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Abstract

Purpose: To derive existence and comparison results for extremal solutions of
nonlinear singular distributional initial value problems and boundary value problems.

Main methods: Fixed point results in ordered function spaces and recently
introduced concepts of regulated and continuous primitive integrals of distributions.
Maple programming is used to determine solutions of examples.

Results: New existence results are derived for the smallest and greatest solutions of
considered problems. Novel results are derived for the dependence of solutions on
the data. The obtained results are applied to impulsive differential equations.
Concrete examples are presented and solved to illustrate the obtained results.
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1 Introduction
In this paper, existence and comparison results are derived for the smallest and great-

est solutions of first and second order singular nonlinear initial value problems as well

as second order boundary value problems.

Recently, similar problems are studied in ordered Banach spaces, e.g., in [1-4], by con-

verting problems into systems of integral equations, integrals in these systems being

Bochner-Lebesgue or Henstock-Kurzweil integrals. A novel feature in the present study

is that the right-hand sides of the considered differential equations comprise distribu-

tions on a compact real interval [a, b]. Every distribution is assumed to have a primitive

in the space R[a, b] of those functions from [a, b] to ℝ which are left-continuous on

(a, b], right-continuous at a, and which have right limits at every point of (a, b). With

this presupposition, the considered problems can be transformed into integral equations

which include the regulated primitive integral of distributions introduced recently in [5].

The paper is organized as follows. Distributions on [a, b], their primitives, regulated

primitive integrals and some of their properties, as well as a fixed point lemma are pre-

sented in Section 2. In Section 3, existence and comparison results are derived for the

smallest and greatest solutions of first order initial value problems.

A fact that makes the solution space R[a, b] important in applications is that it con-

tains primitives of Dirac delta distributions δl, l Î (a, b). This fact is exploited in
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Section 4, where results of Section 3 are applied to impulsive differential equations.

The continuous primitive integral of distributions introduced in [6] is also used in

these applications.

Existence of the smallest and greatest solutions of the second order initial and

boundary value problems, and dependence of these solutions on the data are studied

in Sections 5 and 6. Applications to impulsive problems are also presented.

Considered differential equations may be singular, distributional and impulsive. Dif-

ferential equations, initial and boundary conditions and impulses may depend function-

ally on the unknown function and/or on its derivatives, and may contain discontinuous

nonlinearities. Main tools are fixed point theorems in ordered spaces proved in [7] by

generalized monotone iteration methods. Concrete problems are solved to illustrate

obtained results. Iteration methods and Maple programming are used to determine

solutions.

2 Preliminaries
Distributions on a compact real interval [a, b] are (cf. [8]) continuous linear functionals

on the topological vector space D of functions � : ℝ ® ℝ possessing for every j Î N0 a

continuous derivative �(j) of order j that vanishes on ℝ\(a, b). The space D is endowed

with the topology in which the sequence (�k) of D converges to ϕ ∈ D if and only if

ϕ
(j)
k → ϕ(j) uniformly on (a, b) as k ® ∞ and j Î N0. As for the theory of distributions,

see, e.g., [9,10].

In this paper, every distribution g on [a, b] is assumed to have a primitive, i.e., a

function G ∈ R[a, b] whose distributional derivative G’ equals to g, in the function

space

R[a, b] = {G : lim
t→s+

G(s) exists, lim
s→t−G(s) = G(t) if a ≤ s < t ≤ b, and G(a) := lim

s→a+
G(s)}. (2:1)

The value 〈g, �〉 of g at ϕ ∈ D is thus given by

〈g,ϕ〉 = 〈G′,ϕ〉 = −〈G,ϕ′〉 = −
∫ b

a
G(t)ϕ′(t) dt.

Such a distribution g is called RP integrable. Its regulated primitive integral is defined

by

r

t∫
s

g := G(t) − G(s), a ≤ s ≤ t ≤ b, where G is a primitive of g in R[a, b]. (2:2)

As noticed in [5], the regulated primitive integral generalizes the wide Denjoy inte-

gral, and hence also Riemann, Lebesgue, Denjoy and Henstock-Kurzweil integrals.

Denote by AR[a, b] the set of those distributions on [a, b] that are RP integrable on

[a, b]. If g ∈ AR[a, b], then the function t �→ r
∫ t
a g is that primitive of g which belongs

to the set

PR[a, b] = {G ∈ R[a, b] : G(a) = 0}.

It can be shown (cf. [5]) that a relation ≼, defined by

f � g in AR[a, b] if and only if r
∫ t

a
f ≤ r

∫ t

a
g for all t ∈ [a, b], (2:3)
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is a partial ordering on AR[a, b]. In particular,

f = g in AR[a, b] if and only if r
∫ t

a
f = r

∫ t

a
g for all t ∈ [a, b]. (2:4)

Given partially ordered sets X = (X, ≤) and Y = (Y, ≼), we say that a mapping f : X ®
Y is increasing if f(x) ≼ f(y) whenever x ≤ y in X, and order-bounded if there exist f± Î
Y such that f- ≼ f (x) ≼ f+ for all x Î X.

The following fixed point result is a consequence of [11], Theorem A.2.1, or [7],

Theorem 1.2.1 and Proposition 1.2.1.

Lemma 2.1. Given a partially ordered set P = (P, ≤), and its order interval [x-, x+] =

{x Î P : x- ≤ x ≤ x+}, assume that a mapping G : [x-, x+] ® [x-, x+] is increasing, and

that each well-ordered chain of the range G[x-, x+] of G has a supremum in P and

each inversely well-ordered chain of G[x-, x+] has an infimum in P. Then G has the

smallest and greatest fixed points, and they are increasing with respect to G.

Remarks 2.1. Under the hypotheses of Lemma 2.1, the smallest fixed point x* of G is

by [[7], Theorem 1.2.1] the maximum of the chain C of [x-, x+] that is well ordered,

i.e., every nonempty subset of C has the smallest element, and that satisfies

(I) x− = minC , and if x− < x, then x ∈ C if and only if x = supG[{y ∈ C : y < x}].

The smallest elements of C are Gn(x-), n Î N0, as long as Gn(x-) = G(Gn-1(x-)) is

defined and Gn-1(x-) <G
n(x-), n Î N. If Gn-1(x-) = Gn (x-) for some n Î N, there is the

smallest such an n, and x* = Gn-1(x-) is the smallest fixed point of G in [x-, x+]. If

xω = sup
n∈N

Gn(x−) is defined in P and is a strict upper bound of {Gn(x-)}nÎN, then xω is

the next element of C. If xω = G(xω), then x* = xω, otherwise the next elements of C

are of the form Gn(xω), n Î N, and so on.

The greatest fixed point x* of G is the minimum of the chain D of [x-, x+] that is

inversely well ordered, i.e., every nonempty subset of D has the greatest element, and

that has the following property:

(II) x+ = maxD, and if x < x+, then x ∈ D if and only if x = infG[{y ∈ D : x < y}].

The greatest elements of D are n-fold iterates Gn(x+), as long as they are defined and

Gn(x+) <G
n-1(x+). If equality holds for some n Î N, then x* = Gn-1(x+) is the greatest

fixed point of G in [x-, x+].

3 First order initial value problems
In this section, existence and comparison results are derived for the smallest and great-

est solutions of first order initial value problems. Denote by L1loc(a, b], -∞< a < b <∞,

the space of locally Lebesgue integrable functions from the half-open interval (a, b] to

ℝ. L1loc(a, b] is ordered a.e. pointwise, and its a.e. equal functions are identified.

Given p : [a, b] ® ℝ+, consider the initial value problem (IVP)

(p · u)′ = g(u), lim
t→a+

(p · u)(t) = c(u), (3:1)

where c(u) Î ℝ, and g(u) ∈ AR[a, b]. We are looking for solutions of (3.1) from the

set

S = {u ∈ L1loc(a, b] : lim
t→a+

(p · u) (t) exists, and p · u ∈ R[a, b]}, (3:2)
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Definition 3.1. We say that a function u Î S is a subsolution of the IVP (3.1) if

(p · u)′ � g(u), and lim
t→a+

(p · u) (t) ≤ c(u). (3:3)

If reversed inequalities hold in (3.3), we say that u is a supersolution of (3.1). If

equalities hold in (3.3), then u is called a solution of (3.1).

We shall first transform the IVP (3.1) into an integral equation.

Lemma 3.1. Given c(u) Î ℝ, u ∈ L1loc(a, b] and p : [a, b] ® ℝ+, assume that
1
p ∈ L1loc(a, b], and that g(u) ∈ AR[a, b]. Then u is a solution of the IVP (3.1) in S if and

only if u is a solution of the following integral equation:

u(t) =
1

p(t)

⎛
⎝c(u) + r

t∫
a

g(u)

⎞
⎠ , t ∈ (a, b]. (3:4)

Proof: Assume that u is a solution of (3.1) in S. The definition of S and (3.1) ensure

by (2.2) that

r

t∫
r

g(u) = r

t∫
r

(p · u)′ = (p · u) (t) − (p · u)(r), a < r ≤ t < b.

Allowing r tend to a+ and applying the initial condition of (3.1) we see that (3.4) is

valid. Conversely, let u be a solution of (3.4). According to (3.4) we have

(p · u) (t) = c(u) + r

t∫
a

g(u), t ∈ (a, b]. (3:5)

This equation implies that u Î S, that the initial condition of (3.1) is valid, and that

(p · u)′ = g(u).

Thus, u is a solution of the IVP (3.1) in S. □
Our first existence and comparison result for the IVP (3.1) reads as follows.

Theorem 3.1. Assume that g : L1loc(a, b] → AR[a, b] is increasing, that p : [a, b] ® ℝ+,

that 1
p ∈ L1loc(a, b], and that the IVP (3.1) has a subsolution u- and a supersolution u+ in

S satisfying u- ≤ u+. Then (3.1) has the smallest and greatest solutions within the order

interval [u-, u+] of S. Moreover, these solutions are increasing with respect to g and c.

Proof: Define a mapping G : L1loc(a, b] → L1loc(a, b] by

G(u)(t) :=
1

p(t)

⎛
⎝c(u) + r

t∫
a

g(u)

⎞
⎠ , t ∈ (a, b]. (3:6)

Because g is increasing, it follows from (2.3) and (3.6) that G is increasing. Applying

(2.3), [[5], Theorem 7] and Definition 3.1 we see that if u ∈ L1loc(a, b] and u- ≤ u ≤ u+, then

(p · u−)(t) − c(u) ≤ (p · u−) (t) − lim
r→a+

(p · u−)(r) = lim
r→a+

r

t∫
r

(p · u−)′

= r

t∫
a

(p · u−)′ ≤ r

t∫
a

g(u−) ≤ r

t∫
a

g(u), a < t ≤ b.
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Thus

u−(t) ≤ 1
p(t)

⎛
⎝c(u) + r

t∫
a

g(u)

⎞
⎠ = G(u)(t), t ∈ (a, b].

Similarly, it can be shown that G(u)(t) ≤ u+(t) for each t Î (a, b]. Thus, G maps the

order interval [u-, u+] of L1loc(a, b] into [u-, u+]. Let W be a well-ordered or an inversely

well-ordered chain in G[u-, u+]. It follows from [[1], Proposition 9.36] and its dual that

sup W and inf W exist in L1loc(a, b].

The above proof shows that the operator G defined by (3.6) satisfies the hypotheses

of Lemma 2.1 when P = L1loc(a, b]. Thus G has the smallest fixed point u* and the great-

est fixed point u* in [u-, u+]. These fixed points are the smallest and greatest solutions

of the integral equation (3.4) in [u-, u+]. This result and Lemma 3.1 imply that u* and

u* belong to S, and they are the smallest and greatest solutions of the IVP (3.1) in

[u-, u+]. Moreover, u* and u* are by Lemma 2.1 increasing with respect to G. This

result implies by (2.3) and (3.6) the last conclusion of Theorem. □
The following result is a consequence of Theorem 3.1.

Proposition 3.1. Assume that mappings g : L1loc(a, b] → AR[a, b]and c : L1loc(a, b] → R are

increasing and order-bounded, that p : [a, b] ® ℝ+, and that 1
p ∈ L1loc(a, b]. Then, the IVP

(3.1) has in S the smallest and greatest solutions that are increasing with respect to g and c.

Proof: Because g and c are order-bounded, there exist g± ∈ AR[a, b] and c± Î ℝ such

that g-≼ g(x) ≼ g+ and c- ≤ c(x) ≤ c+ for all x ∈ L1loc(a, b]. Denote

u±(t) =
1

p(t)

⎛
⎝c±+r

t∫
a

g±

⎞
⎠ , t ∈ (a, b].

Then u± Î S, and

(p · u−)′ = g− � g(x) � g+ = (p · u+)′ for all x ∈ L1loc(a, b],

and

lim
t→a+

(p · u−) (t) = c− ≤ c(x) ≤ c+ = lim
t→a+

(p · u+) for all x ∈ L1loc(a, b].

Thus u- is a subsolution and u+ is a supersolution of (3.1), whence the IVP (3.1) has

by Theorem 3.1 the smallest solution u* and the greatest solution u* in the order inter-

val [u-, u+] of S.

If u Î S is any solution of (3.1), then

1
p(t)

⎛
⎝c− + r

t∫
a

g−

⎞
⎠ ≤ 1

p(t)

⎛
⎝c(u) + r

t∫
a

g(u)

⎞
⎠ ≤ 1

p(t)

⎛
⎝c+ + r

t∫
a

g+

⎞
⎠ , t ∈ (a, b],

or equivalently,

u−(t) ≤ u(t) ≤ u+(t), t ∈ (a, b].

Consequently, u Î [u-, u+], whence u* and u* are the smallest and greatest of all the

solutions of (3.1) in S. □
In the next proposition, the Henstock-Kurzweil integral K

∫
can be replaced by any

of the integrals called Riemann, Lebesgue, Denjoy and wide Denjoy integrals.
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Proposition 3.2. Assume that g(x) is RP integrable on [a, b] for every x ∈ L1loc(a, b],

and that

r

t∫
a

g(x) =
n∑
i=1

Hi(t)K
t∫

a

fi(x) +H0(t), t ∈ [a, b], (3:7)

Where H0 ∈ PR[a, b], and for each i = 1,..., n, Hi : [a, b] ® [0, ∞) has right limits on

[a, b), is left-continuous on (a, b], and fi : [a, b] ® ℝ satisfies the following hypotheses.

(fi1) fi(x) is Henstock-Kurzweil integrable on [a, b] for every x ∈ L1loc(a, b].

(fi2) There exist Henstock-Kurzweil integrable functions fi, f̄i : [a, b] → R such that
K

∫ t
a f−

i
≤ K

∫ t
a fi(x) ≤ K

∫ t
a fi(y) ≤ K

∫ t
a f̄i, t ∈ [a, b] whenever x ≤ y in L1loc(a, b].

If c : L1loc(a, b] → R is increasing and order-bounded, then the IVP (3.1) has in S the

smallest and greatest solutions that are increasing with respect to fi and c.

Proof: The hypotheses imposed above ensure by (2.3) and (3.7) that g is an increas-

ing mapping from L1loc(a, b] to the order interval [g-, g+] of AR[a, b], where

r

t∫
a

g− =
n∑
i=1

Hi(t) K

t∫
a

f
−
i
+H0(t), r

t∫
a

g+ =
n∑
i=1

Hi(t) K

t∫
a

f̄i +H0(t), t ∈ [a, b].

Thus the conclusions follow from Proposition 3.1.

Example 3.1. Assume that

r

t∫
a

g(x) = H1(t) K

t∫
a

f1(x) +H0(t), t ∈ [0, b], (3:8)

where b ≥ 1, H0 ∈ R[0, b], H1 is the Heaviside step function, i.e.,⎧⎪⎪⎪⎨
⎪⎪⎪⎩
f1(x)(t) = 1

105

[
105 arctan

(∫ 1

1/2

(
x(t) − H0(t)

p(t)

)
dt

)] (∣∣sin ( 1
t

)∣∣ − 1
t
sgn

(
sin

( 1
t

))
cos

( 1
t

))
,

t ∈ (0, b], x ∈ L1loc(0, b], [z] = max{n ∈ Z : n ≤ z} and sgn(z) =
{
z/|z|, z 	= 0,
0, z = 0.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
f1(x)(t) = 1

105

[
105 arctan

(∫ 1

1/2

(
x(t) − H0(t)

p(t)

)
dt

)] (∣∣sin ( 1
t

)∣∣ − 1
t
sgn

(
sin

( 1
t

))
cos

( 1
t

))
,

t ∈ (0, b], x ∈ L1loc(0, b], [z] = max{n ∈ Z : n ≤ z} and sgn(z) =
{
z/|z|, z 	= 0,
0, z = 0.

Note, that the greatest integer function [·] occurs in the function f1(x). Prove that the

IVP

(p · u)′ = g(u), lim
t→0+

(p · u)(t) = 0, (3:9)

where p(t) = t, t Î [0, b], has the smallest and greatest solutions, and calculate them.

Solution: Problem (3.9) is of the form (3.1), where c(u) = a = 0 and p(t) ≡ t. The

hypotheses (f11) and (f21) are valid when

K

t∫
0

f
−
1
= −2t| sin

(
1
t

)
| +H0(t), t ∈ (0, b],

K

t∫
0

f̄1 = 2t| sin
(
1
t

)
| +H0(t), t ∈ (0, b].
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Thus the IVP (3.9) has by Proposition 3.2 the smallest and greatest solutions. They

are the smallest and greatest fixed points of the mapping G defined by

G(x)(t) :=
1
t

r

t∫
0

g(x), t ∈ (0, b], x ∈ L1loc(0, b]. (3:10)

G is an increasing mapping from L1loc(0, b], to its order interval [u-, u+], where

u±(t) := ±2| sin
(
1
t

)
| + H0(t)

t
, t ∈ (0, b].

Calculating the successive approximations Gn(u±) we see that G7(u±) = G8(u±). This

means by Remark 2.1 that u* = G7(u-) and u* = G7(u+) are the smallest and greatest

fixed points of G in [u-, u+]. According to the proof of Proposition 3.1, u* and u* are

also the smallest and greatest solutions, of the initial value problem (3.9) in S. The

exact expressions of u* and u* are:{
u∗(t) = − arctan

(67229
10000

) | sin ( 1
t

) | + H0(t)
t , t ∈ (0, b],

u∗(t) = arctan
( 16807
2500

) | sin (1
t

) | + H0(t)
t , t ∈ (0, b].

4 Applications to impulsive problems
In this section, we assume that Λ is a well-ordered subset of (a, b). Let δl, l Î Λ,

denote the translation of Dirac delta distribution for which r
∫ t

a
δλ = H(t − λ), t ≥ a,

where H is the Heaviside step function. Consider the singular distributional Cauchy

problem

(p · u)′ =
∑
λ∈�

I(λ, u)δλ + f (u), lim
t→a+

(p · u) = c(u), (4:1)

where p : [a, b] ® ℝ+ and 1
p ∈ L1loc(a, b]. The values of f are distributions on [a, b],

and the values of I are real numbers.

Definition 4.1. By a solution of (4.1), we mean such a function u Î S that satisfies

(4.1), for which p · u is continuous on [a, b]\Λ, and has impulses

�(p · u)(λ) := (p · u)(λ+) − (p · u)(λ) = I(λ, u), λ ∈ �.

In the study of (4.1), the regulated primitive integral is replaced by the continuous

primitive integral presented in [6]. A distribution g on [a, b] is called distributionally

Denjoy (DD) integrable on [a, b], denote g ∈ AC[a, b], if g has a continuous primitive,

i.e., g is a distributional derivative of a function G Î C[a, b]. The continuous primitive

integral of g is defined by

c

t∫
s

g = G(t) − G(s), a ≤ s ≤ t ≤ b.

AC[a, b] is a proper subset of AR[a, b], and for every g ∈ AC[a, b] its continuous and

regulated primitive integrals are equal. As shown in [6], AC[a, b] contains functions that

are wide Denjoy integrable, and hence also Riemann, Lebesgue, Denjoy and Henstock-

Kurzweil integrable on [a, b]. On the other hand, distributional derivatives of nowhere

differentiable Weierstrass function and almost everywhere differentiable Cantor function

are distributionally but not wide Denjoy integrable.
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It can be shown (cf. [6]) that relation ≼, defined by

f � g if and only if c

t∫
a

f ≤ c

t∫
a

g for all t ∈ [a, b], (4:2)

is a partial ordering on AC[a, b].

Transformation of the Cauchy problem (4.1) into an integral equation is presented in

the following lemma.

Lemma 4.1. Assume that u Î S, that f (u) ∈ AC[a, b], and that
∑
λ∈�

|I(λ, u)| < ∞.

Then u is a solution of (4.1) if and only if

u(t) =
1

p(t)

⎛
⎝c(u) +

∑
λ∈�

I(λ, u)H(t − λ) + c

t∫
a

f (u)

⎞
⎠ , t ∈ (a, b]. (4:3)

Proof: Assume first that u Î S satisfies (4.3). Because Λ is well-ordered, it follows

that if l Î Λ and l <sup Λ, then H(t - l) = 1 on (l, S(l)], where S(l) = min{μ Î Λ :

l < μ}. This property implies that if the function v : (a, b] ® ℝ is defined by

v(t) =
1

p(t)

(
c(u) +

∑
λ∈�

I(λ, u)H(t − λ)

)
, t ∈ (a, b], (4:4)

then the function p · v is constant on every interval (l, S(l)], Λ ∋ Λ <sup Λ, on [a,

min Λ], and on (sup Λ, b] if sup Λ < b. In particular, p · v ∈ R[a, b], and the distribu-

tional derivative of p · v is

(p · v)′ =
∑
λ∈�

I(λ, u)δλ. (4:5)

Thus

(p · u)′ = (p · v)′ + f (u) =
∑
λ∈�

I(λ, u)δλ + f (u).

Since t �→ c
∫ t

a
f (u) is continuous on [a, b], then p · u is continuous on [a, b]\Λ.

Because

(p · v)(t) − (p · v)(λ) = I(λ, u)H(t − λ) = I(λ, u), λ ∈ �, t ∈ (λ, S(λ)],

then

�(p · u)(λ) = (p · u)(λ+)− (p · u)(λ) = (p · v)(λ+)− (p · v)(λ) = I(λ, u), λ ∈ �.

Moreover lim
t→a+

(p · u)(t) = c(u), so that u is a solution of the IVP (4.1).

Assume next that u Î S is a solution of (4.1). Denoting

z(t) = u(t) − v(t), t ∈ [a, b],

where v is defined by (4.4), it follows from (4.1) and (4.5) that

(p · z)′ = f (u), lim
t→a+

(p · z) = 0.

Because f(u) is DD integrable on [a, b], then

(p · z)(t) = c

t∫
a

f (u), t ∈ [a, b].
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Thus

(p · u)(t) = (p · z)(t) + (p · v)(t) = c(u) +
∑
λ∈�

I(λ, u)H(t−λ) + c

t∫
a

f (u), t ∈ [a, b],

or equivalently, (4.3) holds. □
Noticing that the IVP (4.1) is a special case of the Cauchy problem (3.1), where

g(u) =
∑
λ∈�

I(λ, u)δλ + f (u), (4:6)

the results of Section 3 can be applied to study the IVP (4.1). The following result is

a consequence of Proposition 3.1.

Proposition 4.1. The distributional IVP (4.1) has the smallest and greatest solutions

that are increasing with respect to f and c, if f : L1loc(a, b] → AC[a, b] and

c : L1loc(a, b] → R are increasing and order-bounded, if p : [a, b] ® ℝ+, if
1
p ∈ L1loc(a, b],

and if I : � × L1loc(a, b] → Rhas the following properties.

(I)
∑
λ∈�

|I(λ, x)| ≤ M < ∞ for all x ∈ L1loc(a, b], and x ↦ I(l,x) is increasing when l Î

Λ.

Proof: The given hypotheses imply that (4.6) defines a mapping

g : L1loc(a, b] → AR[a, b] that is increasing and order-bounded. Thus, the IVP (3.1) has

by Proposition 3.1 the smallest solution u* and the greatest solution u* in S, and they

are increasing with respect to g and c. By Lemma 4.1, u* and u* are the smallest and

greatest solutions of the IVP (4.1), and they are increasing with respect to f, and c,

since g is increasing with respect to f. □
The initial value problem

d
dt
(p(t)u(t)) = q(t, u(t), u) a.e. on [a, b], lim

t→a+
(p(t)u(t)) = c(u), (4:7)

combined with the impulsive property:

�(p · u)(λ) = (p · u)(λ+) − (p · u)(λ) = I(λ, u), λ ∈ �, (4:8)

form a special case of the IVP (4.1) when f is the Nemytskij operator associated with

the function q : [a, b] × R × L1loc(a, b] → R by

f (x) := q(·, x(·), x), x ∈ L1loc(a, b].

Considering distributions δl as generalized functions t aδ (t - l), t Î [a, b], we can

rewrite the system (4.7), (4.8) as

d
dt
(p(t)u(t)) =

∑
λ∈�

I(λ, u)δ(t−λ)+q(t, u(t), u) a.e. on [a, b], lim
t→a+

(p(t)u(t)) = c(u). (4:9)

For instance, Proposition 4.1 implies the following result:

Corollary 4.1. The impulsive Cauchy problem (4.9) has the smallest and greatest

solutions which are increasing with respect to q and c, if c : L1loc(a, b] → R is increasing

and order- bounded, and if the hypotheses (I) and the following hypotheses are valid.

(q0) q(·, x(·); x) is Henstock-Kurzweil integrable on [a, b] for every x ∈ L1loc(a, b].
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(q1) K
∫ t
a q(s, x(s), x)ds ≤ K

∫ t
a q(s, y(s), y)ds for all t Î [a, b] whenever × ≤ y in

L1loc(a, b].

(q2) There exist Henstock-Kurzweil integrable functions q± : [a, b] ® ℝ such that
K

∫ t
a q−(s)ds ≤ K

∫ t
a q(s, x(s), x)ds ≤ K

∫ t
a q+(s) ds for all x ∈ L1loc(a, b] and t Î [a, b].

Example 4.1. Determine the smallest and greatest solutions of the IVP

tu′(t)+u(t) =
1

104
[104 arctan(u(1))]δ

(
t − 1

2

)
+q(t, u) a.e. on [0, 1], lim

t→0+
(tu(t)) = 0, (4:10)

when q is defined by⎧⎨
⎩q(t, x) =

[104 tanh(
∫ 1
2
5
(x(s)ds)]

104
h(t), x ∈ L1loc(0, 1], t ∈ (0, 1], where

h(t) =
∣∣cos (1

t

)∣∣ + 1
t sgn

(
cos

(1
t

))
sin

( 1
t

)
, t ∈ (0, 1].

(4:11)

’[·]’ denotes, as before, the greatest integer function, and ‘sgn’ the sign function.

Solution: The IVP (4.10) is a special case of (4.6), when a = 0, b = 1, c(u) = 0, p(t) =

t, t Î [0, 1], I( 12 , x) =
1
104

[104 arctan(x(1))], and � = { 12 }. The validity of the hypotheses

of Corollary 4.1 is easy to verify. Thus, the IVP (4.10) has the smallest and greatest

solutions. These solutions are the smallest and greatest fixed points of

G : L1loc(0, 1] → L1loc(0, 1], defined by

G(x)(t) =
1
t

⎛
⎝ 1

104
[104 arctan(x(1))]H

(
t − 1

2

)
+ K

t∫
0

q(t, x)

⎞
⎠ , x ∈ L1loc(0, 1], t ∈ (0, 1]. (4:12)

Calculating the successive approximations⎧⎪⎨
⎪⎩
yn+1 = G(yn), y0 = x− and zn+1 = G(zn), z0 = x+, where

x±(t) = ±2
t
H

(
t − 1

2

)
+ 1

2
K

∫ t

0
h(s) ds = ± 2

t H
(
t − 1

2

) ± 1
t

∣∣cos( 1t )∣∣ , t ∈ (0, 1],

it turns out that (yn)17n=0 is strictly increasing, that (zn)16n=0 is strictly decreasing, that

y17 = G(y17), and that z16 = G(z16). Thus u* = y17 and u* = z16 are by Remark 2.1 the

smallest and greatest solutions of (4.1) with c(u) = 0. The exact formulas of u* and u*

are ⎧⎪⎨
⎪⎩
u∗(t) = − 4439H(t− 1

2 )

5000t − 6313
10000

∣∣cos( 1t )∣∣ , t ∈ (0, 1],

u∗(t) =
2219H(t−1

2 )

2500t + 6311
10000

∣∣cos( 1t )∣∣ , t ∈ (0, 1].

Remarks 4.1. The function (t, x) a q(t, x), defined in (4.11), has the following proper-

ties.

• It is Henstock-Kurzweil integrable, but it is not Lebesgue integrable with respect

to the independent variable t if x ≠ 0, because h is not Lebesgue integrable on [0,1].

• Its dependence on the variables t and x is discontinuous, since the signum func-

tion sgn, the greatest integer function [·], and the function h are discontinuous.

• Its dependence on the unknown function x is nonlocal, since the integral of func-

tion x appears in the argument of the tanh-function.
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• Its dependence on x is not monotone, since h attains positive and negative values

in an infinite number of disjoint sets of positive measure. For instance, y*(t) > y*(t)

for all t Î (0, 1], but the difference function t ® q(t, y*) -q(t, y*) is neither nonne-

gative-valued nor Lebesgue integrable on [0, 1].

Notice also that in Example 4.1 dependence of the function

I( 12 , x) =
1
104

[104 arctan(x(1))] on x is discontinuous.

5 Second order initial value problems
We shall study the second order initial value problem in this section{

(p · u′)′ = f (u, u′),
lim
t→a+

(p · u′)(t) = c(u, u′), lim
t→a+

u(t) = d(u, u′), (5:1)

where f : L1loc(a, b]
2 → AR[a, b], c, d : L1loc(a, b]

2 → R, p : [a, b] ® ℝ+, -∞ <a <b < ∞.

We are looking for the smallest and greatest solutions of (5.1) from the set

Y = {u : (a, b] → R : u′ ∈ L1loc(a, b], limt→a+
u(t) and lim

t→a+
(p·u′)(t) exist, and p·u′ ∈ R[a, b]}. (5:2)

The IVP (5.1) can be converted to a system of integral equations which does not

contain derivatives.

Lemma 5.1. Assume that p : [a, b] ®ℝ+, that 1
p ∈ L1[a, b]and that

f (u, v) ∈ AR[a, b]for all u, v ∈ L1loc(a, b]. Then u is a solution of the IVP (5.1) in Y if and

only if (u, u’) = (u, v), where (u, v) ∈ L1loc(a, b]
2is a solution of the system

⎧⎪⎪⎨
⎪⎪⎩
u(t) = d(u, v) +

∫ t

a
v(s) ds, t ∈ (a, b],

v(t) = 1
p(t)

(
c(u, v) + r

∫ t

a
f (u, v)

)
, t ∈ (a, b].

(5:3)

Proof: Assume that u is a solution of the IVP (5.1) in Y , and denote

v(t) = u′(t), t ∈ (a, b]. (5:4)

The differential equation, the initial conditions of (5.1), the definition (5.2) of Y and

the notation (5.4) imply that

r

t∫
a

f (u, v) = lim
r→a+

r

t∫
r

f (u, v) = lim
r→a+

r

t∫
r

(p · v)′

= (p · v)(t) − lim
r→a+

(p · v)(r)) = (p · v)(t) − c(u, v), t ∈ (a, b],

and

u(t) − d(u, v) = lim
r→a+

(u(t) − u(r)) = lim
r→a+

∫ t

r
u′(s) ds

=
∫ t

a
u′(s) ds =

∫ t

a
v(s) ds, t ∈ (a, b].

Thus, the integral equations of (5.3) hold.

Heikkilä Boundary Value Problems 2011, 2011:24
http://www.boundaryvalueproblems.com/content/2011/1/24

Page 11 of 19



Conversely, let (u, v) be a solution of the system (5.3) in L1loc(a, b]
2. The first equation

of (5.3) implies that u is a.e. differentiable and v = u’, and that the second initial condi-

tion of (5.1) is fulfilled. Since v = u’, it follows from the second equation of (5.3) that

(p · u′)(t) = c(u, u′) + r

t∫
a

f (u, u′), t ∈ (a, b]. (5:5)

The equation (5.5) implies that p · u’ belongs to R[a, b], and that the differential

equation and first initial condition of (5.1) hold. Thus u is a solution of the IVP (5.1)

in Y. □
Assume that Lloc(a, b] is ordered a.e. pointwise, that Y is ordered pointwise, and that

the functions p, f, c and d satisfy the following hypotheses:

Our main existence and comparison result for the IVP (5.1) reads as follows.

Theorem 5.1. Assume that p : [a, b] ® ℝ+, that
1
p ∈ L1[a, b], and that the mappings

f : L1loc(a, b] → AR[a, b] and c, d : L1loc(a, b] → R are increasing and order-bounded.

Then, the IVP (5.1) has the smallest and greatest solutions in Y, and they are increasing

with respect to f, c and d.

Proof: The hypotheses imposed on f, c and d imply that the following conditions are

valid.

(f0) f(u, v) is RP integrable on [a, b] for every (u, v) ∈ L1loc(a, b], and there exist such

h−, h+ ∈ AR[a, b] that h- ≼ f (u1, v1) ≼ f (u2, v2) ≼ h+ for all ui, vi ∈ L1loc(a, b], i = 1, 2, u1
≤ u2 and v1 ≤ v2.

(c0) c± Î ℝ, and c- ≤ c(u1, v1) ≤ c(u2, v2) ≤ c+ whenever ui, vi ∈ L1loc(a, b], i = 1, 2, u1 ≤

u2 and v1 ≤ v2.

(d0) d± Î ℝ, and d- ≤ d(u1, v1) ≤ d(u2, v2) ≤ d+ whenever ui, vi ∈ L1loc(a, b], i = 1, 2, u1
≤ u2 and v1 ≤ v2.

Assume that P = L1loc(a, b]
2 is ordered componentwise. We shall first show that the

vector-functions x+, x- given by

x±(t) :=

⎛
⎝ d± +

∫ t

a

1
p(s)

⎛
⎝c± + r

s∫
a

h±

⎞
⎠ ds,

1
p(t)

⎛
⎝c± + r

t∫
a

h±

⎞
⎠

⎞
⎠ (5:6)

define functions x± Î P. Since 1/p is Lebesgue integrable and the functions

t �→ c± +
∫ t

a
h± belong to R[a, b], then the second components of x± belong to

L1loc(a, b]. This result implies that the first components of x± are defined and continu-

ous, whence they belong to L1loc(a, b].

Similarly, by applying also the given hypotheses one can verify that the relations

⎧⎪⎪⎨
⎪⎪⎩
G1(u, v)(t) := d(u, v) + K

∫ t

a
v(s) ds, t ∈ (a, b],

G2(u, v)(t) := 1
p(t)

(
c(u, v)+r

∫ t

a
f (u, v)

)
, t ∈ J,

(5:7)

define an increasing mapping G = (G1, G2) : [x-, x+] ® [x-, x+].

Heikkilä Boundary Value Problems 2011, 2011:24
http://www.boundaryvalueproblems.com/content/2011/1/24

Page 12 of 19



Let W be a well-ordered chain in the range of G. The sets W1 = {u : (u, v) Î W} and

W2 = {v : (u, v) Î W} are well-ordered and order-bounded chains in L1loc(a, b]. It then

follows from [[1], Proposition 9.36] that the supremums of W1 and W2 exist in

L1loc(a, b]. Obviously, (sup W1, sup W2) is the supremum of W in P. Similarly one can

show that each inversely well-ordered chain of the range of G has the infimum in P.

The above proof shows that the operator G = (G1, G2) defined by (5.7) satisfies the

hypotheses of Lemma 2.1, and therefore G has the smallest fixed point x* = (u*,v*) and

the greatest fixed point x* = (u*, v*). It follows from (5.7) that (u*, v*) and (u*, v*) are

solutions of the system (5.3). According to Lemma 5.1, u* and u* belong to Y and are

solutions of the IVP (5.1).

To prove that u* and u* are the smallest and greatest of all solutions of (5.1) in Y ,

let u Î Y be any solution of (5.1). In view of Lemma 5.1, (u, v) = (u, u’) is a solution

of the system (5.3). Applying the hypotheses (f0), (c0) and (d0) it is easy to show that x

= (u, v) Î [x-, x+], where x± are defined by (5.6). Thus x = (u, v) is a fixed point of G =

(G1, G2) : [x-, x+] ® [x-, x+], defined by (5.7). Because x* = (u*, v*) and x* = (u*, v*) are

the smallest and greatest fixed points of G, then (u*, v*) ≤ (u, v) ≤ (u*, v*). In particu-

lar, u* ≤ u ≤ u*, whence u* and u* are the smallest and greatest of all solutions of the

IVP (5.1).

The last assertion is an easy consequence of the last conclusion of Lemma 2.1 and

the definition (5.7) of G = (G1, G2). □
Consider next the the following special case of (5.1) where the values of f are com-

bined with impulses and a Henstock-Kurzweil integrable function:

f (u, v)(t) =
∑
λ∈�

I(λ, u, v)(λ)δ(t − λ) + q(t, u, v), u, v ∈ L1loc(a, b], t ∈ [a, b].

In this case problem (5.1) can be rewritten as

⎧⎪⎪⎨
⎪⎪⎩

d
dt
(p(t)u′(t)) =

∑
λ∈�

I(λ, u, u′)δ(t − λ) + q(t, u, u′) a.e. on [a, b],

lim
t→a+

(p(t)u′(t)) = c(u, u′), lim
t→a+

u(t) = d(u, u′).
(5:8)

The next result is a consequence of Theorem 5.1.

Corollary 5.1. Assume that p : [a, b] ® ℝ+,
1
p ∈ L1[a, b], that functions

c, d : L1loc(a, b]
2 → R are increasing and order-bounded, and that the mappings

q : [a, b] × L1loc(a, b]
2 → R and I : � × L1loc(a, b]

2 → R satisfies the following hypotheses.

(q1) q(·, x) is Henstock-Kurzweil integrable on [a, b] for all x ∈ L1loc(a, b]
2.

(q2) There exist Henstock-Kurzweil integrable functions q± : [a, b] ® ℝ such that

K
∫ t

a
q−(s) ds ≤ K

∫ t

a
q(s, x) ds ≤ K

∫ t

a
q(s, y) ds ≤ K

∫ t

a
q+(s) ds, t ∈ [a, b], whenever × ≤

y in L1loc(a, b]
2.

(I)
∑
λ∈�

|I(λ, x)| ≤ M < ∞ for all x ∈ L1loc(a, b]
2, and × a I(l, x) is increasing when l Î

Λ.

Then, the impulsive IVP (5.8) has the smallest and greatest solutions that are increas-

ing with respect to q, c and d.
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Example 5.1. Determine the smallest and greatest solutions of the following singular

impulsive IVP.

⎧⎪⎨
⎪⎩

d
dt (

√
t u′(t)) = tanh( [20u[1]+10u

′ [1]]
100 )δ

(
t − 1

2

)
+ [

∫ 2
1 (u(s)+u

′(s)) ds]
1+|[∫ 2

1 (u(s)+u
′(s)]|

d
dt

(
t sin 1

t + t
)

a.e. on [0, 3], lim
t→0+

√
t u′(t) = [u′(1)]

1+|[u′(1)]| , lim
t→0+

u(t) = [u(1)]
1+|[u(1)]| .

(5:9)

Solution: System (5.9) is a special case of (5.8) by setting a = 0, b = 3, p(t) =
√
t,

� = { 12 }, and q, c, d and I are given by

⎧⎪⎨
⎪⎩
q(t, u, v) = + [

∫ 2
1 (u(s)+v(s)) ds]

1+|[∫ 2
1 (u(s)+v(s)) ds]|

d
dt

(
t sin 1

t + t
)
,

c(u, v) = [v(1)]
1+|[v(1)]| , d(u, v) =

[u(1)]
1+|[u(1)]| , I(

1
2
, u, v) = tanh( [20u[1]+10v[1]]100 ).

(5:10)

It is easy to verify that the hypotheses of Corollary 5.1 hold. Thus (5.9) has the smal-

lest and greatest solutions. The functions x- and x+ defined by (5.6) can be calculated,

and their first components are:

u+(t) = 1 − 2
√
2π

3
+ 2

√
t +

2t
√
t

3
sin

1
t
+
4
√
t

3
cos

1
t

+
4
√
2π

3
FresnelS

(√
2
π t

)
+
2t

√
t

3
+ (2

√
t −

√
2)H

(
t − 1

2

)
,

u− = −u+,

where

FresnelS (x) =
∫ x

0
sin

(π

2
t2

)
dt

is the Fresnel sine integral. According to Lemma 5.1, the smallest solution of (5.9) is

equal to the first component of the smallest fixed point of G = (G1, G2), defined by

(5.7), with f, c and d given by (5.10) and p(t) =
√
t. Calculating the iterations Gnx- it

turns out that G4x- = G5x-, whence G4
1x− is the smallest solution of (5.9). Similarly, one

can show that G3
1x+ is the greatest solution of (5.9). The exact expressions of these

solutions are

u∗(t) = −4
5
+
3
√
2π

5
− 8

5

√
t − 3t

√
t

5
sin

1
t

− 6
√
t

5
cos

1
t

− 6
√
2π

5
FresnelS

(√
2
π t

)
− tanh

(
11
10

)
(2

√
t −

√
2)H

(
t − 1

2

)
,

u∗(t) =
3
4

− 16
√
2π

27
+
3
√
t

2
+
16t

√
t

27
sin

1
t
+
32

√
t

27
cos

1
t

+
32

√
2π

27
FresnelS

(√
2
π t

)
+
4t

√
t

7
+ tanh

(
21
20

)
(2

√
t −

√
2)H

(
t − 1

2

)
.

6 Second Order Boundary Value Problems
This section is devoted to the study of the second order boundary value problem

(BVP)
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{− (p · u′)′ = f (u, u′),
lim
t→a+

(p · u′)(t) = c(u, u′), u(b) = d(u, u′), (6:1)

where f : L1[a, b]2 → AR[a, b], c, d : L1[a, b]2 ® ℝ, and p : [a, b] ® ℝ+, -∞ <a <b < ∞.

Now we are looking for the smallest and greatest solutions of (6.1) from the set

Z = {u : (a, b] → R : u′ ∈ L1[a, b], lim
t→a+

(p · u′)(t) exists, and p · u′ ∈ R[a, b]}. (6:2)

The BVP (6.1) can be transformed into a system of integral equations as follows.

Lemma 6.1. Assume that p : [a, b] ® ℝ+, that 1
p ∈ L1[a, b], and that

f (u, v) ∈ AR[a, b]for all u, v Î L1[a, b]. Then u is a solution of the IVP (6.1) in Z if and

only if (u, u’) = (u, v), where (u, v) Î L1[a, b]2 is a solution of the system⎧⎪⎪⎪⎨
⎪⎪⎪⎩
u(t) = d(u, v) −

∫ b

t
v(s) ds, t ∈ [a, b],

v(t) = 1
p(t)

(
c(u, v) − r

∫ t

a
f (u, v)

)
, t ∈ [a, b],

(6:3)

Proof: Assume that u is a solution of the BVP (6.1) in Z, and denote

v(t) = u′(t), t ∈ [a, b]. (6:4)

The differential equation, the boundary conditions of (6.1), the definition (6.2) of Z

and the notation (6.4) ensure that

− r

t∫
a

f (u, v) = − lim
r→a+

r

t∫
r

f (u, v) = lim
r→a+

r

t∫
r

(p · v)′

= lim
r→a+

(p · v)(t) − (p · v)(r)) = (p · v)(t) − c(u, v), t ∈ [a, b],

and

u(t) − d(u, v) = u(t) − u(b) = − ∫ b
t u′(s) ds = − ∫ b

t v(s) ds, t ∈ [a, b].

Thus the integral equations of (6.3) hold.

Conversely, let (u, v) be a solution of the system (6.3) in L1[a, b]2. The first equation

of (6.3) implies that u is a.e. differentiable and v = u’, and that the second boundary

condition of (6.1) holds. Since v = u’, it follows from the second equation of (6.3) that

(p · u′)(t) = c(u, u′) − r

t∫
a

f (u, u′), t ∈ [a, b]. (6:5)

This equation implies that p · u’ belongs to R[a, b], and that the differential equation

and first boundary condition of (6.1) are satisfied. Thus u, is a solution of the BVP

(6.1) in Z. □
Assume that L1[a, b] is ordered a.e. pointwise, that Z is ordered pointwise. We shall

impose the following hypotheses for the functions p, f, c, and d.

(p1) p : [a, b] ® ℝ+, and
1
p ∈ L1[a, b].

(f1) f : L1[a, b]2 → AR[a, b] is order-bounded, and f (u1, v1) ≼ f (u2, v2) whenever ui,

vi Î L1[a, b], i = 1, 2, u1 ≤ u2, and v1 ≥ v2.
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(c1) c : L
1[a, b]2 ® ℝ is order-bounded, and c(u2, v2) ≤ c(u1, v1) whenever ui, vi Î L1

[a, b], i = 1, 2, u1 ≤ u2, and v1 ≥ v2.

(d1) d : L1[a, b]2 ® ℝ is order-bounded, and d(u1, v1) ≤ d(u2, v2) whenever ui, vi Î
L1[a, b], i = 1, 2, u1 ≤ u2 and v1 ≥ v2.

The next theorem is our main existence and comparison result for the BVP (6.1).

Theorem 6.1. Assume that the hypotheses (p1), (f1), (c1), and (d1) hold. Then, the BVP

(6.1) has the smallest and greatest solutions in Z, and they are increasing with respect

to f and d and decreasing with respect to c.

Proof: Because f, c and d are order-bounded, then the following conditions are valid.

(f0) There exist h± ∈ AR[a, b] such that h- ≼ f (u, v) ≼ h+ for all u, v Î L1[a, b].

(c0) There exist c± Î ℝ such that c- ≤ c(u, v) ≤ c+ whenever u, v Î L1[a, b].

(d0) There exist d± Î ℝ such that d- ≤ d(u, v) ≤ d+ whenever u, v Î L1[a, b].

Assume that P = L1[a, b]2 is ordered by

(u1, v1) ≤ (u2, v2) if and only if u1 ≤ u2, and v1 ≥ v2. (6:6)

We shall first show that the vector-functions x+, x- given by⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
x−(t) =

(
d− −

∫ b

t

1
p(s)

(c+ − r
∫ s

a
h−) ds,

1
p(t)

(c+ − r
∫ t

a
h−)

)
,

x+(t) =

(
d+ −

∫ b

t

1
p(s)

(c− − r
∫ s

a
h+) ds,

1
p(t)

(c− − r
∫ t

a
h+)

)
.

(6:7)

belong to P. Since 1/p is Lebesgue integrable and the function t �→ c+ − r
∫ t
a h−

belongs to R[a, b], then the second component of x+ is Lebesgue integrable on [a, b].

Similarly one can show that the second component of x- belongs to L1[a, b]. These

results ensure that the first components of x± are defined and continuous in t, and

hence are in L1[a, b].

Similarly, by applying the given hypotheses one can verify that the relations⎧⎨
⎩

G1(u, v)(t) := d(u, v) − K
∫ b
t v(s) ds, t ∈ [a, b],

G2(u, v)(t) :=
1

p(t)

(
c(u, vr

∫ t
a f (u, v))

)
, t ∈ [a, b]

(6:8)

define an increasing mapping G = (G1, G2) : [x-, x+] ® [x- , x+].

Let W be a well-ordered chain in the range of G. The set W1 = {u : (u, v) Î W} is

well ordered, W2 = {v : (u, v) Î W } is inversely well-ordered, and both W1 and W2 are

order-bounded in L1[a, b]. It then follows from [1, Lemma 9.32] that the supremum of

W1 and the infimum of W2 exist in L1[a, b]. Obviously, (sup W1, inf W2) is the supre-

mum of W in (P, ≤). Similarly, one can show that each inversely well-ordered chain of

the range of G has the infimum in (P, ≤).

The above proof shows that the operator G = (G1, G2) defined by (6.8) satisfies the

hypotheses of Lemma 2.1, whence G has the smallest fixed point x* = (u*, v*) and a

greatest fixed point x* = (u*, v*). It follows from (6.8) that (u*, v*) and (u*, v*) are solu-

tions of the system (6.3). According to Lemma 6.1, u* and u* belong to Z and are solu-

tions of the BVP (6.1).

To prove that u* and u* are the smallest and greatest of all solutions of (6.1) in Z, let

u Î Z be any solution of (6.1). In view of Lemma 6.1, (u, v) = (u, u’) is a solution of
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the system (6.3). Applying the properties (f0), (c0), and (d0) it is easy to show that x =

(u, v) Î [x-, x+], where x± are defined by (6.7). Thus, x = (u, v) is a fixed point of G =

(G1, G2) : [x-, x+] ® [x- , x+], defined by (6.8). Because x* = (u*, v*) and x* = (u*, v*) are

the smallest and greatest fixed points of G, respectively, then (u*, v*) ≤ (u, v) ≤ (u*, v*).

In particular, u* ≤ u ≤ u*, whence u* and u* are the smallest and greatest of all solu-

tions of the BVP (6.1).

The last assertion is an easy consequence of the last conclusion of Lemma 2.1, and

the definition (6.8) of G = (G1, G2). □
Consider next a special case of (6.1) where the values of f combined with impulses

and Henstock-Kurzweil integrable functions:

⎧⎪⎪⎨
⎪⎪⎩

d
dt
(p(t)u′(t)) =

∑
λ∈�

α(λ)δ(t − λ) + g(u, u′)(t) a.e. on [a, b],

lim
t→a+

(p(t)u′(t)) = c(u, u′), u(b) = d(u, u′).
(6:9)

Corollary 6.1. Assume that p : [a, b] ® ℝ+,
1
p ∈ L1[a, b], that functions c, d : L1[a, b]2

® ℝ satisfy the hypotheses (ci) and (di), i = 1, 2, that a : Λ ® ℝ,
∑
λ∈�

|α(λ| < ∞, and

that g satisfies the following hypotheses.

(g1) g(u, v) is Henstock-Kurzweil integrable on [a, b] for all u, v Î L1[a, b].

(g2) There exist Henstock-Kurzweil integrable functions g
−
, ḡ : [a, b] → Rsuch that

K
∫ t

a
g
−

≤ K
∫ t

a
g(u1, v1) ≤ K

∫ t

a
g(u2, v2) ≤ K

∫ t

a
ḡ, t ∈ [a, b], whenever u1 ≤ u2 and v1

≥ v2 in L1[a, b].

Then, the impulsive BVP (6.9) has the smallest and greatest solutions that are

increasing with respect to g, d and decreasing with respect to c.

Example 6.1. Determine the smallest and greatest solutions of the following singular

impulsive BVP.

⎧⎪⎪⎨
⎪⎪⎩

− d
dt (

√
t u′(t)) = δ

(
t − 3

2

)
+ d

dt (t sin
1
t ) tanh

(
1

1000 [
∫ 2

1
(3000u(s) − 2000u′(s)) ds]

)

a.e. on [0, 3], lim
t→0+

√
t u′(t) = [1000u′(1)]

1+|[1000u′(1)]| , u(3) = [1000u(1)]
1+|[1000u(1)]| .

(6:10)

Solution: System (6.10) is a special case of (6.9) when a = 0, b = 3,

� =
( 3
2

)
α

( 3
2

)
= 1, � =

( 3
2

)
, and g, c, d are given by

⎧⎪⎨
⎪⎩
g(u, v)(t) = δ

(
t − 3

2

)
+ d

dt (t sin
t
t ) tanh

(
1

1000 [
∫ 2

1
(3000u(s) − 2000v(s)) ds]

)
,

c(u, v) = [1000v(1)]
1+|[1000v(1)]| , d(u, v) =

[1000u(1)]
1+|[1000u(1)]| .

(6:11)

It is easy to verify that the hypotheses of Corollary 6.1 are valid. Thus (6.10) has the

smallest and greatest solutions. The functions x- and x+ defined by (6.7) can be calcu-

lated, and their first components are:

u−(t) =

⎧⎨
⎩

−1 − √
6 − 2

√
3 − 2

√
3 sin 1

3 − 4
3

√
3 cos 1

3 − 4
√
2π
3 FresnelS

( √
6

3
√

π

)
+ 2

√
t

+2t
√
t

3 sin 1
t +

4
√
t

3 cos 1
t +

4
√
2π
3 FresnelS

( √
2√
tπ

)
+ 20t

√
t

3 − (2
√
t − √

6)H
(
t − 1

3

)
,
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and

u+(t)

⎧⎪⎨
⎪⎩
1 −

√
6 + 6

√
3 + 2

√
3 sin 1

3 + 4
√
3

3 cos 1
3 + 4

√
2π
3 FresnelS

( √
6

3
√

π

)
− 2

√
t

− 2t
√
t

3 sin 1
t − 4

√
t

3 cos 1
t − 4

√
2π
3 FresnelS

( √
2√
tπ

)
− 2t

√
t

3 − (2
√
t −

√
6)H

(
t − 1

3

)
,

where FresnelS is the Fresnel sine integral.

According to Lemma 6.1 the smallest solution of (6.10) is equal to the first compo-

nent of the smallest fixed point of G = (G1, G2), defined by (6.3). Calculating the first

iterations Gnx- it turns out that G6x- = G7x- . Thus G6
1x− is the smallest solution of

(6.10). Similarly, one can show that G3x+ = G4x+, whence G3
1x+ is the greatest solution

of (6.10). The exact expressions of these solutions are

u∗(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− 5623
5624 − 1

1421

√
3 − 2

√
3 tanh 3559

200 (1 + sin
1
3
) − √

6 − 4
√
3

3 tanh 3559
200 cos 1

3

+4
√
2π
3 tanh 3559

200 FresnelS
( √

6
3
√

π

)
+ 2841

√
t

1421 + 2t
√
t

3 tanh 3559
200 (sin 1

t + 1) + 4
√
t

3 tanh 3559
200 cos 1

t

− 4
√
2π
3 tanh 3559

200 FresnelS
( √

2√
tπ

)
+ 2t

√
t

3 tanh 3559
200 − (2

√
t − √

6)H
(
t − 1

3

)
,

and

u∗(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− 7652
7653 − 11370

2843

√
3 + 2

√
3 tanh 4963

200 (1 + sin 1
3 ) −

√
6 + 4

√
3

3 tanh 4963
200 cos 1

3

+4
√
2π
3 tanh 4963

200 FresnelS
( √

6
3
√

π

)
− 5684

√
t

2843 − 2t
√
t

3 tanh 4963
200 (sin 1

t + 1) − 4
√
t

3 tanh 4963
200 cos 1

t

− 4
√
2π
3 tanh 4963

200 FresnelS
( √

2√
tπ

)
+ 2t

√
t

3 tanh 3559
200 − (2

√
t −

√
6)H

(
t − 1

3

)
,

Remarks 6.1. The IVP’s (3.1) and (5.1) and the BVP (6.1) can be

• singular, since lim
t→a+

p(t) = 0 is allowed;

• nonlocal, because the functions g, c, d, and f may depend functionally on u and/

or u’;

• discontinuous, since the dependencies of g, c, d and f on u and/or u’ can be

discontinuous;

• distributional, since the values of g and f can be distributions;

• impulsive, since the values of g and f can contain impulses.

A theory for first order nonlinear distributional Cauchy problems is presented in

[12]. Linear distributional differential equations are studied in [13,8]. Singular ordinary

differential equations are studied, e.g., in [11,14,15]. Initial value problems in ordered

Banach spaces are studied, e.g., in [1-4,7]. As for the study of impulsive differential

equations, see, e.g. [1,16,17]. The case of well-ordered set of impulses is studied first

time in [18].

The solutions of examples have been calculated by using simple Maple

programming.
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