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Abstract

In this paper, we consider the nonlinear viscoelastic equation
| ut|ρutt − �u − �utt +

∫ t
0 g(t − s)�u(s)ds+ | u|pu = 0 , in a bounded domain with initial

conditions and Dirichlet boundary conditions. We prove an arbitrary decay result for
a class of kernel function g without setting the function g itself to be of exponential
(polynomial) type, which is a necessary condition for the exponential (polynomial)
decay of the solution energy for the viscoelastic problem. The key ingredient in the
proof is based on the idea of Pata (Q Appl Math 64:499-513, 2006) and the work of
Tatar (J Math Phys 52:013502, 2010), with necessary modification imposed by our
problem.
Mathematical Subject Classification (2010): 35B35, 35B40, 35B60

Keywords: Viscoelastic equation, Kernel function, Exponential decay, Polynomial
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1 Introduction
It is well known that viscoelastic materials have memory effects. These properties are

due to the mechanical response influenced by the history of the materials themselves.

As these materials have a wide application in the natural sciences, their dynamics are

of great importance and interest. From the mathematical point of view, their memory

effects are modeled by an integro-differential equations. Hence, questions related to

the behavior of the solutions for the PDE system have attracted considerable attention

in recent years. Many authors have focused on this problem for the last two decades

and several results concerning existence, decay and blow-up have been obtained, see

[1-28] and the reference therein.

In [3], Cavalcanti et al. studied the following problem

| ut |ρutt − �u − �utt +

t∫
0

g(t − s)�u(s)ds − γ�ut = 0, in � × (0,∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ �,

u(x, t) = 0, x ∈ ∂�, t ≥ 0,

(1:1)

where Ω ⊂ RN, N ≥ 1, is a bounded domain with a smooth boundary ∂Ω, g ≥ 0,

0 < ρ ≤ 2
N−2 if N ≥ 3 or r > 0 if N = 1, 2, and the function g: R+ ® R+ is a nonin-

creasing function. This type of equations usually arise in the theory of viscoelasticity

when the material density varies according to the velocity. In that paper, they proved a

global existence result of weak solutions for g ≥ 0 and a uniform decay result for g > 0.
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Precisely, they showed that the solutions goes to zero in an exponential rate for g > 0

and g is a positive bounded C1-function satisfying

1 −
∞∫
0

g(s) ds = 1 − l > 0, (1:2)

and

−ξ1g(t) ≤ g′(t) ≤ −ξ2g(t), (1:3)

for all t ≥ 0 and some positive constants ξ1 and ξ2. Later, this result was extended by

Messaoudi and Tatar [15] to a situation where a nonlinear source term is competing

with the dissipation terms induced by both the viscoelasticity and the viscosity.

Recently Messaoudi and Tatar [14] studied problem (1.1) for the case of g = 0, they

improved the result in [3] by showing that the solution goes to zero with an exponen-

tial or polynomial rate, depending on the decay rate of the relaxation function g.

The assumptions (1.2) and (1.3), on g, are frequently encountered in the linear case

(r = 0), see [1,2,4-6,13,22,23,29-31]. Lately, these conditions have been weakened by

some researchers. For instance, instead of (1.3) Furati and Tatar [8] required the func-

tions eat g(t) and eatg’(t) to have sufficiently small L1-norm on (0, ∞) for some a > 0

and they can also have an exponential decay of solutions. In particular, they do not

impose a rate of decreasingness for g. Later on Messaoudi and Tatar [21] improved

this result further by removing the condition on g’. They established an exponential

decay under the conditions g’(t) ≤ 0 and eat g(t) Î L1(0, ∞) for some large a > 0. This

last condition was shown to be necessary condition for exponential decay [7]. More

recently Tatar [25] investigated the asymptotic behavior to problem (1.1) with r = g =

0 when h(t)g(t) Î L1(0, ∞) for some nonnegative function h(t). He generalized earlier

works to an arbitrary decay not necessary of exponential or polynomial rate.

Motivated by previous works [21,25], in this paper, we consider the initial boundary

value problem for the following nonlinear viscoelastic equation:

| ut|ρutt − �u − �utt +

t∫
0

g(t − s)�u(s)ds + | u|pu = 0, in � × (0,∞), (1:4)

with initial conditions

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ �, (1:5)

and boundary condition

u(x, t) = 0, x ∈ ∂�, t ≥ 0, (1:6)

where Ω ⊂ RN, N ≥ 1, is a bounded domain with a smooth boundary ∂Ω. Here r,
p > 0 and g represents the kernel of the memory term, with conditions to be stated

later [see assumption (A1)-(A3)].

We intend to study the arbitrary decay result for problem (1.4)-(1.6) under the

weaker assumption on g, which is not necessarily decaying in an exponential or poly-

nomial fashion. Indeed, our result will be established under the conditions g’(t) ≤ 0 and∫ ∞
0 ξ(s)g(s) ds < ∞ for some nonnegative function ξ(t). Therefore, our result allows a
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larger class of relaxation functions and improves some earlier results concerning the

exponential decay or polynomial decay.

The content of this paper is organized as follows. In Section 2, we give some lemmas

and assumptions which will be used later, and we mention the local existence result in

Theorem 2.2. In Section 3, we establish the statement and proof of our result related

to the arbitrary decay.

2 Preliminary results
In this section, we give some assumptions and lemmas which will be used throughout

this work. We use the standard Lebesgue space Lp(Ω) and Sobolev space H1
0(�) with

their usual inner products and norms.

Lemma 2.1. (Sobolev-Poincaré inequality) Let 2 ≤ p ≤ 2N
N−2 , the inequality

‖ u‖p ≤ cs ‖ ∇u‖2 for u ∈ H1
0(�),

holds with the optimal positive constant cs, where || · ||p denotes the norm of Lp(Ω).

Assume that r satisfies

0 < ρ ≤ 2
N − 2

if N ≥ 3 or ρ > 0 if N = 1, 2. (2:1)

With regards to the relaxation function g(t), we assume that it verifies

(A1) g(t) ≥ 0, for all t ≥ 0, is a continuous function satisfying

0 <

∞∫
0

g(s) ds = l < 1. (2:2)

(A2) g’(t) ≤ 0 for almost all t > 0.

(A3) There exists a positive nondecreasing function ξ(t): [0, ∞) ® (0, ∞) such that
ξ ′(t)
ξ(t) = η(t) is a decreasing function and

∞∫
0

ξ(s)g(s)ds < ∞. (2:3)

Now, we state, without a proof, the existence result of the problem (1.4)-(1.6) which

can be established by Faedo-Galerkin methods, we refer the reader to [3,5].

Theorem 2.2. Suppose that (2.1) and (A1) hold, and that (u0, u1) ∈ H1
0(�) × H1

0(�) .

Assume 0 < ρ ≤ 2
N−2 , if N ≥ 3, p > 0, if N = 1, 2. Then there exists at least one global

solution u of (1.4)-(1.6) satisfying

u ∈ L∞([0,∞);H1
0(�)), ut ∈ L∞([0,∞);H1

0(�)), utt ∈ L2([0,∞); L2(�)).

Next, we introduce the modified energy functional for problem (1.4)-(1.6)

E(t) =
1

ρ + 2
‖ ut ‖ρ+2

ρ+2 +
1
2

⎛
⎝1 −

t∫
0

g(s)ds

⎞
⎠ ‖ ∇u(t) ‖22 +

1
2

‖ ∇ut(t) ‖22

+
1
2
(g ◦ ∇u)(t) +

1
p + 2

‖ u(t) ‖p+2p+2,

(2:4)
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where

(g ◦ ∇u)(t) =

t∫
0

∫
�

g(t − s) | ∇u(t) − ∇u(s)|2 dxd s. (2:5)

Lemma 2.3. Let u be the solution of (1.4)-(1.6), then the modified energy E(t) satisfies

E′(t) =
1
2
(g′ ◦ ∇u)(t) − 1

2
g(t) ‖ ∇u(t) ‖22 ≤ 1

2
(g′ ◦ ∇u)(t) ≤ 0. (2:6)

Proof. Multiplying Eq. (1.4) by ut and integrating it over Ω, then using integration by

parts and the assumption (A1)-(A2), we obtain (2.6).

Remark. It follows from Lemma 2.3 that the energy is uniformly bounded by E(0)

and decreasing in t. Besides, from the definition of E(t) and (2, 2), we note that

(1 − l) ‖ ∇u ‖22 + ‖ ∇ut(t) ‖22 + (g ◦ ∇u)(t) ≤ 2E(0), ∀t ≥ 0. (2:7)

3 Decay of the solution energy
In this section, we shall state and prove our main result. For this purpose, we first

define the functional

L(t) = E(t) +
3∑
i=1

λi
i(t), (3:1)

where li are positive constants, i = 1, 2, 3 to be specified later and


1(t) =
1

ρ + 1

∫
�

| ut|ρutu dx +
∫
�

∇ut(t)∇u(t)dx, (3:2)


2(t) =
∫
�

(
�ut − 1

ρ + 1
| ut |ρut

) t∫
0

g(t − s)
(
u(t) − u(s)

)
ds dx, (3:3)


3(t) =
∫
�

t∫
0

H(t − s) | ∇u(s)|2 d s dx, (3:4)

here

H(t) = ξ(t)−1

∞∫
t

g(s)ξ(s) d s.

Remark. This functional was first introduced by Tatar [25] for the case of r = 0 and

without imposing the dispersion term and forcing term as far as (1.4) is concerned.

The following Lemma tells us that L(t) and E(t) + F3(t) are equivalent.
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Lemma 3.1. There exists two positive constants b1 and b2 such that the relation

β1(E(t) + 
3(t)) ≤ L(t) ≤ β2(E(t) + 
3(t)), (3:5)

holds for all t ≥ 0 and li small, i = 1, 2.

Proof. By Hölder inequality Young’s inequality Lemma 2.1, (2.7) and (2.2), we deduce

that

∣∣∣∣∣∣
∫
�

| ut|ρutu dx
∣∣∣∣∣∣ ≤ 1

2
‖ ut ‖2(ρ+1)2(ρ+1) +

1
2

‖ u ‖22

≤ c2(ρ+1)s

2
‖ ∇ut ‖2(ρ+1)2 +

c2s
2

‖ ∇u ‖22

≤ α1

2
‖ ∇ut ‖22 +

c2s
2

‖ ∇u ‖22,∣∣∣∣∣∣
∫
�

∇ut(t)∇u(t) dx

∣∣∣∣∣∣ ≤ 1
2
(‖ ∇ut ‖22 + ‖ ∇u ‖22),

∣∣∣∣∣∣
∫
�

∇ut

t∫
0

g(t − s)(∇u(t) − ∇u(s)) ds dx

∣∣∣∣∣∣
≤ 1

2
‖ ∇ut ‖22 +

1
2

∫
�

⎛
⎝ t∫

0

g(t − s)(∇u(t) − ∇u(s))

⎞
⎠

2

ds dx

≤ 1
2

‖ ∇ut ‖22 +
l
2
(g ◦ ∇u)(t),

and

∣∣∣∣∣∣
∫
�

| ut|ρut
t∫

0

g(t − s)(u(t) − u(s)) d s dx

∣∣∣∣∣∣
≤ 1

2
‖ ut ‖2(ρ+1)2(ρ+1) +

1
2

∫
�

⎛
⎝ t∫

0

g(t − s)
(
u(t) − u(s)

)⎞⎠
2

ds dx

≤ α1

2
‖ ∇ut ‖22 +

lc2s
2
(g ◦ ∇u)(t),

where α1 = c2(ρ+1)s (2E(0))ρ . Therefore, from above estimates, the definition of E(t)

by (2.4) and (2.2), we have

L(t) = E(t) +
3∑
i=1

λi
i(t)

≤ E(t) + c1||∇u||22 + c2||∇ut||22 + c3
(
g ◦ ∇u

)
(t) + λ3
3(t)
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and

L(t) ≥ E(t) − c1 ‖ ∇u ‖22 − c2 ‖ ∇ut ‖22 − c3
(
g ◦ ∇u

)
(t) + λ3
3(t)

≥ 1
ρ + 2

‖ ut ‖ρ+2
ρ+2 +

(
1
2
(1 − l) − c1

)
‖ ∇u(t) ‖22

+
(
1
2

− c2

)
‖ ∇ut(t) ‖22 +

(
1
2

− c3

) (
g ◦ ∇u

)
(t)

+
1

p + 2
‖ u(t) ‖p+2p+2 +λ3
3(t),

where c1 = λ1(c2s +ρ+1)
2(ρ+1) , c2 = (λ1+λ2)(α1+ρ+1)

2(ρ+1) , and c3 = l(ρ+1+c2s )λ2

2(ρ+1) . Hence, selecting li , i =

1, 2 such that

λ1 < min
{
(ρ + 1)(1 − l)
c2s + ρ + 1

,
ρ + 1

α1 + ρ + 1

}
,

λ2 < min
{

ρ + 1
l(c2s + ρ + 1)

,
ρ + 1

α1 + ρ + 1
− λ1

}
,

and again from the definition of E(t), there exist two positive constants b1 and b2
such that

β1(E(t) + 
3(t)) ≤ L(t) ≤ β2(E(t) + 
3(t)), t ≥ 0.

To obtain a better estimate for
∫
�

∇u
∫ t
0 g(t − s)∇u(s) d s dx , we need the following

Lemma which repeats Lemma 2 in [25].

Lemma 3.2. For t ≥ 0, we have

∫
�

∇u

t∫
0

g(t − s)∇u(s) d s dx =
1
2

⎛
⎝ t∫

0

g(s) ds

⎞
⎠ ‖ ∇u ‖22 +

1
2

t∫
0

g(t − s) ‖ ∇u(s) ‖22 d s

− 1
2

(
g ◦ ∇u

)
(t).

(3:6)

Proof. Straightforward computations yield this identity.

Now, we are ready to state and prove our result. First, we introduce the following

notations as in [24,25]. For every measurable set A ⊂ R+, we define the probability

measure ĝ by

ĝ(A) =
1
l

∫
A

g(s) d s.

The flatness set and the flatness rate of g are defined by

Fg = {s ∈ R+ | g(s) > 0 and g′(s) = 0} (3:7)

and

Rg = ĝ(Fg) =
1
l

∫
Fg

g(s) d s. (3:8)
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Before proceeding, we note that there exists t0 > 0 such that

t∫
0

g(s) d s ≥
t0∫

0

g(s) d s = g∗ > 0, ∀t ≥ t0, (3:9)

since g is nonnegative and continuous.

Theorem 3.3. Let (u0, u1) ∈ H1
0(�) × H1

0(�)be given. Suppose that (A1)-(A3), (2, 1)

and the hypothesis on p hold. Assume further that Rg <
g∗α

l(2α+2c2s )
, H(0) <

g∗(4+l)−3l
4

and

g∗ > 3l
4+l with

α =
(g∗(4 + l) − 3l)(1 − l)p

8c2(p+1)s (2E(0))p
.

Then the solution energy of (1.4)-(1.6) satisfies

E(t) ≤ Kξ(t)−μ, t ≥ 0,

where μ and K are positive constants.

Proof. In order to obtain the decay result of E(t), it suffices to prove that of L(t). To this

end, we need to estimate the derivative of L(t). It follows from (3.2) and Eq. (1.4) that


′
1(t) =

1
ρ + 1

‖ ut ‖ρ+2
ρ+2 + ‖ ∇ut ‖22 − ‖ ∇u ‖22

+
∫
�

∇u

t∫
0

g(t − s)∇u(s) d s dx− ‖ u ‖p+2p+2,

which together with the identity (3.6) and (2.2) gives


′
1(t) ≤ 1

ρ + 1
‖ ut ‖ρ+2

ρ+2 + ‖ ∇ut ‖22 −
(
1 − l

2

)
‖ ∇u ‖22

+
1
2

t∫
0

g(t − s) ‖ ∇u(s) ‖22 ds − 1
2
(g ◦ ∇u)(t)− ‖ u ‖p+2p+2 .

(3:10)

Next, we would like to estimate 
′
2(t) . Taking a derivative of F2 in (3.3) and using

Eq. (1.4) to get


′
2(t) =

⎛
⎝1 −

t∫
0

g(s) d s

⎞
⎠∫

�

∇u(t)

t∫
0

g(t − s)(∇u(t) − ∇u(s)) d s dx

+
∫
�

⎛
⎝ t∫

0

g(t − s)(∇u(t) − ∇u(s)) ds

⎞
⎠

2

dx − 1
ρ + 1

⎛
⎝ t∫

0

g(s) d s

⎞
⎠ ‖ ut ‖ρ+2

ρ+2

−
⎛
⎝ t∫

0

g(s) d s

⎞
⎠ ‖ ∇ut ‖22 −

∫
�

∇ut(t)

t∫
0

g′(t − s)(∇u(t) − ∇u(s)) d s dx

− 1
ρ + 1

∫
�

| ut |ρut
t∫

0

g′(t − s)(u(t) − u(s))d s dx

+
∫
�

| u |pu
t∫

0

g(t − s)(u(t) − u(s)) d s dx.

(3:11)
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We now estimate the first two terms on the right-hand side of (3.11) as in [25].

Indeed, for all measure set A and F such that A = R+ - F, we have

∫
�

∇u(t)

t∫
0

g(t − s)(∇u(t) − ∇u(s)) d s dx

=
∫
�

∇u(t)
∫

A∩[0,t]
g(t − s)(∇u(t) − ∇u(s)) ds dx

+
∫
�

∇u(t)
∫

F∩[0,t]
g(t − s)(∇u(t) − ∇u(s)) d s dx

≤
∫
�

∇u(t)
∫

A∩[0,t]
g(t − s)(∇u(t) − ∇u(s)) ds dx

+

⎛
⎜⎝ ∫
F∩[0,t]

g(s) ds

⎞
⎟⎠ ‖ ∇u ‖22 −

∫
�

∇u(t)
∫

F∩[0,t]
g(t − s)∇u(s) d s dx.

(3:12)

To simplify notations, we denote

At = A ∩ [0, t] and Ft = F ∩ [0, t].

Using Hölder inequality Young’s inequality and (2.2), we see that, for δ1 > 0,∫
�

∇u(t)
∫
At

g(t − s)(∇u(t) − ∇u(s)) d s dx

≤ δ1 ‖ ∇u ‖22 +
l

4δ1

∫
�

∫
At

g(t − s) | ∇u(t) − ∇u(s)|2 ds dx

and ∫
�

∇u(t)
∫
Ft

g(t − s)∇u(s) d s dx

≤ 1
2

⎛
⎝∫

Ft

g(s) d s

⎞
⎠ ‖ ∇u ‖22 +

1
2

∫
Ft

g(t − s) ‖ ∇u(s) ‖22 ds.

Thus, from the definition of ĝ(F) by (3.8), (3.12) becomes

∫
�

∇u(t)

t∫
0

g(t − s)
(∇u(t) − ∇u(s)

)
ds dx

≤
(

δ1 +
3
2
l̂g(F)

)
‖ ∇u ‖22 +

l
4δ1

∫
�

∫
At

g(t − s) | ∇u(t) − ∇u(s)|2 d s dx

+
1
2

∫
Ft

g(t − s) ‖ ∇u(s) ‖22 ds.

(3:13)

The second term on the right-hand side of (3.11) can be estimated as follows (see

[25]), for δ2 > 0,
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∫
�

⎛
⎝ t∫

0

g(t − s)
(∇u(t) − ∇u(s)

)
d s

⎞
⎠

2

dx

=
∫
�

⎛
⎜⎝∫

At

g(t − s)
(∇u(t) − ∇u(s)

)
d s +

∫
Ft

g(t − s)
(∇u(t) − ∇u(s)

)
d s

⎞
⎟⎠

2

dx

≤
(
1 +

1
δ2

)
l
∫
�

∫
At

g(t − s)|∇u(t) − ∇u(s)|2 ds dx

+ (1 + δ2)l̂g(F)
∫
�

∫
Ft

g(t − s)|∇u(t) − ∇u(s)|2 d s dx.

(3:14)

Using Hölder inequality Young’s inequality and (A2) to deal with the fifth term, for

δ3 > 0, ∣∣∣∣∣∣
∫
�

∇ut(t)

t∫
0

g′(t − s)(∇u(t) − ∇u(s)) ds dx

∣∣∣∣∣∣
≤ δ3 ‖ ∇ut ‖22 +

1
4δ3

∫
�

⎛
⎝ t∫

0

g′(t − s)(∇u(t) − ∇u(s)) d s

⎞
⎠

2

dx

≤ δ3 ‖ ∇ut ‖22 −g(0)
4δ3

(g′ ◦ ∇u) (t).

(3:15)

Exploiting Hölder inequality Young’s inequality Lemma 2.1 and (A2) to estimate the

sixth term, for δ4 > 0,∣∣∣∣∣∣
1

ρ + 1

∫
�

| ut|ρut
t∫

0

g′(t − s)(u(t) − u(s)) d s dx

∣∣∣∣∣∣
≤ 1

ρ + 1

⎛
⎜⎝δ4 ‖ ut ‖2(ρ+1)2(ρ+1) +

1
4δ4

∫
�

⎛
⎝ t∫

0

g′(t − s)(u(t) − u(s)) d s

⎞
⎠

2

dx

⎞
⎟⎠

≤ 1
ρ + 1

(
δ4c

2(ρ+1)
s ‖ ∇ut ‖2(ρ+1)2 − g(0)c2s

4δ4

(
g′ ◦ ∇u

)
(t)

)

≤ 1
ρ + 1

(
α1δ4 ‖ ∇ut ‖22 − g(0)c2s

4δ4

(
g′ ◦ ∇u

)
(t)

)
.

(3:16)

For the last term, thanks to Hölder inequality Young’s inequality Lemma 2.1, (2.7),

(2.2) and (3.8), we have, for δ5 > 0,∣∣∣∣∣∣
∫
�

| u|pu
t∫

0

g(t − s)(u(t) − u(s)) d s dx

∣∣∣∣∣∣
≤ δ5

∫
�

| u|2(p+1) dx + 1
4δ5

∫
�

⎛
⎝ t∫

0

g(t − s)(u(t) − u(s)) d s

⎞
⎠

2

dx

≤ δ5α2 ‖ ∇u ‖22 +
lc2s
2δ5

∫
�

∫
At

g(t − s) | ∇u(t) − ∇u(s)|2 d s dx

+
lc2s
2δ5

ĝ(F)
∫
�

∫
Ft

g(t − s) | ∇u(t) − ∇u(s)|2 d s dx,

(3:17)
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where α2 = c2(p+1)s

(
2E(0)
1−l

)p
. Thus, gathering these estimates (3.13)-(3.17) and using

(3.9), we obtain, for t ≥ t0,


′
2(t) ≤

(
(1 − g∗)

(
δ1 +

3
2
l̂g(F)

)
+ δ5α2

)
‖ ∇u ‖22

−
(
g(0)
4δ3

+
g(0)cs

4(ρ + 1)δ4

)
(g′ ◦ ∇u) (t) +

1 − g∗
2

∫
Ft

g(t − s) ‖ ∇u(s) ‖22 ds

+
(

δ3 +
α1δ4

ρ + 1
− g∗

)
‖ ∇ut ‖22 − g∗

(ρ + 1)
‖ ut ‖ρ+2

ρ+2

+ l
(
1 +

1
δ2

+
c2s
2δ5

+
1 − g∗
4δ1

)∫
�

∫
At

g(t − s) | ∇u(t) − ∇u(s)|2 d s dx

+
(
1 + δ2 +

c2s
2δ5

)
l̂g(F)

∫
�

∫
Ft

g(t − s) | ∇u(t) − ∇u(s)|2 d s dx.

(3:18)

Further, taking a derivative of F3(t), using the fact that ξ ′(t)
ξ(t) = η(t) is a decreasing

function and the definition of F3(t) by (3.4), we derive that (see [25])


′
3(t) = H(0) ‖ ∇u ‖22 −

t∫
0

ξ ′(t − s)
ξ(t − s)

H(t − s) ‖ ∇u(s) ‖22 ds −
t∫

0

g(t − s) ‖ ∇u(s) ‖22 d s

≤ H(0) ‖ ∇u ‖22 − η(t)

t∫
0

H(t − s) ‖ ∇u(s) ‖22 d s −
t∫

0

g(t − s) ‖ ∇u(s) ‖22 d s

= H(0) ‖ ∇u ‖22 − η(t)
3(t) −
t∫

0

g(t − s) ‖ ∇u(s) ‖22 ds.

(3:19)

Hence, we conclude from (2.6), (3.10), (3.18) and (3.19) that for any t ≥ t0 > 0,

L′(t) = E′(t) + λ1

′
1(t) + λ2


′
2(t) + λ3


′
3(t)

≤
(
1
2

− λ2

(
g(0)
4δ3

+
g(0)c2s

4(ρ + 1)δ4

))
(g′ ◦ ∇u) (t)

+
1

ρ + 1
(λ1 − λ2g∗) ‖ ut ‖ρ+2

ρ+2 −λ1 ‖ u ‖p+2p+2 −λ1

2
(g ◦ ∇u)(t)

+
(

λ1 + λ2

(
δ3 +

α1δ4

ρ + 1
− g∗

))
‖ ∇ut ‖22 +

(
λ1

2
− λ3

) t∫
0

g(t − s) ‖ ∇u(s) ‖22 d s

+
(

λ2(1 − g∗)
(

δ1 +
3
2
l̂g(F)

)
+ λ2δ5α2 − λ1(1 − l

2
) + λ3H(0)

)
‖ ∇u ‖22

+ λ2l
(
1 +

1
δ2

+
c2s
2δ5

+
1 − g∗
4δ1

)∫
�

∫
At

g(t − s) | ∇u(t) − ∇u(s)|2 d s dx

+ λ2

(
1 + δ2 +

c2s
2δ5

)
l̂g(F)

∫
�

∫
Ft

g(t − s) | ∇u(t) − ∇u(s)|2 d s dx

+ λ2

(
1 − g∗

2

) ∫
Ft

g(t − s) ‖ ∇u(s) ‖22 d s − λ3η(t)
3(t).

(3:20)

For n ∈ N , we consider the sets (see [24,25])

An = {s ∈ R+ | ng′(s) + g(s) ≤ 0}
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and observe that

∪
n
An = R+ − {Fg ∪ Ng},

where Fg is given in (3.7) and Ng is the null set where g’ is not defined. In addition,

denoting Fn = R+ - An, then

lim
n→∞ ĝ(Fn) = ĝ(Fg),

because An are increasingly nested. Thus, choosing A = An, F = Fn and l1 = (g* - ε)

l2 for some ε > 0 in (3.20), we obtain

L′(t) ≤
(
1
2

− λ2

(
g(0)
4δ3

+
g(0)c2s

4(ρ + 1)δ4

))
(g′ ◦ ∇u)(t)

− λ2ε

ρ + 1
‖ ut ‖ρ+2

ρ+2 +λ2

(
δ3 +

α1δ4

ρ + 1
− ε

)
‖ ∇ut ‖22 − (

g∗ − ε
)
λ2 ‖ u ‖p+2p+2

− (g∗ − ε)λ2

2

(
g ◦ ∇u

)
(t) +

(
(g∗ − ε)λ2

2
− λ3

) t∫
0

g(t − s) ‖ ∇u(s) ‖22 ds

+
(

λ2(1 − g∗)
(

δ1 +
3
2
l̂g(Fn)

)
+ λ2δ5α2 − λ2

(
g∗ − ε

)
(1 − l

2
) + λ3H(0)

)
‖ ∇u ‖22

+ λ2l
(
1 +

1
δ2

+
c2s
2δ5

+
1 − g∗
4δ1

)∫
�

∫
Ant

g(t − s) | ∇u(t) − ∇u(s)|2 d s dx

+ λ2

(
1 + δ2 +

c2s
2δ5

)
l̂g(Fn)

∫
�

∫
Fnt

g(t − s) | ∇u(t) − ∇u(s)|2 d s dx

+ λ2

(
1 − g∗

2

) ∫
Fnt

g(t − s) ‖ ∇u(s) ‖22 d s − λ3η(t)
3(t).

(3:21)

At this point, we take δ3 = δ4 <
(ρ+1)ε

2(ρ+1+α1)
and select l2 so that

1
2

− λ2

(
g(0)
4δ3

+
g(0)c2s

4(ρ + 1)δ4

)
≥ 1

4
,

then (3.21) becomes

L′(t) ≤ − λ2ε

ρ + 1
‖ ut ‖ρ+2

ρ+2 −λ2ε

2
‖ ∇ut ‖22 − (g∗ − ε)λ2 ‖ u ‖p+2p+2

− (g∗ − ε)λ2

2
(g ◦ ∇u)(t) +

(
(g∗ − ε)λ2

2
− λ3

) t∫
0

g(t − s) ‖ ∇u(s) ‖22 d s

+
(

λ2(1 − g∗)
(

δ1 +
3
2
l̂g(Fn)

)
+ λ2δ5α2 − λ2

(
g∗ − ε

) (
1 − l

2

)
+ λ3H(0)

)
‖ ∇u ‖22

+
(

λ2l
(
1 +

1
δ2

+
c2s
2δ5

+
1 − g∗
4δ1

)
− 1

4n

) ∫
�

∫
Ant

g(t − s) | ∇u(t) − ∇u(s)|2 d s dx

+ λ2

(
1 + δ2 +

c2s
2δ5

)
l̂g(Fn)

∫
�

∫
Fnt

g(t − s) | ∇u(t) − ∇u(s)|2 d s dx

+ λ2

(
1 − g∗

2

) ∫
Fnt

g(t − s) ‖ ∇u(s) ‖22 d s − λ3η(t)
3(t).
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For ε, δ2 small enough and large value of n and t0, we see that if

δ5 = α and ĝ(Fn) <
g∗α

l(2α + 2c2s )
,

then(
(1 + δ2) +

c2s
2δ5

)
l̂g(Fn) − g∗ − ε

2
≤ 0

and

3
2
(1 − g∗)l̂g(Fn) < δ(g∗ − ε)

(
1 − l

2

)
, (3:22)

where

α =
g∗(4 + l) − 3l

8α2
=
(g∗(4 + l) − 3l)(1 − l)p

8c2(p+1)s (2E(0))p

and

δ =
3(1 − g∗)l
g∗(4 − 2l)

.

Note that a > 0 and 0 <δ < 1 due to g∗ > 3l
4+l . Furthermore, we require l2 and l3

satisfying

λ2l
(
1 +

1
δ2

+
c2s
2δ5

+
1 − g∗
4δ1

)
− 1

4n
< 0

and

λ2

2
< λ3 <

λ2(g∗(4 + l) − 3l)
8H(0)

,

this is possible because of H(0) <
g∗(4+l)−3l

4
. Then, letting δ1 be small enough and

using (3.22), we see that

λ2(1 − g∗)
(

δ1 +
3
2
l̂g(Fn)

)
+ λ2δ5α2 − λ2(g∗ − ε)

(
1 − l

2

)
+ λ3H(0) ≤ 0.

Hence, from the definition of E(t) by (2.4), we have, for all t ≥ t0,

L′(t) ≤ −c4E(t) − λ3η(t)
3(t),

for some positive constant c4. As h(t) is decreasing, we have h(t) ≤ c4 after some t* ≥

t0. Hence, with the help of the right hand side inequality in (3.5), we find

L′(t) ≤ −c5η(t)L(t), ∀t ≥ t∗, (3:23)

for some positive constant c5 > 0. An integration of (3.23) over (t*, t) gives

L(t) ≤ L(t∗)e−c5
∫ t
t∗ η(s) d s, ∀t ≥ t∗.
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Then using the left hand side inequality in (3.5) leads to

β1(E(t) + 
3(t)) ≤ L(t∗)e−c5
∫ t
t∗ η(s) d s, ∀t ≥ t∗.

Therefore, by virtue of the continuity and boundedness of E(t) and ξ(t) on the inter-

val [0, t*], we infer that

E(t) ≤ Kξ(t)−μ, t ≥ 0,

for some positive constants K and μ.

Similar to those remarks as in [25], we have the following remark.

Remark. Note that there is a wide class of relaxation functions satisfying (A3). More

precisely, if ξ(t) = eat, a > 0, then h(t) = a, this gives the exponential decay estimate

E(t) ≤ c1e−c2αt , for some positive constants c1 and c2. Similarly, if ξ(t) = (1 + t)a , a >

0, then we obtain the polynomial decay estimate E (t) ≤ c3 (1 + t)-μ, for some positive

constants c3 and μ.
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