
RESEARCH Open Access

Existence results for a class of nonlocal problems
involving p-Laplacian
Yang Yang1* and Jihui Zhang2

* Correspondence: yynjnu@126.
com
1School of Science, Jiangnan
University, Wuxi, 214122, People’s
Republic of China
Full list of author information is
available at the end of the article

Abstract

This paper is concerned with the existence of solutions to a class of p-Kirchhoff type
equations with Neumann boundary data as follows:{

−
[
M

(∫
�

|∇u|pdx
)]p−1

�pu = f (x, u), in�;
∂u
∂υ

= 0, on ∂�.

By means of a direct variational approach, we establish conditions ensuring the
existence and multiplicity of solutions for the problem.
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1. Introduction
In this paper, we deal with the nonlocal p-Kirchhoff type of problem given by:{−[

M
(∫

�
|∇u|pdx)]p−1

�pu = f (x, u), in�;
∂u
∂υ

= 0, on ∂�
(1:1)

where Ω is a smooth bounded domain in RN, 1 <p <N, ν is the unit exterior vector

on ∂Ω, Δp is the p-Laplacian operator, that is, Δpu = div(|∇u|p−2∇u), the function M :

R+ ® R+ is a continuous function and there is a constant m0 > 0, such that

(M0) M(t) ≥ m0 for all t ≥ 0.

f (x, t) : � × R → R is a continuous function and satisfies the subcritical condition:

∣∣f (x, t)∣∣ ≤ C(|t|q−1 + 1), for some p < q < p∗ =

{
Np
N−p , N ≥ 3;
+∞, N = 1, 2.

(1:2)

where C denotes a generic positive constant.

Problem (1.1) is called nonlocal because of the presence of the term M, which

implies that the equation is no longer a pointwise identity. This provokes some mathe-

matical difficulties which makes the study of such a problem particulary interesting.

This problem has a physical motivation when p = 2. In this case, the operator M

(∫Ω|∇u|2dx)Δu appears in the Kirchhoff equation which arises in nonlinear vibrations,

namely
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⎧⎨⎩
utt − M(

∫
�

|∇u|2dx)�u = f (x, u), in� × (0,T);
u = 0, on ∂� × (0,T);
u(x, 0) = u0(x), ut(x, 0) = u1(x).

P-Kirchhoff problem began to attract the attention of several researchers mainly after

the work of Lions [1], where a functional analysis approach was proposed to attack it.

The reader may consult [2-8] and the references therein for similar problem in several

cases.

This work is organized as follows, in Section 2, we present some preliminary results

and in Section 3 we prove the main results.

2. Preliminaries
By a weak solution of (1.1), then we say that a function u ε W1,p(Ω) such that[

M
(∫

�

|∇u|pdx
)]p−1∫

�

|∇u|p−2∇u∇ϕdx =
∫

�

f (x, u)ϕdx, for all ϕ ∈ W1,p(�)

So we work essentially in the space W1,p(Ω) endowed with the norm

‖u‖ =
(∫

�

(|∇u|p + |u|p)dx
) 1

p
,

and the space W1,p(Ω) may be split in the following way. Let Wc = 〈1〉, that is, the

subspace of W1,p(Ω) spanned by the constant function 1, and

W0 = {z ∈ W1,p(�),
∫
�
z = 0}, which is called the space of functions of W1,p(Ω) with

null mean in Ω. Thus

W1,p(�) = W0 ⊕ Wc.

As it is well known the Poincaré’s inequality does not hold in the space W1,p(Ω).

However, it is true in W0.

Lemma 2.1 [8] (Poincaré-Wirtinger’s inequality) There exists a constant h > 0 such

that
∫
�

|z|pdx ≤ η
∫
�

|∇z|pdxfor all z Î W0.

Let us also recall the following useful notion from nonlinear operator theory. If X is a

Banach space and A : X ® X* is an operator, we say that A is of type (S+), if for every

sequence {xn}n≥1 ⊆ X such that xn ⇀ x weakly in X, and lim supn→∞〈A(xn), xn − x〉 ≤ 0.

we have that xn ® x in X.

Let us consider the map A : W1,p(Ω) ® W1,p(Ω)* corresponding to −Δp with Neu-

mann boundary data, defined by

〈A(u), v〉 =
∫

�

|∇u|p−2∇u∇vdx, ∀u, v ∈ W1,p(�). (2:1)

We have the following result:

Lemma 2.2 [9,10]The map A : W1,p(Ω) ® W1,p(Ω)* defined by (2.1) is continuous

and of type (S+).

In the next section, we need the following definition and the lemmas.

Definition 2.1. Let E be a real Banach space, and D an open subset of E. Suppose

that a functional J : D ® R is Fréchet differentiable on D. If x0 Î D and the Fréchet

derivative J’ (x0) = 0, then we call that x0 is a critical point of the functional J and c =

J(x0) is a critical value of J.
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Definition 2.2. For J Î C1(E, R), we say J satisfies the Palais-Smale condition

(denoted by (PS)) if any sequence {un} ⊂ E for which J(un) is bounded and J’(un) ® 0 as

n ® ∞ possesses a convergent subsequence.

Lemma 2.3 [11]Let X be a Banach space with a direct sum decomposition X = X1 ⊕
X2, with k = dimX2 < ∞, let J be a C1 function on X, satisfying (PS) condition. Assume

that, for some r > 0,

J(u) ≤ 0for u ∈ X1, ‖u‖ ≤ r;

J(u) ≥ 0for u ∈ X2, ‖u‖ ≤ r.

Assume also that J is bounded below and infX J < 0. Then J has at least two nonzero

critical points.

Lemma 2.4 [12]Let X = X1 ⊕ X2, where X is a real Banach space and X2 ≠ {0}, and

is finite dimensional. Suppose J Î C1(X, R) satisfies (PS) and

(i) there is a constant a and a bounded neighborhood D of 0 in X2 such that J|∂D ≤ a
and,

(ii) there is a constant b >a such that J |X1
≥ β,

then J possesses a critical value c ≥ b, moreover, c can be characterized as

c = inf
h∈	

max
u∈D

J(h(u)).

where 	 = {h ∈ C(D,X)|h = id on ∂D}.
Definition 2.3. For J Î C1(E, R), we say J satisfies the Cerami condition (denoted by

(C)) if any sequence {un} ⊂ E for which J(un) is bounded and (1 ||un||) J’(un)|| ® 0 as

n ® ∞ possesses a convergent subsequence.

Remark 2.1 If J satisfies the (C) condition, Lemma 2.4 still holds.

In the present paper, we give an existence theorem and a multiplicity theorem for

problem (1.1). Our main results are the following two theorems.

Theorem 2.1 If following hold:

(F0) 0 ≤ lim
|u|→0

pF(x,u)
|u|p <

mp−1
0
η

a.e. x ∈ �, where F(x, u) =
∫ u
0 f (x, s)ds, h appears in

Lemma 2.1;

(F1) lim|u|→∞
pF(x,u)

|u|p ≤ 0 a.e. x ∈ �;

(F2)lim|u|→∞
∫
�
F(x, u)dx = −∞.

Then the problem (1.1) has least three distinct weak solutions in W1,p(Ω).

Theorem 2.2 If the following hold:

(M1) The function M that appears in the classical Kirchhoff equation satisfies

M̂(t) ≤ (M(t))p−1tfor all t ≥ 0, where M̂(t) =
∫ t
0 [M(s)]p−1ds;

(F3) f (x, u)u > 0 for all u �= 0;

(F4)lim|u|→∞
pF(x,u)

|u|p = 0 a.e. x ∈ �;

(F5)lim|u|→∞(f (x, u)u − pF(x, u)) = −∞.

Then the problem (1.1) has at least one weak solution in W1,p(Ω).

Remark 2.2 We exhibit now two examples of nonlinearities that fulfill all of our

hypotheses

f (x, u) =
mp−1

0

2η
|u|p−2u − |u|q−2u,
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hypotheses (F0), (F1), (F2) and (1.2) are clearly satisfied.

f (x, u) = arctan u +
u

1 + u2
,

hypotheses (F3), (F4) and (F5) and (1.2) are clearly satisfied.

3. Proofs of the theorems
Let us start by considering the functional J : W1,p(Ω) ® R given by

J(u) =
1
p
M̂

(∫
�

|∇u|pdx
)

−
∫

�

F(x, u)dx.

Proof of Theorem 2.1 By (F0), we know that f(x, 0) = 0, and hence u(x) = 0 is a

solution of (1.1).

To complete the proof we prove the following lemmas.

Lemma 3.1 Any bounded (PS) sequence of J has a strongly convergent subsequence.

Proof: Let {un} be a bounded (PS) sequence of J. Passing to a subsequence if neces-

sary, there exists u Î W1,p(Ω) such that un ⇀ u. From the subcritical growth of f and

the Sobolev embedding, we see that∫
�

f (x, un) (un − u)dx → 0.

and since J’(un)(un − u) ® 0, we conclude that[
M

(∫
�

|∇un|
p

dx
)]p−1∫

�

|∇un|p−2∇un∇(un − u)dx → 0.

In view of condition (M0), we have∫
�

|∇un|p−2∇un∇(un − u)dx → 0.

Using Lemma 2.2, we have un ® u as n ® ∞. □
Lemma 3.2 If condition (M0), (F1) and (F2) hold, then lim||u||→∞J(u) = +∞.

Proof: If there are a sequence {un} and a constant C such that ||un|| ® ∞ as n ® ∞,

and J(un) ≤ C (n = 1, 2 ···), let vn = un
‖un‖, then there exist v0 Î W1,p(Ω) and a subse-

quence of {vn}, we still note by {vn}, such that vn ⇀ v0 in W1,p(Ω) and vn ® v0 in Lp(Ω).

For any ε > 0, by (F1), there is a H > 0 such that F(x, u) ≤ ε
p |u|p for all |u| ≥ H and a.

e. x Î Ω, then there exists a constant C > 0 such that F(x, u) ≤ ε
p |u|p + C for all u Î R,

and a.e. x Î Ω, Consequently

C
||un||p ≥ J(un)

||un||p =
1

||un||p
(
1
p
M̂

(∫
�

|∇un|pdx
)

−
∫

�

F(x, un)dx
)

≥ 1
p
mp−1

0

∫
�

|∇vn|pdx − ε

p

∫
�

|vn|pdx − C|�|
||un||p

=
1
p
mp−1

0 −
(
1
p
mp−1

0 +
ε

p

)∫
�

|vn|pdx − C|�|
||un||p .

It implies ∫Ω|v0|
pdx ≥ 1. On the other hand, by the weak lower semi-continuity of

the norm, one has
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||v0|| ≤ lim inf
n→∞ ||vn|| = 1.

Hence
∫
�

|∇v0|pdx = 0, so |v0(x)| = constant ≠ 0 a.e. x Î Ω. By (F2),

lim|un|→∞
∫

�

F(x, un)dx → −∞. Hence

C ≥ J(un) =
1
p
M̂

(∫
�

|∇un|pdx
)

−
∫

�

F(x, un)dx

≥ −
∫

�

F(x, un)dx → +∞ as n → ∞.

This is a contradiction. Hence J is coercive on W1,p(Ω), bounded from below, and

satisfies the (PS) condition. □
By Lemma 3.1 and 3.2, we know that J is coercive on W1,p(Ω), bounded from below,

and satisfies the (PS) condition. From condition (F0), we know, there exist r > 0, ε > 0

such that

0 ≤ F(x, u) ≤
(
mp−1

0

pη
− ε

)
|u|p, for|u| ≤ r.

If u Î Wc, for ||u|| ≤ r1, then |u| ≤ r, we have

J(u) =
1
p
M̂

(∫
�

|∇u|pdx
)

−
∫

�

F(x, u)dx

= −
∫

�

F(x, u)dx ≤ 0.

If u Î W0, then from condition (F0) and (1.2), we have

F(x, u) ≤
(
mp−1

0

pη
− ε

)
|u|p + C|u|q, for u ∈ R, q ∈ (p, p∗).

Noting that∫
�

|u|pdx ≤ η

∫
�

|∇u|pdx, u ∈ W0,

we can obtain

J(u) =
1
p
M̂

(∫
�

|∇u|pdx
)

−
∫

�

F(x, u)dx

≥ 1
p
mp−1

0

∫
�

|∇u|pdx − mp−1
0

pη

∫
�

|u|pdx + ε

∫
�

|u|pdx − C
∫

�

|u|qdx

≥ Cε||u||p − CC1||u||q.
Choose ||u|| = r2 small enough, such that J(u) ≥ 0 for ||u|| ≤ r2 and u Î W0.

Now choose r = min{r1, r2}, then, we have

J(u) ≤ 0 for u ∈ Wc, ||u|| ≤ ρ;

J(u) ≤ 0 for u ∈ W0, ||u|| ≤ ρ.

Yang and Zhang Boundary Value Problems 2011, 2011:32
http://www.boundaryvalueproblems.com/content/2011/1/32

Page 5 of 8



If inf{J(u), u Î W1,p(Ω)} = 0, then all u Î Wc with ||u|| ≤ r are minimum of J, which

implies that J has infinite critical points. If inf{J(u), u Î W1,p(Ω)} < 0 then by Lemma

2.3, J has at least two nontrivial critical points. Hence problem (1.1) has at least two

nontrivial solutions in W1,p(Ω), Therefore, problem (1.1) has at least three distinct

solutions in W1,p(Ω). □
Proof of Theorem 2.2. We divide the proof into several lemmas.

Lemma 3.3 If condition (F3) and (F5) hold, then J|Wcis anticoercive. (i.e. we have that

J(u) ® -∞, as |u| ® ∞, u Î R.)

Proof: By virtue of hypothesis (F5), for any given L > 0, we can find R1 = R1(L) > 0

such that

F(x, u) ≥ 1
p
L +

1
p
f (x, u)u, for a.e.x ∈ �, |u| > R1.

Thus, using hypothesis (F3), we have

F(x, u) ≥ 1
p
L − C, for a.e.x ∈ � u ∈ R

So ∫
�

F(x, u)dx ≥ 1
p
L|�| − C|�|.

Since L > 0 is arbitrary, it follows that∫
�

F(x, u)dx → ∞, as |u| → ∞,

and so

J(u)|WC = −
∫

�

F(x, u)dx → −∞, as |u| → ∞.

This proves that J|Wc is anticoercive. □
Lemma 3.4 If hypothesis (F4) holds, then J|W0 ≥ −∞.

Proof: For a given 0 < ε < mp−1
0 , we can find Cε > 0 such that F(x, u) ≤ ε

pη |u|p + Cε

for a.e. x Î Ω all u Î R. Then

J(u)|u∈W0 =
1
p
M̂

(∫
�

|∇u|pdx
)

−
∫

�

F(x, u)dx

≥ 1
p
mp−1

0

∫
�

|∇u|pdx − mp−1
0

pη

∫
�

|u|pdx − C|�|

≥ −C|�|.
then J|W0 ≥ −∞. □
Lemma 3.5 If condition (F4) (F5) hold, then J satisfies the (C) condition.

Proof: Let {un}n ≥1 ⊆ W1,p(Ω) be a sequence such that

|J(un)| ≤ M1, ∀n ≥ 1. (3:1)

with some M1 > 0 and

(1 + ||un||)J′(un) → 0, in W1,p(�)∗ as n → ∞. (3:2)

Yang and Zhang Boundary Value Problems 2011, 2011:32
http://www.boundaryvalueproblems.com/content/2011/1/32

Page 6 of 8



We claim that the sequence {un} is bounded. We argue by contradiction. Suppose

that ||u|| ® +∞, as n ® ∞, we set vn = un
‖un‖, ∀n ≥ 1. Then ||vn|| = 1 for all n ≥ 1 and

so, passing to a subsequence if necessary, we may assume that

vn ⇀ v in W1,p(�);

vn → v in Lp(�).

from (3.2), we have ∀h Î W1,p(Ω)∣∣∣∣∣
[
M

(∫
�

|∇un|pdx
)]p−1 ∫

�

|∇vn|p−2∇vn∇hdx −
∫

�

f (x, un)h

‖un‖p−1 dx

∣∣∣∣∣ ≤ εn

1 + ‖un‖
‖h‖

‖un‖p−1 (3:3)

with εn ↓ 0.

In (3.3), we choose h = vn − v Î W1,p(Ω), note that by virtue of hypothesis (F4), we

have

f (x, un)
||un||p−1

⇀ 0 in Lp
′
(�),

where 1
p +

1
p′ = 1.

So we have[
M

(∫
�

|∇un|pdx
)]p−1 ∫

�

|∇vn|p−2∇vn∇(vn − v)dx → 0.

Since M(t) >m0 for all t ≥ 0, so we have∫
�

|∇vn|p−2∇vn∇(vn − v)dx → 0.

Hence, using the (S+) property, we have vn ® v in W1,p(Ω) with ||v|| = 1, then v ≠ 0.

Now passing to the limit as n ® ∞ in (3.3), we obtain∫
�

|∇v|p−2∇v∇hdx → 0, ∀h ∈ W1,p(�),

then v = ξ Î R. Then |un(x)| ® +∞ as n ® +∞. Using hypothesis (F5), we have f(x,

un(x))un(x) - pF(x, un(x)) ® -∞ for a.e x Î Ω.

Hence by virtue of Fatou’s Lemma, we have∫
�

f (x, un)un − pF(x, un)dx → −∞, as n → +∞. (3:4)

From (3.1), we have

M̂
(∫

�

|∇un| p
)
dx − p

∫
�

F(x, un)dx ≥ −pM1, ∀n ≥ 1. (3:5)

From (3.2), we have∣∣∣∣∣
[
M

(∫
�

|∇un|pdx
)]p−1 ∫

�

|∇un|p−2∇un∇hdx −
∫

�

f (x, un)hdx

∣∣∣∣∣ ≤ εn||h||
1 + ||un||∀h ∈ W1,p(�).
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With εn ↓ 0. So choosing h = un Î W1,p(Ω), we obtain

−
[
M(

∫
�

|∇un|pdx)
]p−1∫

�

|∇un|pdx +
∫

�

f (x, un)undx ≥ −εn. (3:6)

Adding (3.5) and (3.6), noting that M̂(t) ≤ (M(t))p−1t for all t ≥ 0, we obtain∫
�

(f (x, un)un − pF(x, un))dx ≥ −M2, ∀n ≥ 1, (3:7)

comparing (3.4) and (3.7), we reach a contradiction. So {un}in bounded in W1,p(Ω).

Similar with the proof of Lemma 3.1, we know that J satisfied the (C) condition. □
Sum up the above fact, from Lemma 2.4 and Remark 2.1, Theorem 2.2 follows from

the Lemma 3.3 to 3.5.
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