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Abstract

It is well-known that the second eigenvalue l2 of the Dirichlet Laplacian on the ball
is not radial. Recently, Bartsch, Weth and Willem proved that the same conclusion
holds true for the so-called nontrivial (sign changing) Fučík eigenvalues on the first
curve of the Fučík spectrum which are close to the point (l2, l2). We show that the
same conclusion is true in dimensions 2 and 3 without the last restriction.
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dial eigenfunctions

1. Introduction

Let Ω ⊂ ℝN be a bounded domain, N ≥ 2. The Fučík spectrum of -Δ on W1,2
0 (�) is

defined as a set Σ of those (l+, l-) Î ℝ2 such that the Dirichlet problem{−�u = λ+u+ − λ−u− in �,
u = 0 on ∂�

(1)

has a nontrivial solution u ∈ W1,2
0 (�). In particular, if l1 < l2 <... are the eigenvalues

of the Dirichlet Laplacian on Ω (counted with multiplicity), then clearly Σ contains

each pair (lk, lk), k Î N, and the two lines {l1} × ℝ and ℝ × {l1}. Following [1, p. 15],

we call the elements of Σ \ ({l1} × ℝ ∪ ℝ × {l1}) nontrivial Fučík eigenvalues. It was

proved in [2] that there exists a first curve C of nontrivial Fučík eigenvalues in the

sense that, defining h: (l1, ∞) ® ℝ by

η(λ)def inf
{
μ > λ1 : (λ,μ) is a nontrivial Fučı́k eigenvalue

}
,

we have that l1 < h(l) <∞ for every l (>l1), and the curve

Cdef {(λ, η(λ)) : λ ∈ (λ1,∞)
}

consists of nontrivial Fučík eigenvalues. Moreover, it was proved in [2] that C is a

continuous and strictly decreasing curve which contains the point (l2, l2) and which is

symmetric with respect to the diagonal.

It was conjectured in [1, p. 16], that if Ω is a radially symmetric bounded domain,

then every eigenfunction u of (1) corresponding to some (λ+,λ−) ∈ Cis not radial. The
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authors of [1, p. 16] actually proved that the conjecture is true if (λ+,λ−) ∈ Cbut suffi-
ciently close to the diagonal.

The original purpose of this paper was to prove that the above conjecture holds true

for all (λ+,λ−) ∈ C provided Ω is a ball in ℝN with N = 2 and N = 3. Without loss of

generality, we prove it for the unit ball B centred at the origin. Cf. Theorem 6 below.

During the review of this paper, one of the reviewers drew the authors’ attention to

the paper [3], where the same result is proved for general N ≥ 2 (see [3, Theorem

3.2]). The proof in [3] uses the Morse index theory and covers also problems with

weights on more general domains than balls. On the other hand, our proof is more

elementary and geometrically instructive. From this point of view, our result represents

a constructive alternative to the rather abstract approach presented in [3]. This is the

main authors’ contribution.

2. Variational characterization of C
Let us fix s Î ℝ and let us draw in the (l+, l-) plane a line parallel to the diagonal and

passing through the point (s, 0), see Figure 1.

We show that the point of intersection of this line and C corresponds to the critical

value of some constrained functional (cf. [4, p. 214]). To this end we define the func-

tional

Js(u)
def

∫
�

|∇u|2 − s
∫
�

(u+)2.

Then Js(u) is a C1-functional on W1,2
0 (�) and we look for the critical points of the

restriction J̃s of Js to

Sdef
{
u ∈ W1,2

0 (�) : I(u)def ∫
�

u2 = 1
}
.

By the Lagrange multipliers rule, u ∈ S is a critical point of J̃s if and only if there

exists t Î ℝ such that

λ+

λ
−

0

λ1

λ1

C

diagonal

parallel

s

Figure 1 The first two Fučík curves.
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J ′
s (u) = tI ′(u), i.e.,

∫
�

∇u∇v − s
∫
�

u+v = t
∫
�

uv (2)

for all v ∈ W1,2
0 (�). This means that{−�u = (s + t)u+ − tu− in �,

u = 0 on ∂�

holds in the weak sense. In particular, (l+, l-) = (s + t, t) Î Σ. Taking v = u in (2),

one can see that the Lagrange multiplier t is equal to the corresponding critical value

of J̃s.

From now on we assume s ≥ 0, which is no restriction since Σ is clearly symmetric

with respect to the diagonal. The first eigenvalue l1 of -Δ on W1,2
0 (�) is defined as

λ1 = λ1(�)def min

⎧⎨
⎩

∫
�

|∇u|2 : u ∈ W1,2
0 (�) and

∫
�

|u|2 = 1

⎫⎬
⎭ . (3)

It is well known that l1 >0, simple and admits an eigenfunction

ϕ1 ∈ W1,2
0 (�) ∩ C1(�) with �1 satisfying �1(x) >0 for x Î Ω. Let

�
def {

γ ∈ C([−1, 1],S) : γ (−1) = −ϕ1 and γ (1) = ϕ1
}

and

c(s)def inf
γ∈�

max
u∈γ

J̃s(u). (4)

We keep the same notation g for the image of a function g = g (t). It follows from [4,

Props. 2.2, 2.3 and Thms. 2.10, 3.1] that the first three critical levels of J̃s are classified

as follows.

(i) �1 is a strict global minimum of J̃s with J̃s(ϕ1) = λ1 − s. The corresponding

point in Σ is (l1, l1 - s), which lies on the vertical line through (l1, l1).
(ii) -�1 is a strict local minimum of J̃s, and J̃s(−ϕ1) = λ1. The corresponding point

in Σ is (l1 + s, l1), which lies on the horizontal line through (l1, l1).
(iii) For each s ≥ 0, the point (s + c(s), c(s)), where c(s) > l1 is defined by the mini-

max formula (4), belongs to Σ. Moreover, the point (s + c(s), c(s)) is the first nontri-

vial point of Σ on the parallel to the diagonal through (s, 0).

Next we summarize some properties of the dependence of the (principal) first eigen-

value l1(Ω) on the domain Ω. The following proposition follows immediately from the

variational characterization of l1 given by (3) and the properties of the corresponding

eigenfunction �1.

Proposition 1. l1(Ω2) < l1(Ω1) whenever Ωi, i = 1, 2, are bounded domains satisfy-

ing Ω1 ⊆ Ω2 and meas(Ω1) <meas(Ω2).

Let us denote by Vd, d Î (0, 1), the ball canopy of the height 2d and by Bd the maxi-

mal inscribed ball in Vd (see Figure 2). It follows from Proposition 1 that for d Î (0, 1),

we have
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λ1(Vd) < λ1(Bd), λ1(V1−d) < λ1(B1−d). (5)

Moreover, from the variational characterization (3), the following properties of the

function

d �→ λ1(Vd) (6)

follow immediately.

Proposition 2. The function (6) is continuous and strictly decreasing on (0, 1), it

maps (0, 1) onto (l1(B), ∞) and lim
d→0+

λ1(Vd) = ∞, lim
d→1−

λ1(Vd) = λ1(B).

In particular, it follows from Proposition 2 that, given s ≥ 0, there exists a unique

ds ∈ (0, 12 ] such that

λ1(Vds) = s + λ1(V1−ds). (7)

Let uds and u1−ds be positive principle eigenvalues associated with λ1(Vds) and
λ1(V1−ds), respectively. We extend both functions on the entire B by setting uds ≡ 0 on
u1−ds ≡ 0, u1−ds ≡ 0 on Vds and then normalize them by uds, u1−ds ∈ S. Our aim is to

construct a special curve g Î Γ on which the values of J̃s stay below λ1(Vds). Actually,

the curve g connects �1 with (-�1) and passes through uds and (−u1−ds). For this pur-

pose we set g = g1 ∪ g2 ∪ g3, where

γ1
def

{
u = (τϕ2

1 + (1 − τ )u2ds)
1
2 : τ ∈ [0, 1]

}
,

γ2
def {u = αuds − βu1−ds : α ≥ 0, β ≥ 0,α2 + β2 = 1

}
,

γ3
def

{
u = −(τϕ2

1 + (1 − τ )u21−ds)
1
2 : τ ∈ [0, 1]

}
.

Changing suitably the parametrization of gi, i = 1, 2, 3 (we skip the details for the

brevity), g can be viewed as a graph of a continuous function, mapping [-1, 1] into S.
We prove

Proposition 3. J̃s(u) ≤ λ1(V1−ds)for all u Î g.

x

y

B

1

Vd

V1−d

Bd

2d

B1−d

d

Figure 2 The ball decomposition
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For the proof we need so-called ray-strict convexity of the functional

J (v)def
∫
�

∣∣∣∣∇v
1
2

∣∣∣∣
2

(8)

defined on

V+
def

{
v : � → (0,∞) : v

1
2 ∈ W1,2

0 (�) ∩ C(�̄)
}
.

We say that J : V+ → R is ray-strictly convex if for all τ Î (0, 1) and v1, v2 Î V+ we

have

J ((1 − τ )v1 + τv2) ≤ (1 − τ )J (v1) + τJ (v2)

where the equality holds if and only if v1 and v2 are colinear.

Lemma 4 (see [5, p. 132]). The functional J defined by (8) is ray-strictly convex.

Proof of Proposition 3.

1. The values on g1. For u Î g1 we have

J̃s(u) = J (u2) − s
∫
B

u2 =
∫
B

∣∣∣∣∇(
τϕ2

1 + (1 − τ )u2ds
)1
2

∣∣∣∣
2

− s
∫
B

(
τϕ2

1 + (1 − τ )u2ds
)

≤ τ

∫
B

|∇ϕ1|2 + (1 − τ )
∫
B

|∇uds |2 − s

⎛
⎝τ

∫
B

ϕ2
1 + (1 − τ )

∫
B

u2ds

⎞
⎠

≤ τ

∫
B

|∇uds |2 + (1 − τ )
∫
B

|∇uds |2 − s

≤
∫
Vds

|∇uds |2 − s = λ1(Vds) − s = s + λ1(V1−ds) − s = λ1(V1−ds)

by Lemma 4 (with Ω := B), (3) and (7).

2. The values on g2. Let u Î g2, then there exist a ≥ 0, b ≥ 0, a2 + b2 = 1 and such

that u = αuds − βu1−ds. Since the supports of uds and u1−ds are mutually disjoint, we

have

J̃s(u) = α2
∫
Vds

|∇uds |2 + β2
∫

V1−ds

|∇u1−ds |2 − α2s
∫
Vds

u2ds

= α2λ1(Vds) + β2λ1(V1−ds) − α2s

= α2s + (α2 + β2)λ1(V1−ds) − α2s = λ1(V1−ds)

by (7).

3. The values on g3. For u Î g3 we have (similarly as in the first case)

J̃s(u) =
∫
B

∣∣∣∣∇(
τϕ2

1 + (1 − τ )u21−ds

)1
2

∣∣∣∣
2

≤
∫

V1−ds

|∇u1−ds |2 = λ1(V1−ds).

■
From Proposition 3, (4) and (5) we immediately get

Proposition 5. Given s ≥ 0, we have

c(s) ≤ λ1(V1−ds) < λ1(B1−ds). (9)
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3. Radial eigenfunctions
Radial Fučík spectrum has been studied in [6]. Let |x| be the Euclidean norm of x Î
ℝN and u = u(|x|) be a radial solution of the problem{−�u = λ+u+ − λ−u− in B,

u = 0 on ∂B.
(10)

Set r = |x| and write v(r) = u(|x|). It follows from the regularity theory that (10) is

equivalent to the singular problem{
v′′ + N−1

r v′ + λ+v
+ − λ−v− = 0 in (0, 1),

v′(0) = 0, v(1) = 0.
(11)

The authors of [6] provide a detailed characterization of the Fučík spectrum of (11)

by means of the analysis of the linear equation associated to (11):

v′′ +
N − 1

r
v′ + λv = 0 in (0,∞). (12)

The function v is a solution of (12) if and only if v̂(r) = r
1
2 (N−1)v(r) is a solution of

v̂′′ +
(

λ +
(N − 1)(3 − N)

4r2

)
v̂ = 0 in (0,∞). (13)

Note that the functions v and v̂ have the same zeros.

Let us investigate the radial Fučík eigenvalues which lie on the line parallel to the

diagonal and which passes through the point (s, 0) in the (l+, l- )-plane. The first two

intersections coincide with the points (l1, l1 - s) and (l1 + s, l1). This fact follows

from the radial symmetry of the principal eigenfunction of the Dirichlet Laplacian on

the ball. A normalized radial eigenfunction associated with the next intersection has

exactly two nodal domains and it is either positive or else negative at the origin. Let us

denote the former eigenfunction by u1 and the latter one by u2, respectively. Let (l1 +

s, l1) and (l2 + s, l2) be Fučík eigenvalues associated with u1 and u2, respectively. The

property (iii) on page 5 implies that c(s) ≤ li, i = 1, 2.

The main result of this paper states that the above inequalities are strict and it is for-

mulated as follows.

Theorem 6. Let N = 2 or N = 3 and s Î ℝ be arbitrary. Then

c(s) < λi, i = 1, 2.

In particular, nontrivial Fučík eigenvalues on the first curve of the Fučík spectrum are

not radial.

Proof. Let ui(x) = vi(r), i = 1, 2, r = |x|. Then there exists d1 Î (0, 1) such that v1(r)

is a solution of{
v′′ + N−1

r v′ + (s + λ1)v = 0 and v > 0 in (0, d1),

v′(0) = v(d1) = 0
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and {
v′′ + N−1

r v′ + λ1v = 0 and v < 0 in (d1, 1),

v(d1) = v(1) = 0.

After the substitution v̂1(r) = r
1
2 (N−1)v1(r), v̂1 is a solution of

⎧⎪⎨
⎪⎩
v̂′′ +

(
s + λ1 +

(N − 1)(3 − N)
4r2

)
v̂ = 0 and v̂ > 0 in (0, d1),

v̂(0) = v̂(d1) = 0
(14)

and ⎧⎪⎨
⎪⎩
v̂′′ +

(
λ1 +

(N − 1)(3 − N)
4r2

)
v̂ = 0 and v̂ < 0 in (d1, 1),

v̂(d1) = v̂(1) = 0.
(15)

Let u1 = u1(x) and u2 = u2(x) be the principal positive eigenfunctions associated with

λ1(Bds) and λ1(B1−ds), respectively. Both ui, i = 1, 2, are radially symmetric with respect

to the centre of the corresponding ball. Due to the invariance of the Laplace operator

with respect to translations we may assume that both Bds and B1−ds are centred at the

origin. We then set ui(x) = wi(r), i = 1, 2, r = |x|. The functions wi, i = 1, 2, solve{
w′′

1 + N−1
r w′

1 + λ1(Bds)w1 = 0 and w1 > 0 in (0, ds),

w′
1(0) = w1(ds) = 0

and {
w′′

2 + N−1
r w′

2 + λ1(B1−ds)w2 = 0 and w2 > 0 in (0, 1 − ds),

w′
2(0) = w2(1 − ds) = 0.

After the substitution ŵi(r) = r
1
2 (N−1)wi(r), i = 1, 2, we have

⎧⎪⎨
⎪⎩
ŵ′′
1 +

(
λ1(Bds) +

(N − 1)(3 − N)
4r2

)
ŵ1 = 0 and ŵ1 > 0 in (0, ds),

ŵ1(0) = ŵ1(ds) = 0
(16)

and ⎧⎪⎨
⎪⎩
ŵ′′
2 +

(
λ1(B1−ds) +

(N − 1)(3 − N)
4r2

)
ŵ2 = 0 and ŵ2 > 0 in (0, 1 − ds),

ŵ2(0) = ŵ2(1 − ds) = 0.

The substitution ṽ(r) = −v̂(r + d1) transforms (15) to⎧⎪⎨
⎪⎩
ṽ′′ +

(
λ1 +

(N − 1)(3 − N)

4(r + d1)2

)
ṽ = 0 and ṽ > 0 in (0, 1 − d1),

ṽ(0) = ṽ(1 − d1) = 0.

(17)

Let us assume that λ1 ≤ λ1(V1−ds) (< λ1(B1−ds)) and that d1 > ds. Choose

δ =
d1 − ds

2
and set w̃2(r) = ŵ2(r + δ). Then w̃2 solves
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⎧⎪⎨
⎪⎩
w̃′′
2 +

(
λ1(B1−ds) +

(N − 1)(3 − N)

4(r + δ)2

)
w̃2 = 0 and w̃2 > 0 in (−δ, 1 − ds − δ),

w̃2(−δ) = w̃2(1 − ds − δ) = 0.

(18)

It follows that (18) is a Sturm majorant for (17) on the interval I = [− δ
2 , 1 − ds − δ

2 ]

and w̃2 > 0 on J . Since ṽ(0) = ṽ(1 − d1) = 0 and 0 ∈ I , 1 − d1 ∈ I , we have a contra-

diction with the Sturm Separation Theorem (see [7, Cor. 3.1, p. 335]). Hence d1 ≤ ds.

Similar application of the Strum Separation Theorem to (14) and (16) now yields

λ1(Bds) ≤ s + λ1. (19)

Since we also have λ1(Bds) > λ1(Vds), it follows from (7) and (19) that

s + λ1(V1−ds) = λ1(Vds) < λ1(Bds) ≤ s + λ1 ≤ s + λ1(V1−ds),

a contradiction which proves that λ1 > λ1(V1−ds).

Similarly as above, there exists d2 Î (0, 1) such that v2 is a solution of{
v′′ + N−1

r v′ + λ2v = 0 and v < 0 in (0, d2),

v′(0) = v(d2) = 0

and {
v′′ + N−1

r v′ + (s + λ2)v = 0 and v > 0 in (d2, 1),

v(d2) = v(1) = 0.

After the substitution v̂2(r) = r
1
2 (N−1)v2(r), v̂2 is a solution of

⎧⎪⎨
⎪⎩
v̂′′ +

(
λ2 +

(N − 1)(3 − N)
4r2

)
v̂ = 0 and v̂ < 0 in (0, d2),

v̂(0) = v̂(d2) = 0
(20)

and ⎧⎪⎨
⎪⎩
v̂′′ +

(
s + λ2 +

(N − 1)(3 − N)
4r2

)
v̂ = 0 and v̂ > 0 in (d2, 1),

v̂(d2) = v̂(1) = 0.
(21)

Assume that λ2 ≤ λ1(V1−ds) (< λ1(B1−ds)) and that 1- ds > d2. Similar arguments

based on the Sturm Comparison Theorem yield first that 1- ds ≤ d2 (i.e., 1 - d2 ≤ ds),

and then (16), (21) that

λ1(Bds) ≤ s + λ2.

As above we obtain

s + λ1(V1−ds) = λ1(Vds) < λ1(Bds) ≤ s + λ2 ≤ s + λ1(V1−ds),

a contradiction which proves that λ2 > λ1(V1−ds).

The assertion now follows from Proposition 5. ■
Remark 7. Careful investigation of the above proof indicates that (N - 1)(3 - N) ≤ 0

is needed to make the comparison arguments work. The proof is simpler for N = 3
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when the transformed equations for v̂ and ŵ are autonomous. The application of the

Sturm Comparison Theorem is then more straightforward.
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