i = 1, 2, . . . ,m.

In view of min f∞ = ∞, we have that for M’ ≥ (As(T)δ)-1, there exists a positive con-

stant r4 < δr3 such that

f (t, x) ≥ M′x for all x ∈ (0, r4].

Let Ωi = {x Î PC : ||x|| < ri}, i = 3, 4.

On the one hand, if x Î K ∩ ∂Ω3, we have

(�x)(t) =
∫ σ (T)

0
G(t, s)f (s, x(σ (s)))�s +

m∑
i=1

G(t, ti)Ii(x(ti))

≤ B
∫ σ (T)

0
f (s, x(σ (s)))�s + B

m∑
i=1

Ii(x(ti))

≤ B
∫ σ (T)

0
ε′x�s + Bmε′x

≤ Bσ (T)ε′r3 + Bmε′r1 ≤ r3 = ‖x‖ ,

which yields

‖�x‖ ≤ ‖x‖ for all x ∈ K ∩ ∂
3. (4:3)
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On the other hand, if x Î K ∩ ∂Ω4, we have

(�x)(t) =
∫ σ (T)

0
G(t, s)f (s, x(σ (s)))�s +

m∑
i=1

G(t, ti)Ii(x(ti))

≥ A
∫ σ (T)

0
f (s, x(σ (s)))�s + A

m∑
i=1

Ii(x(ti))

≥ A
∫ σ (T)

0
f (s, x(σ (s)))�s

≥ A
∫ σ (T)

0
M′x(s)�s

≥ Aσ (T)M′δ ‖x‖ ≥ Aσ (T)M′δr4 ≥ r4 = ‖x‖ ,

which implies

‖�x‖ ≥ ‖x‖ for all x ∈ K ∩ ∂
4. (4:4)

Hence, from (4.3) and (4.4) and Lemma 3.1, we conclude that F has a fixed point in

K ∩ (
̄3\
4), that is, problem (1.3) has at least one positive solution. The proof is

complete. ■

5 Existence of at least two positive solutions
In this section, we will state and prove our main results about the existence of at least

two positive solutions to problem (1.3).

Theorem 5.1. Assume that the following conditions hold.

(H3) min f0 = +∞, min f∞ = +∞.

(H4) There exists a positive constant R such that f (t, x) < R
2Bσ (T)for all 0 <x ≤ R.

(H5) Ii(x) < x
2Bm, x Î (0, ∞), i = 1, 2,..., m.

Then, problem (1.3) has at least two positive solutions.

Proof. Let ΩR = {x Î PC : ||x|| < R}. From (H4) and (H5), for x Î K ∩ ∂ΩR, we get

(�x)(t) =
∫ σ (T)

0
G(t, s)f (s, x(σ (s)))�s +

m∑
i=1

G(t, ti)Ii(x(ti))

≤ B
∫ σ (T)

0
f (s, x(σ (s)))�s + B

m∑
i=1

Ii(x(ti))

< B
[
σ (T)

R

2Bσ (T)
+m

R

2mB

]
= R = ‖x‖ .

So

‖�x‖ ≤ ‖x‖ for all x ∈ K ∩ ∂
R. (5:1)

Since min f0 = +∞, for M ≥ (As(T)δ)-1, there exists a positive constant R1 < δR such

that

f (t, x) ≥ Mx for all x ∈ (0,R1].
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Let 
R1 = {x ∈ PC : ||x|| < R1}. For any x ∈ K ∩ ∂
R1, we have

(�x)(t) =
∫ σ (T)

0
G(t, s)f (s, x(σ (s)))�s +

m∑
i=1

G(t, ti)Ii(x(ti))

≥ A
∫ σ (T)

0
f (s, x(σ (s)))�s + A

m∑
i=1

Ii(x(ti))

≥ A
∫ σ (T)

0
f (s, x(σ (s)))�s

≥ A
∫ σ (T)

0
Mx(s)�s

≥ Aσ (T)Mδ ‖x‖ = Aσ (T)MδR1 ≥ R1 = ‖x‖ .

Hence,

‖�x‖ ≥ ‖x‖ for all x ∈ K ∩ ∂
R1 . (5:2)

Similarly, since min f∞ = +∞, for M’ ≥ (As(T)δ)-1, there exists a positive constant

R2 > R
δ
such that

f (t, x) ≥ M′x for all x ∈ [δR2,∞).

Let 
R2 = {x ∈ PC : ||x|| < R2}. For any x ∈ K ∩ ∂
R2, we have

(�x)(t) =
∫ σ (T)

0
G(t, s)f (s, x(σ (s)))�s +

m∑
i=1

G(t, ti)Ii(x(ti))

≥ A
∫ σ (T)

0
f (s, x(σ (s)))�s + A

m∑
i=1

Ii(x(ti))

≥ A
∫ σ (T)

0
f (s, x(σ (s)))�s

≥ A
∫ σ (T)

0
M′x(s)�s

≥ Aσ (T)M′δ ‖x‖ = Aσ (T)M′δR2 ≥ R2 = ‖x‖ .

Hence,

‖�x‖ ≥ ‖x‖ for all x ∈ K ∩ ∂
R2 . (5:3)

Equations 5.1 and 5.2 imply that F has at least one fixed point in K ∩ (
̄R\
R1),

which is a positive solution of problem (1.3). Besides, (5.1) and (5.3) imply that F has

at least one fixed point in K ∩ (
̄R2\
R), which is a positive solution of problem (1.3).

Therefore, problem (1.3) has at least two positive solutions x1 and x2 satisfying 0 < R1

≤ ||x1|| < R <||x2|| ≤ R2. The proof is complete. ■
Theorem 5.2. Assume that the following conditions hold.

(H6) max f0 = 0, max f∞ = 0, Ii0 = 0, Ii∞ = 0, i = 1, 2,..., m.

(H7) There exists a positive constant r such that f (t, x) > r
Aσ (T)for all 0 <x ≤ r.

Then problem (1.3) has at least two positive solutions.
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Proof. Let Ωr = {x Î PC : ||x|| < r}. From (H7), for x Î K ∩ ∂Ωr, we get

(�x)(t) =
∫ σ (T)

0
G(t, s)f (s, x(σ (s)))�s +

m∑
i=1

G(t, ti)Ii(x(ti))

≥ A
∫ σ (T)

0
f (s, x(σ (s)))�s

> Aσ (T)
r

Aσ (T)
= r = ‖x‖ .

So

‖�x‖ > ‖x‖ for all x ∈ K ∩ ∂
r . (5:4)

Since max f0 = 0 and Ii0 = 0, i = 1, 2,..., m, for ε ≤ (Bs(T) + Bm)-1, there exists a

positive constant r1 < δr such that

f (t, x) ≤ εx and Ii(x) ≤ εx for all x ∈ (0, r1], i = 1, 2, . . . ,m.

Let 
r1 = {x ∈ PC : ||x|| < r1}. For any x ∈ K ∩ ∂
r1, we have

(�x)(t) =
∫ σ (T)

0
G(t, s)f (s, x(σ (s)))�s +

m∑
i=1

G(t, ti)Ii(x(ti))

≤ B
∫ σ (T)

0
f (s, x(σ (s)))�s + B

m∑
i=1

Ii(x(ti))

≤ (Bσ (T) + Bm)εr1 ≤ r1 = ‖x‖ .

Hence,

‖�x‖ ≤ ‖x‖ for all x ∈ K ∩ ∂
r1 . (5:5)

Similarly, since max f∞ = 0 and Ii∞ = 0, i = 1, 2,..., m, for ε’ ≤ (Bs(T) + Bm)-1, there

exists a positive constant r2 > r
δ such that

f (t, x) ≤ ε′x and Ii∞ ≤ ε′x for all x ∈ [δr2,∞), i = 1, 2, . . . ,m.

Let 
r2 = {x ∈ PC : ||x|| < r2}. For any x ∈ K ∩ ∂
r2, we have

(�x)(t) =
∫ σ (T)

0
G(t, s)f (s, x(σ (s)))�s +

m∑
i=1

G(t, ti)Ii(x(ti))

≤ B
∫ σ (T)

0
f (s, x(σ (s)))�s + B

m∑
i=1

Ii(x(ti))

≤ (Bσ (T) + Bm)ε′r2 ≤ r2 = ‖x‖ .

Hence,

‖�x‖ ≤ ‖x‖ for all x ∈ K ∩ ∂
r2 . (5:6)

Equations 5.4 and 5.5 imply that F has at least one fixed point in K ∩ (
̄r\
r1 ),

which is a positive solution of problem (1.3). Besides, (5.4) and (5.6) imply that F has

at least one fixed point in K ∩ (
̄r2\
r), which is a positive solution of problem (1.3).

Therefore, problem (1.3) has at least two positive solutions x1 and x2 satisfying 0 < r1
≤ ||x1|| < r <||x2|| ≤ r2. The proof is complete. ■
Similar to Theorems 5.1 and 5.2, one can easily obtain the following corollary:
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Corollary 5.1. Assume that (H7) and the following conditions hold.

(H8) max f0 = 0, max f∞ = 0, Ii0 = 0, i = 1, 2,..., m.

(H9) There exists a positive constant d such that Ii(x) ≤ |x|
2Bmfor all x ≥ d, i = 1, 2,...,

m.

Then, problem (1.3) has at least two positive solutions.

6 Existence of at least three positive solutions
In this section, we will state and prove our multiplicity result of positive solutions to

problem (1.3) via Legget-Williams fixed point theorem. For readers’ convenience, we

first illustrate Legget-Williams fixed point theorem.

Let E be a real Banach space with cone K. A map a : K ® [0, +∞) is said to be a

continuous concave functional on K if a is continuous and

α(tx + (1 − t)y) ≥ tα(x) + (1 − t) α(y)

for all x, y Î K and t Î [0, 1]. Let a, b be two numbers such that 0 < a < b and a be

a nonnegative continuous concave functional on K. We define the following convex

sets:

Ka = {x ∈ K : ‖x‖ < a} and K(α, a, b) = {x ∈ K : a ≤ α(x), ‖x‖ ≤ b}.

Lemma 6.1. (Legget-Williams fixed point theorem [32]). Let � : Kc → Kcbe completely

continuous and a be a nonnegative continuous concave functional on K such that a(x)
≤ ||x|| for all x Î Kc. Suppose that there exist 0 < d < a < b ≤ c such that

(1) {x Î K(a, a, b) : a(x) > a} ≠ ∅, and a(F(x)) > a for all x Î K(a, a, b);
(2) ||Fx|| < d for all ||x|| ≤ d;

(3) a(F(x)) > a for all x Î K(a, a, c) with ||F(x)|| > b.

Then, F has at least three fixed points x1, x2, x3 in Kcsatisfying ||x1|| < d, a < a(x2),
||x3|| > d, and a(x3) < a.

Theorem 6.1. Assume that there exist numbers d, a, and c with

0 < d < a < a
δ

< csuch that

max
t∈[0,σ (T)]T

f (t, x) <
d

2Bσ (T)
, Ii(x) <

d
2Bm

, i = 1, 2, . . . ,m, x ∈ (0, d], (6:1)

max
t∈[0,σ (T)]T

f (t, x) <
c

2Bσ (T)
, Ii(x) <

c
2Bm

, i = 1, 2, . . . ,m, x ∈ (0, c], (6:2)

min
t∈[0,σ (T)]T

f (t, x) >
a

2Aσ (T)
, Ii(x) >

a
2Am

, i = 1, 2, . . . ,m, x ∈ [a,
a
δ
]. (6:3)

Then, problem (1.3) has at least three positive solutions.

Proof. For x Î K, we define

α(x) = min
t∈[0,σ (T)]T

x(t).

It is easy to verify that a is a nonnegative continuous concave functional on K with

a(x) <||x|| for all x Î K.

We first claim that if there exists a positive constant r such that

Ii(x) < r
2Bm, Ii(x) < r

2Bm, i = 1, 2,..., m, for x Î (0, r], then � : Kr → Kr.
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Indeed, if x ∈ Kr ,

(�x)(t) =
∫ σ (T)

0
G(t, s)f (s, x(σ (s)))�s +

m∑
i=1

G(t, ti)Ii(x(ti))

≤ B
∫ σ (T)

0
f (s, x(σ (s)))�s + B

m∑
i=1

Ii(x(ti))

< Bσ (T)
r

2Bσ (T)
+ Bm

r
2Bm

= r.

Thus, ||Fx|| < r, that is Fx Î Kr. Hence, we have shown that (6.1) or (6.2) hold,

then F maps Kd into Kd or Kc into Kc, respectively. So condition (2) of Lemma 6.1

holds.

Let b = a
δ. Next, we will show that {x Î K(a, a, b) : a(x) > a} ≠ ∅, and a(F(x)) > a

for x Î K(a, a, b). In fact, a <
(1+δ)a
2δ

< a
δ
, then the constant function

(1+δ)a
2δ

∈ {x ∈ K(α, a, b) : α(x) > a} �= ∅.
Since (6.3) holds, for x Î K(a, a, b), we obtain

(�x)(t) =
∫ σ (T)

0
G(t, s)f (s, x(σ (s)))�s +

m∑
i=1

G(t, ti)Ii(x(ti))

≥ A
∫ σ (T)

0
f (s, x(σ (s)))�s + A

m∑
i=1

Ii(x(ti))

> Aσ (T)
a

2Aσ (T)
+ Am

a
2Am

= a.

So a(F(x)(t)) > a for all x Î K(a, a, b), then condition (1) of Lemma 6.1 holds.

Finally, suppose x Î K(a, a, c) and
∥∥�(x)

∥∥ > b = a
δ
, then we have

α(�(x)(t)) = min
t∈[0,σ (T)]T

{∫ σ (T)

0
G(t, s)f (s, x(σ (s)))�s +

m∑
i=1

G(t, ti)Ii(x(ti))

}

≥ A
∫ σ (T)

0
f (s, x(σ (s)))�s + A

m∑
i=1

Ii(x(ti))

≥ A

{
1
B

∫ σ (T)

0
G(t, s)f (s, x(σ (s)))�s +

1
B

m∑
i=1

G(t, ti)Ii(x(ti))

}

≥ A
B
(�x)(t)

for all t ∈ [0, σ (T)]T. Thus,

α(�(x)(t)) ≥ A
B

max
t∈[0,σ (T)]T

(�x)(t) =
A
B

‖�x‖ > a.

To sum up, all the conditions of Theorem 6.1 are satisfied. Hence, F has at least

three fixed points, that is, problem (1.3) has at least three positive solutions x1, x2, x3
such that

||x1|| < d, a < min
t∈[0,σ (T)]T

x2(t), ||x3|| > d, min
t∈[0,σ (T)]T

x3(t) < a.

The proof is complete. ■
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7 Examples
In this section, we give some examples to illustrate our main results.

Example 7.1. Take T =
⋃∞

n=0 [2n, 2n + 1]. We consider the following IBVP on T:⎧⎨
⎩
x�(t) + p(t)x(σ (t)) = f (t, x(σ (t))), t ∈ [0, 3]T, t �= 1

2 ,
x( 12

+
) − x( 12

−
) = I(x( 12)),

αx(0) − βx(4) =
∫ 4
0 g(s)x(s)�s,

(7:1)

where T = 3, p(t) = t, f(t, x(s(t))) = (t + 1)(x(s(t)))2, I(x) = x3, a = 1, β = 1
2, and

g(t) =
{
t, t ∈ [0, 1]T,
0, t /∈ [0, 1]T.

From (1.4), system (7.1) reduces to⎧⎨
⎩
x�(t) + p(t)x(σ (t)) = f (t, x(σ (t))), t ∈ [0, 3]T, t �= 1

2 ,
x( 12

+
) − x( 12

−
) = I(x( 12)),

αx(0) − βx(4) =
∫ 1
0 sx(s) ds.

By calculating, we get Γ = 0.3033 >0, max f0 = 0, min f∞ = ∞, and I0 = 0. Therefore,

(H1) holds. From Theorem 4.1w, it follows that the IBVP (7.1) has at least one solution.

Example 7.2. Take T =
⋃∞

n=0 [2n, 2n + 1]. We consider the following IBVP on T:⎧⎨
⎩
x�(t) + p(t)x(σ (t)) = f (t, x(σ (t))), t ∈ [0, 3]T, t �= 1

2 ,
x( 12

+
) − x( 12

−
) = I(x( 12)),

αx(0) − βx(4) =
∫ 4
0 g(s)x(s)�s,

(7:2)

where p(t) = t, f (t, x(σ (t))) = (t + 1)(x(σ (t)))
1
3, I(x) = x

1
2, a = 1, β = 1

2, and

g(t) =
{
1, t ∈ {1, 3},
0, otherwise.

By calculating, we get Γ = 0.5732 >0, max f∞ = 0, min f0 = ∞, and I∞ = 0. Therefore,

by Theorem 4.1, it follows that the IBVP (7.2) has at least one solution.

Example 7.3. Take T =
⋃∞

n=0 [2n, 2n + 1]. We consider the following IBVP on T:⎧⎨
⎩
x�(t) + x(σ (t)) = f (t, x(σ (t))), t ∈ [0, 3]T, t �= 1

2 ,
x( 12

+
) − x( 12

−
) = I(x( 12)),

x(0) − x(4) =
∫ 4
0 g(s)x(s)�s,

(7:3)

where g(t) =
{
1, t = 1,
0, otherwise.

Since p(t) = 1, T = 3, and s(T) = 4, we know that ep(s(T), 0) = 4e2 and B = 4e2(e2+e+4)
e2−e−4

.

Take R = 4976, then we can choose that

f (t, x(σ (t))) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x(σ (t))
1
2

t + e4 + 3e2
, 0 < x < R,

I(x) =
e2 − e − 4

16e2(e2 + e + 4)
x.

x(σ (t))2√
R3(t + e4 + 3e2)

, x ≥ R,
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By calculating, it is easy to see that f (t, x) ∈ C([0, σ (T)]T × R0,R0), I(x) Î C(ℝ0, ℝ0)

and

min f0 = +∞, min f∞ = +∞, f (t, x) <
R

2Bσ (T)
≈ 1, for 0 < x < R.

Therefore, all the conditions of Theorem 5.1 are fulfilled. So system (7.3) has at least

two positive solutions.

Example 7.4. Take T = [0, 1] ∪ [2, 3]. We consider the following IBVP on T:⎧⎨
⎩
x�(t) + x(σ (t)) = f (t, x(σ (t))), t ∈ [0, 3]T\{ 14 , 12 , 52 },
x( 13

+
) − x( 13

−
) = I(x( 13)), x(

1
2
+
) − x( 12

−
) = I(x( 12)), x(

5
2
+
) − x( 52

−
) = I(x( 52)),

x(0) − x(3) = 0,
(7:4)

where

f (t, x(σ (t))) = I(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x(σ (t))2 +
(e2 − 2)2

5184e4(e2 + 2)2
, x ∈ [0,

e2(e4 − 4)
48

],

e2 − 2

18e6(e2 + 2)3
x(σ (t)) +

e4(e4 − 4)2

48
, x ∈ [

e2(e4 − 4)
48

, +∞).

Since p(t) = 1, T = 3, and s(T) = 3, we know that ep(s(T), 0) = 2e2. Then, we can get

A =
4

e2 − 2
, B =

2e2(e2 + 2)
e2 − 2

, δ =
4

2e2(e2 + 2)
.

Thus, if we choose d =
e2 − 2

24e2(e2 + 2)
, a =

e2 − 2
24

, and c is sufficiently large, then all the

conditions of Theorem 6.1 are satisfied. So system (7.4) has at least three positive

solutions.

8 Conclusion
In this paper, we first present a class of integral boundary value problems on time

scales. Using the time scales calculus theory, the well-known Guo-Krasnoselskii fixed

point theorem, and Legget-Williams fixed point theorem, we establish the existence of

at least one, two, and three positive solutions for the problems. In addition, the meth-

ods in this paper may be applied to some other systems such as second-order integral

boundary problems and higher-order integral boundary problems.
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