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1. Introduction
Consider the second-order differential system with p(t)-Laplacian⎧⎨

⎩ − d
dt
(|u̇(t)|p(t)−2u̇(t)) + |u(t)|p(t)−2u(t) = ∇F(t, u(t)) a. e. t ∈ [0,T],

u(0) − u(T) = u̇(0) − u̇(T) = 0,
(1:1)

where T > 0, F: [0, T] × ℝN ® ℝ, and p(t) Î C([0, T], ℝ+) satisfies the following

assumptions:

(A) p(0) = p(T) and p− := min
0≤t≤T

p(t) > 1, where q+ > 1 which satisfies 1/p- + 1/q+ = 1.

Moreover, we suppose that F: [0, T] × ℝN ® ℝ satisfies the following assumptions:

(A’) F(t, x) is measurable in t for every x Î ℝN and continuously differentiable in x

for a.e. t Î [0, T], and there exist a Î C(ℝ+, ℝ+), b Î L1(0, T; ℝ+), such that

|F(t, x)| ≤ a(|x|)b(t), |∇F(t, x)| ≤ a(|x|)b(t)

for all x Î ℝN and a.e. t Î [0, T].

The operator
d
dt
(|u̇(t)|p(t)−2u̇(t)) is said to be p(t)-Laplacian, and becomes p-Laplacian

when p(t) ≡ p (a constant). The p(t)-Laplacian possesses more complicated nonlinearity

than p-Laplacian; for example, it is inhomogeneous. The study of various mathematical

problems with variable exponent growth conditions has received considerable attention

in recent years. These problems are interesting in applications and raise many mathema-

tical problems. One of the most studied models leading to problem of this type is the

model of motion of electro-rheological fluids, which are characterized by their ability to

drastically change the mechanical properties under the influence of an exterior electro-

magnetic field. Another field of application of equations with variable exponent growth
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conditions is image processing (see [1,2]). The variable nonlinearity is used to outline the

borders of the true image and to eliminate possible noise. We refer the reader to [3-12]

for an overview on this subject.

In 2003, Fan and Fan [13] studied the ordinary p(t)-Laplacian system and introduced

a generalized Orlicz-Sobolev space W1,p(t)
T

, which is different from the usual space

W1,p
T , then Wang and Yuan [14] obtained the existence and multiplicity of periodic

solutions for ordinary p(t)-Laplacian system under the generalized Ambrosetti-Rabino-

witz conditions. Fountain and Dual Fountain theorems were established by Bartsch

and Willem [15,16], and both theorems are effective tools for studying the existence of

infinitely many large energy solutions and small energy solutions. When we impose

some suitable conditions on the growth of the potential function at origin or at infi-

nity, we get three multiplicity results of infinitely many periodic solutions for system

(1.1) using the Fountain theorem, the Dual Fountain theorem, and the Symmetric

Mountain Pass theorem.

The rest of the article is divided as follows: Basic definitions and preliminary results

are collected in Second 2. The main results and proofs are given in Section 3. The

three examples are presented in Section 4 for illustrating our results.

In this article, we denote by p
+ := max

0≤t≤T
p(t) > 1 throughout this article, and we use 〈·, ·〉

and |·| to denote the usual inner product and norm in ℝN, respectively.

2. Preliminaries
In this section, we recall some known results in nonsmooth critical point theory, and

the properties of space W1,p(t)
T

are listed for the convenience of readers.

Definition 2.1 [14]. Let p(t) satisfies the condition (A), define

Lp(t)([0,T],RN) =
{
u ∈ L1([0,T],RN) :

∫ T

0
|u|p(t)dt < ∞

}

with the norm

|u|p(t) := inf
{
λ > 0 :

∫ T

0

∣∣∣u
λ

∣∣∣p(t)dt ≤ 1
}
.

For u ∈ L1loc([0,T],R
N), let u’ denote the weak derivative of u, if u′ ∈ L1loc([0,T],R

N)

and satisfies

∫ T

0
u′φdt = −

∫ T

0
uφ′dt, ∀φ ∈ C∞

0 ([0,T],RN).

Define

W1,p(t)([0,T],RN) = {u ∈ Lp(t)([0,T],RN) : u′ ∈ Lp(t)([0,T],RN)}�

with the norm ‖u‖W1,p(t) := |u|p(t) + |u′|p(t).
In this article, we will use the following equivalent norm on W1, p(t) ([0, T], ℝN), i.e.,

‖u‖ := inf

{
λ > 0 :

∫ T

0

(∣∣∣u
λ

∣∣∣p(t) + ∣∣∣∣ u̇λ
∣∣∣∣
p(t)

)
dt ≤ 1

}
,
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and some lemmas given in the following section have been proven under the norm

of ‖u‖W1,p(t), and it is obvious that they also hold under the norm ||u||.

Remark 2.1. If p(t) = p, where p Î (1, ∞) is a constant, by the definition of |u|p(t), it

is easy to get |u|p = (
∫ T
0 |u(t)|pdt)1/p, which is the same with the usual norm in space

Lp.

The space Lp(t) is a generalized Lebesgue space, and the space W1, p(t) is a generalized

Sobolev space. Because most of the following lemmas have appeared in [13,14,17,18],

we omit their proofs.

Lemma 2.1 [13]. Lp(t) and W1, p(t) are both Banach spaces with the norms defined

above, when p- > 1, they are reflexive.

Lemma 2.2 [14]. (i) The space Lp(t) is a separable, uniform convex Banach space, its

conjugate space is Lq(t), for any u Î Lp(t) and v Î Lq(t), we have∣∣∣∣
∫ T

0
uvdt

∣∣∣∣ ≤ 2|u|p(t)|v|q(t),

where
1

p(t)
+

1
q(t)

= 1.

(ii) If p1(t) and p2(t) Î C([0, T], ℝ+) and p1(t) ≤ p2(t) for any t Î [0, T], then

Lp2(t) → Lp1(t), and the embedding is continuous.

Lemma 2.3 [14]. If we denote ρ(u) =
∫ T

0
|u(t)|p(t)dt, ∀ u Î Lp(t), then

(i) |u|p(t) < 1 (= 1; > 1) ⇔ r(u) < 1 (= 1; > 1);

(ii) |u|p(t) > 1 ⇒ |u|p−

p(t) ≤ ρ(u) ≤ |u|p+p(t), |u|p(t) < 1 ⇒ |u|p+p(t) ≤ ρ(u) ≤ |u|p−

p(t);

(iii) |u|p(t) ® 0 ⇔ r(u) ® 0; |u|p(t) ® ∞ ⇔ r(u) ® ∞.

(iv) For u ≠ 0, |u|p(t) = λ ⇔ ρ(
u

λ
) = 1.

Similar to Lemma 2.3, we have

Lemma 2.4. If we denote I(u) =
∫ T
0 (|u(t)|p(t) + |u̇(t)|p(t))dt, ∀ u Î W1,p(t), then

(i) ||u|| < 1 (= 1; > 1) ⇔ I(u) < 1 (= 1; > 1);

(ii) ‖u‖ > 1 ⇒ ‖u‖p− ≤ I(u) ≤ ‖u‖p+ , ‖u‖ < 1 ⇒ ‖u‖p+ ≤ I(u) ≤ ‖u‖p−
;

(iii) ||u|| ® 0 ⇔ I(u) ® 0; ||u|| ® ∞ ⇔ I(u) ® ∞.

(iv) For u ≠ 0, ‖u‖ = λ ⇔ I(
u
λ
) = 1.

Defnition 2.2 [17].

C∞
T = C∞

T (R,RN) := {u ∈ C∞(R,RN) : u is T - periodic}

with the norm ‖u‖∞ := max
t∈[0,T]

|u(t)|.
For a constant p Î (1, ∞), using another conception of weak derivative which is

called T-weak derivative, Mawhin and Willem gave the definition of the space W1,p
T by

the following way.

Definition 2.3 [17]. Let u Î L1([0, T], ℝN) and v Î L1([0, T], ℝN), if∫ T

0
vφdt = −

∫ T

0
uφ′dt ∀φ ∈ C∞

T ,

then v is called a T-weak derivative of u and is denoted by u̇.
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Definition 2.4 [17]. Define

W1,p
T ([0,T],RN) = {u ∈ Lp([0,T],RN) : u̇ ∈ Lp([0,T],RN)}

with the norm ‖u‖W1,p
T

= (|u|pp + |u̇|pp)1/p.
Definition 2.5 [13]. Define

W1,p(t)
T ([0,T],RN) = {u ∈ Lp(t)([0,T],RN) : u̇ ∈ Lp(t)([0,T],RN)}

and H1,p(t)
T ([0,T],RN) to be the closure of C∞

T in W1,p(t) ([0, T], ℝN).

Remark 2.2. From Definition 2.4, if u ∈ W1,p(t)
T ([0,T],RN), it is easy to conclude that

u ∈ W1,p−
T ([0,T],RN).

Lemma 2.5 [13].

(i) C∞
T ([0,T],RN) is dense in W1,p(t)

T ([0,T],RN);

(ii) W1,p(t)
T ([0,T],RN) = H1,p(t)

T ([0,T],RN) := {u ∈ W1,p(t)([0,T],RN) : u(0) = u(T)};
(iii) If u ∈ H1,1

T , then the derivative u’ is also the T-weak derivative u̇, i.e., u′ = u̇.

Lemma 2.6 [17]. Assume that u ∈ W1,1
T , then

(i)
∫ T
0 u̇dt = 0,

(ii) u has its continuous representation, which is still denoted by

u(t) =
∫ t
0 u̇(s)ds + u(0), u(0) = u(T),

(iii) u̇ is the classical derivative of u, if u̇ ∈ C([0,T],RN).

Since every closed linear subspace of a reflexive Banach space is also reflexive, we

have

Lemma 2.7 [13]. H1,p(t)
T ([0,T],RN) is a reflexive Banach space if p- > 1.

Obviously, there are continuous embeddings Lp(t) → Lp
−
,W1,p(t) → W1,p− and

H1,p(t)
T → H1,p−

T
. By the classical Sobolev embedding theorem, we obtain

Lemma 2.8 [13]. There is a continuous embedding

W1,p(t)(or H1,p(t)
T ) → C([0,T],RN),

when p- > 1, the embedding is compact.

Lemma 2.9 [13]. Each of the following two norms is equivalent to the norm in

W1,p(t)
T

:

(i) |u̇|p(t) + |u|q, 1 ≤ q ≤ ∞;

(ii) |u̇|p(t) + |ū|, where ū = (1/T)
∫ T
0 u(t)dt.

Lemma 2.10 [13]. If u, un Î Lp(t) (n = 1,2,...), then the following statements are

equivalent to each other

(i) lim
n→∞ |un − u|p(t) = 0;

(ii) lim
n→∞ ρ(un − u) = 0;

(iii) un ® u in measure in [0, T] and lim
n→∞ ρ(un) = ρ(u).

Lemma 2.11 [14]. The functional J defined by

J(u) =
∫ T

0

1
p(t)

|u̇(t)|p(t)dt
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is continuously differentiable on W1,p(t)
T

and J’ is given by

〈J′(u), v〉 =
∫ T

0
(|u̇(t)|p(t)−2u̇(t), v̇(t))dt, (2:1)

and J’ is a mapping of (S+), i.e., if un ⇀ u weakly in W1,p(t)
T

and

lim sup
n→∞

(J′(un) − J′(u), un − u) ≤ 0,

then un has a convergent subsequence on W1,p(t)
T

.

Lemma 2.12 [18]. Since W1,p(t)
T

is a separable and reflexive Banach space, there exist

{en}∞n=1 ⊂ W1,p(t)
T

and {fn}∞n=1 ⊂ (W1,p(t)
T )∗ such that

fn(em) = δn,m =
{
1, n = m,
0, n �= m,

W1,p(t)
T = span{en : n = 1, 2, . . .} and (W1,p(t)

T )∗ = span{fn : n = 1, 2, . . .}W
∗
.

For k = 1, 2,..., denote

Xk = span{ek}, Yk = ⊕k
j=1Xj, Zk = ⊕∞

j=kXj. (2:2)

Lemma 2.13 [19]. Let X be a reflexive infinite Banach space, j Î C1(X, ℝ) is an even

functional with the (C) condition and j(0) = 0. If X = Y ⊕ V with dimY < ∞, and j
satisfies

(i) there are constants s, a > 0 such that ϕ|∂Bσ ∩V ≥ α,

(ii) for any finite-dimensional subspace W of X, there exists positive constants R2(W)

such that j(u) ≤ 0 for u Î W\Br(0), where Br(0) is an open ball in W of radius r cen-

tered at 0. Then j possesses an unbounded sequence of critical values.

Lemma 2.14 [15]. Suppose

(A1) j Î C1(X, ℝ) is an even functional, then the subspace Xk, Yk, and Zk are defined

by (2.2);

If for every k Î N, there exists rk >rk > 0 such that

(A2) ak := max
u∈Yk, ‖u‖=ρk

ϕ(u) ≤ 0, where Yk := ⊕k
j=0Xj;

(A3) bk := inf
u∈Zk, ‖u‖=rk

ϕ(u) → ∞, as k ® ∞, where Zk := ⊕∞
j=kXj;

(A4) j satisfies the (PS)c condition for every c > 0.

Then j has an unbounded sequence of critical values.

Lemma 2.15 [16]. Assume (A1) is satisfied, and there is a k0 > 0 so as to for each k

≥ k0, there exist rk >rk > 0 such that

(A5) dk := inf
u∈Zk, ‖u‖≤ρk

ϕ(u) → 0, as k ® ∞;

(A6) ik := max
u∈Yk, ‖u‖=rk

ϕ(u) < 0;

(A7) inf
u∈Zk, ‖u‖=ρk

ϕ(u) ≥ 0;

(A8) j satisfies the (PS)∗c condition for every c Î [dk0, 0).

Then j has a sequence of negative critical values converging to 0.

Remark 2.3. j satisfies the (PS)∗c condition means that if any sequence {unj} ⊂ X

such that nj ® ∞, unj ∈ Ynj ,ϕ(unj) → c and (ϕ|Ynj )′(unj) → 0, then {unj} contains a
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subsequence converging to critical point of j. It is obvious that if j satisfies the (PS)∗c
condition, then j satisfies the (PS)c condition.

3. Main results and proofs of the theorems
Theorem 3.1. Let F(t, x) satisfies the condition (A’), and suppose the following condi-

tions hold:

(B1) there exist b >p+ and r > 0 such that

βF(t, x) ≤ (∇F(t, x), x)

for a.e. t Î [0, T] and all |x| ≥ r in ℝN;

(B2) there exist positive constants μ >p+ and Q > 0 such that

lim sup
|x|→+∞

F(t, x)
|x|μ ≤ Q

uniformly for a.e. t Î [0, T];

(B3) there exists μ’ >p+ and Q’ > 0 such that

lim inf
|x|→+∞

F(t, x)
|x|μ′ ≥ Q′

uniformly for a.e. t Î [0, T];

(B4) F(t, x) = F(t, -x) for t Î [0, T] and all x in ℝN.

Then system (1.1) has infinite solutions uk in W1,p(t)
T

for every positive integer k such

that ||uk||∞ ® +∞, as k ® ∞.

Remark 3.1. Suppose that F(t, ·) is continuously differentiable in x and p(t) ≡ p, then

condition (B1) reduces to the well-known Ambrosetti-Rabinowitz condition (see [19]),

which was introduced in the context of semi-linear elliptic problems. This condition

implies that F(t, x) grows at a superquadratic rate as |x| ® ∞. This kind of technical

condition often appears as necessary to use variational methods when we solve super-

linear differential equations such as elliptic problems, Dirac equations, Hamiltonian

systems, wave equations, and Schrödinger equations.

Theorem 3.2. Assume that F(t, x) satisfies (A’), (B1), (B3), and (B4) and the following

assumption:

(B5)
∫ T
0 F(t, 0)dt = 0, and there exists r1 >p

+ and M > 0 such that

lim sup
|x|→0

|F(t, x)|
|x|r1 ≤ M.

Then system (1.1) has infinite solutions uk in W1,p(t)
T

for every positive integer k such

that ||uk||∞ ® +∞, as k ® ∞.

Theorem 3.3. Assume that F(t, x) satisfies the following assumption:

(B6) F(t, x):= a(t)|x|g, where a(t) Î L∞ (0, T; ℝ+) and 1 < g <p- is a constant. Then

system (1.1) has infinite solutions uk in W1,p(t)
T

for every positive integer k.

The proof of Theorem 3.1 is organized as follows: first, we show the functional j
defined by

ϕ(u) =
∫ T

0

1
p(t)

|u̇(t)|p(t)dt +
∫ T

0

1
p(t)

|u(t)|p(t)dt −
∫ T

0
F(t, u(t))dt
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satisfies the (PS) condition, then we verify for j the conditions in Lemma 2.14 item-

by-item, then j has an unbounded sequence of critical values.

Proof of Theorem 3.1. Let {un} ⊂ W1,p(t)
T

such that j(un) is bounded and j’(un) ® 0

as n ® ∞. First, we prove {un} is a bounded sequence, otherwise, {un} would be

unbounded sequence, passing to a subsequence, still denoted by {un}, such that ||un||

≥ 1 and ||un|| ® ∞. Note that

〈ϕ′(u), v〉 =
∫ T

0
(|u̇(t)|p(t)−2u̇(t), v̇(t))dt +

∫ T

0
(|u(t)|p(t)−2u(t) − ∇F(t, u(t)), v(t))dt (3:1)

for all v ∈ W1,p(t)
T

.

It follows from (3.1) that∫ T

0
(

β

p(t)
− 1)(|u̇n(t)|p(t) + |un(t)|p(t))dt = βϕ(un) − 〈ϕ′(un), un〉 +

∫ T

0
[βF(t, un(t))

−(∇F(t, un(t)), un(t))]dt

= βϕ(un) − 〈ϕ′(un), un〉 +
∫

�1

[βF(t, un(t)) − (∇F(t, un(t)), un(t))]dt +
∫

�2

[βF(t, un(t))

−(∇F(t, un(t)), un(t))]dt

≤ βϕ(un) − 〈ϕ′(un), un〉 +
∫

�1

[βF(t, un(t)) − (∇F(t, un(t)), un(t))]dt

≤ βϕ(un) − 〈ϕ′(un), un〉 + C0,

(3:2)

where Ω1:= {t Î [0, T]; |un(t)| ≤ r}, Ω2:= [0, T] \ Ω1 and C0 is a positive constant.

However, from (3.2), we have

βϕ(un) + C0 ≥
(

β

p+
− 1

)
‖un‖p− − ∥∥ϕ′(un)

∥∥ ‖un‖ ,

Thus ||un|| is a bounded sequence in W1,p(t)
T

.

By Lemma 2.8, the sequence {un} has a subsequence, also denoted by {un}, such that

un ⇀ u weakly in W1,p(t)
T and un → u strongly in C([0,T];RN) (3:3)

and ||u||∞ ≤ C1||u|| by Lemma 2.8, where C1 is a positive constant.

Therefore, we have

〈ϕ′(un) − ϕ′(u), un − u〉 → 0 as n → ∞, (3:4)

i.e.,

〈ϕ′(un) − ϕ′(u), un − u〉 =
∫ T

0
(∇F(t, un(t)) − ∇F(t, u(t)), un(t) − u(t))dt +

∫ T

0
(|un(t)|p(t)−2

un(t) − |u(t)|p(t)−2u(t), un(t) − u(t))dt +
∫ T

0
(|u̇n(t)|p(t)−2u̇n(t) − |u̇(t)|p(t)−2u̇(t), u̇n(t) − u̇(t))dt.

(3:5)

By (3.4) and (3.5), we get 〈J’(u) - J’(un), u - un〉 ® 0, i.e.,∫ T

0
(|u̇n(t)|p(t)−2u̇n(t) − |u̇(t)|p(t)−2u̇(t), u̇n(t) − u̇(t))dt → 0,

so it follows Lemma 2.11 that {un} admits a convergent subsequence.

For any u Î Yk, let

‖u‖∗ := (
∫ T

0
|u(t)|μ′

dt)1/μ
′
, (3:6)
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and it is easy to verify that ||·||* defined by (3.6) is a norm of Yk. Since all the norms

of a finite dimensional normed space are equivalent, so there exists positive constant

C2 such that

C2 ‖u‖ ≤ ‖u‖∗ for u ∈ Yk. (3:7)

In view of (B3), there exist two positive constants M1 and C3 such that

F(t, x) ≥ M1|x|μ′
(3:8)

for a.e. t Î [0, T] and |x| ≥ C3.

It follows (3.7) and (3.8) that

ϕ(u) =
∫ T

0

1
p(t)

|u̇(t)|p(t)dt +
∫ T

0

1
p(t)

|u(t)|p(t)dt −
∫ T

0
F(t, u(t))dt

≤ 1
p− (‖u‖p+ + 1) −

∫
�3

F(t, u(t))dt −
∫

�4

F(t, u(t))dt

≤ 1
p− (‖u‖p+ + 1) − M1

∫
�3

|u(t)|μ′
dt −

∫
�4

F(t, u(t))dt

=
1
p− (‖u‖p+ + 1) − M1

∫ T

0
|u(t)|μ′

dt +M1

∫
�4

|u(t)|μ′
dt −

∫
�4

F(t, u(t))dt

≤ 1
p− (‖u‖p+ + 1) − Cμ′

2 M1‖u‖μ′
+ C4,

where Ω3:= {t Î [0, T]; |u(t)| ≥ C3}, Ω4:= [0, T] \ Ω3 and C4 is a positive constant.

Since μ’ >p+, there exist positive constants dk such that

ϕ(u) ≤ 0 for all u ∈ Yk and ‖u‖ ≥ dk. (3:9)

For any u Î Zk, let

‖u‖μ := (
∫ T

0
|u(t)|μdt)1/μ and βk := sup

u∈Zk, ‖u‖=1
‖u‖μ, (3:10)

then we conclude bk ® 0 as k ® ∞.

In fact, it is obvious that bk ≥ bk + 1 > 0, so bk ® b ≥ 0 as k ® ∞. For every k Î N,

there exists uk Î Zk such that

‖uk‖ = 1 and ‖uk‖μ > βk/2. (3:11)

As W1,p(t)
T

is reflexive, {uk} has a weakly convergent subsequence, still denoted by

{uk}, such that uk ⇀ u. We claim u = 0.

In fact, for any fm Î {fn: n = 1, 2...,}, we have fm(uk) = 0, when k >m, so

fm(uk) → 0, as k → ∞

for any fm Î {fn: n = 1, 2 ...,}, therefore u = 0.

By Lemma 2.8, when uk ⇀ 0 in W1,p(t)
T

, then uk ® 0 strongly in C([0, T]; ℝN). So, we

conclude b = 0 by (3.11).

In view of (B2), there exist two positive constants M2 and C10 such that

F(t, x) ≤ M2|x|μ (3:12)

uniformly for a.e. t Î [0, T] and |x| ≥ C5.
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When ||u|| ≥ 1, we conclude

ϕ(u) =
∫ T

0

1
p(t)

|u(t)|p(t)dt +
∫ T

0

1
p(t)

|u̇(t)|p(t)dt −
∫ T

0
F(t, u(t))dt

≥ 1
p+

∫ T

0
(|u(t)|p(t) + |u̇(t)|p(t))dt −

∫
�5

F(t, u(t))dt −
∫

�6

F(t, u(t))dt

≥ 1
p+

‖u‖p− − M2

∫ T

0
|u(t)|μdt +M2

∫
�6

|u(t)|μdt −
∫

�6

F(t, u(t))dt

≥ 1
p+

‖u‖p− − M2β
μ

k ‖u‖μ − C6,

where Ω5:= {t Î [0, T]; |u(t)| ≥ C5}, Ω6:= [0, T] \ Ω5 and C6 is a positive constant.

Choosing rk = 1/bk, it is obvious that

rk → ∞ as k → ∞,

then

bk := inf
u∈Zk, ‖u‖=rk

ϕ(u) → ∞ as k → ∞, (3:13)

i.e., the condition (A3) in Lemma 2.14 is satisfied.

In view of (3.9), let rk:= max{dk, rk + 1}, then

ak := max
u∈Yk, ‖u‖=ρk

ϕ(u) ≤ 0,

and this shows the condition of (A2) in Lemma 2.14 is satisfied.

We have proved the functional j satisfies all the conditions of Lemma 2.14, then j
has an unbounded sequence of critical values ck = j(uk) by Lemma 2.14, we only need

to show ||uk||∞ ® ∞ as k ® ∞.

In fact, since uk is a critical point of the functional j, we have∫ T

0
|u̇k(t)|p(t)dt +

∫ T

0
|uk(t)|p(t)dt −

∫ T

0
(∇F(t, uk(t)), uk(t))dt = 0.

Hence, we have

ck = ϕ(uk) =
∫ T

0

1
p(t)

|u̇k(t)|p(t)dt +
∫ T

0

1
p(t)

|uk(t)|p(t)dt −
∫ T

0
F(t, uk(t))dt,

≤ 1
p−

∫ T

0
|u̇k(t)|p(t)dt + 1

p−

∫ T

0
|uk(t)|p(t)dt −

∫ T

0
F(t, uk(t))dt,

=
∫ T

0
(∇F(t, uk(t)), uk(t))dt −

∫ T

0
F(t, uk(t))dt,

(3:14)

since ck ® ∞, we conclude

‖uk‖∞ → ∞ as k → ∞

by (3.14). In fact, if not, going to a subsequence if necessary, we may assume that

‖uk‖∞ ≤ C7

for all k Î N and some positive constant C7.
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Combining (A’) and (3.14), we have

ck ≤
∫ T

0
(∇F(t, uk(t)), uk(t))dt −

∫ T

0
F(t, uk(t))dt,

≤ (C7 + 1) max
0≤s≤C7

a(s)
∫ T

0
b(t)dt,

which contradicts ck ® ∞. This completes the proof of Theorem 3.1.

Proof of Theorem 3.2. To prove {un} has a convergent subsequence in space W1,p(t)
T

is the same as that in the proof of Theorem 3.1, thus we omit it. It is obvious that j is

even and j(0) = 0 under condition (B5), and so we only need to verify other conditions

in Lemma 2.13.

Proposition 3.1. Under the condition (B5), there exist two positive constants s and

a such that j(u) ≥ a for all u ∈ W̃1,p(t)
T

and ||u|| = s.

Proof. In view of condition (B5), there exist two positive constants ε and δ such that

0 < ε < C1 and 0 < δ < ε,

where C1 is the same as in (3.3), and

|F(t, x)| ≤ (M + ε)|x|r1 (3:15)

for a.e. t Î [0, T] and |x| ≤ δ.

Let s:= δ/C1 and ||u|| = s, since s < 1, we have

‖u‖p+ ≤ I(u) and ‖u‖∞ ≤ C1 ‖u‖ . (3:16)

by Lemmas 2.4 and 2.8.

Combining (3.15) and (3.16), we have

ϕ(u) =
∫ T

0

1
p(t)

|u(t)|p(t)dt +
∫ T

0

1
p(t)

|u̇(t)|p(t)dt −
∫ T

0
F(t, u(t))dt

≥ 1
p+

∫ T

0
(|u(t)|p(t) + |u̇(t)|p(t))dt − (M + ε)

∫ T

0
|u(t)|r1dt

≥ 1
p+

‖u‖p+ − (M + ε)TCr1
1 ‖u‖r1

=
[
1
p+

− (M + ε)TCr1
1 σ r1−p+

]
σ p+ ,

so we can choose s small enough, such that

1
p+

− (M + ε)TCr1
1 σ r1−p+ ≥ 1

2p+
and α :=

1
2p+

σ p+ ,

and this completes the proof of Proposition 3.1.

Proposition 3.2. For any finite dimensional subspace W of W1,p(t)
T

, there is r2 = r2

(W) > 0 such that j(u) ≤ 0 for u ∈ W\Br2 (0), where Br2 (0) is an open ball in W of

radius r2 centered at 0.

Proof. The proof of Proposition 3.2 is the same as the proof of the condition (A2) in

the proof of Theorem 3.1.

We have proved the functional j satisfies all the conditions of Lemma 2.13, j has an

unbounded sequence of critical values ck = j(uk) by Lemma 2.13. Arguing as in the
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proof of Theorem 3.1, system (1.1) has infinite solutions {uk} in W1,p(t)
T

for every posi-

tive integer k such that ||uk||∞ ® +∞, as k ® ∞. The proof of Theorem 3.2 is

complete.

Proof of Theorem 3.3. First, we show that j satisfies the (PS)∗c for every c Î ℝ. Sup-

pose nj ® ∞, unj ∈ Ynj ,ϕ(unj) → c and (ϕ|Ynj )′(unj) → 0, then {unj} is a bounded

sequence, otherwise, {unj} would be unbounded sequence, passing to a subsequence,

still denoted by {unj} such that
∥∥unj∥∥ ≥ 1 and

∥∥unj∥∥ → ∞. Note that

∫ T

0
(1 − γ

p(t)
)(|u̇nj(t)|p(t) + |unj(t)|p(t))dt = 〈ϕ′(unj), unj 〉 − γ ϕ(unj). (3:17)

However, from (3.17), we have

−γ ϕ(unj) ≥ (1 − γ

p− )
∥∥unj∥∥p− −

∥∥∥(ϕ|Ynj )
′(unj)

∥∥∥ ∥∥unj∥∥ ,
thus ||un|| is a bounded sequence in W1,p(t)

T
. Going, if necessary, to a subsequence,

we can assume that unj ⇀ u in W1,p(t)
T

. As X =
⋃

nj Ynj , we can choose vnj ∈ Ynj such

that vnj → u. Hence

lim
nj→∞〈ϕ′(unj), unj − u〉

= lim
nj→∞〈ϕ′(unj), unj − vnj 〉 + lim

nj→∞〈ϕ′(unj), vnj − u〉

= lim
nj→∞〈(ϕ|Ynj )′(unj), unj − vnj 〉 = 0.

In view of (3.4) and (3.5), we can also conclude unj → u, furthermore, we have

ϕ′(unj) → ϕ′(u).
Let us prove j’(u) = 0 below. Taking arbitrarily ωk Î Yk, notice when nj ≤ k we have

〈ϕ′(u), ωk〉 = 〈ϕ′(u) − ϕ′(unj), ωk〉 + 〈ϕ′(unj), ωk〉
= 〈ϕ′(u) − ϕ′(unj), ωk〉 + 〈(ϕ|Ynj )′(unj), ωk〉.

Going to limit in the right side of above equation reaches

〈ϕ′(u), ωk〉 = 0, ∀ωk ∈ Yk,

so j’(u) = 0, this shows that j satisfies the (PS)∗c for every c Î ℝ.

For any finite dimensional subspace W ⊂ W1,p(t)
T

, there exists ε1 > 0 such that

meas{t ∈ [0,T] : a(t)|u(t)|γ ≥ ε1‖u‖γ } ≥ ε1, ∀u ∈ W\{0}. (3:18)

Otherwise, for any positive integer n, there exists un Î W \ {0} such that

meas{t ∈ [0,T] : a(t)|un(t)|γ ≥ 1
n

‖un‖γ } <
1
n
.

Set vn(t) :=
un(t)
‖un‖ ∈ W\{0}, then ||vn|| = 1 for all n Î N and

meas{t ∈ [0,T] : a(t)|vn(t)|γ ≥ 1
n

} <
1
n
. (3:19)
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Since dimW < ∞, it follows from the compactness of the unit sphere of W that there

exists a subsequence, denoted also by {vn}, such that {vn} converges to some v0 in W. It

is obvious that ||v0|| = 1.

By the equivalence of the norms on the finite dimensional space W, we have vn ® v0
in Lp

−
(0,T;RN), i.e.,∫ T

0
|vn − v0|p−

dt → 0 as n → ∞. (3:20)

By (3.20) and Hölder inequality, we have

∫ T

0
a(t)|vn − v0|γ dt ≤ (

∫ T

0
a(t)

p−

p− − γ dt)

p− − γ

p−
(
∫ T

0
|vn − v0|p−

dt)

γ

p−

= ‖a‖p− − γ

p−
(
∫ T

0
|vn − v0|p−

dt)

γ

p− → 0, as n → ∞.

(3:21)

Thus, there exist ξ1, ξ2 > 0 such that

meas{t ∈ [0,T] : a(t)|v0(t)|γ ≥ ξ1} ≥ ξ2. (3:22)

In fact, if not, we have

meas{t ∈ [0,T] : a(t)|v0(t)|γ ≥ 1
n

} = 0

for all positive integer n.

It implies that

0 ≤
∫ T

0
a(t)|v0|γ+p−

dt <
T
n

‖v0‖p
−

∞ ≤ Cp−
6 T

n
‖v0‖p− → 0

as n ® ∞, where C6 is the same in (3.3). Hence v0 = 0 which contradicts that ||v0|| =

1. Therefore, (3.22) holds. Now let

�0 = {t ∈ [0,T] : a(t)|v0(t)|γ ≥ ξ1}, �n = {t ∈ [0,T] : a(t)|vn(t)|γ <
1
n

},

and �c
n = [0,T]\�n = {t ∈ [0,T] : a(t)|vn(t)|γ ≥ 1

n
}.

By (3.19) and (3.22), we have

meas(�n ∩ �0) = meas(�0\(�c
n ∩ �0)

≥ meas(�0) − meas(�c
n ∩ �0)

≥ ξ2 − 1
n

for all positive integer n. Let n be large enough such that

ξ2 − 1
n

≥ 1
2

ξ2 and
1

2γ−1
ξ1 − 1

n
≥ 1

2γ
ξ1,

then we have∫ T

0
a(t)|vn − v0|γ dt ≥

∫
�n∩�0

a(t)|vn − v0|γ dt

≥ 1
2γ−1

∫
�n∩�0

a(t)|v0|γ dt −
∫

�n∩�0

a(t)|vn|γ dt

≥ (
1

2γ−1
ξ1 − 1

n
)meas(�n ∩ �0)

≥ ξ1

2γ
.
ξ2

2
=

ξ1ξ2

2γ+1
> 0

Zhang et al. Boundary Value Problems 2011, 2011:33
http://www.boundaryvalueproblems.com/content/2011/1/33

Page 12 of 15



for all large n, which is a contradiction to (3.21). Therefore, (3.18) holds.

For any u Î Zk, let

‖u‖p− :=
(∫ T

0
|u(t)|p−

dt
)1/p−

and γk := sup
u∈Zk, ‖u‖=1

‖u‖p− ,

then we conclude gk ® 0 as k ® ∞ as in the proof of Theorem 3.1.

ϕ(u) =
∫ T

0

1
p(t)

|u̇(t)|p(t)dt +
∫ T

0

1
p(t)

|u(t)|p(t)dt −
∫ T

0
F(t, u(t))dt

≥ 1
p+

‖u‖p+ −
∫ T

0
a(t)|u(t)|γ dt

≥ 1
p+

‖u‖p+ − (
∫ T

0
a(t)

p−

p− − γ dt)

p− − γ

p− ‖u‖γ

p−

≥ 1
p+

‖u‖p+ − (
∫ T

0
a(t)

p−

p− − γ dt)

p− − γ

p−
γ

γ

k ‖u‖γ .

(3:23)

Let
ρk := (2cp+γ γ

k )

1
p+ − γ , where c := (

∫ T
0 a(t)

p−

p− − γ dt)

p− − γ

p− , it is obvious that rk

® 0, as k ® ∞. In view of (3.23), We conclude

inf
u∈Zk, ‖u‖=ρk

ϕ(u) ≥ 1
2p+

ρ
p+

k > 0,

so the condition (A7) in Lemma 2.15 is satisfied.

Furthermore, by (3.23), for any u Î Zk with ||u|| ≤ rk, we have

ϕ(u) ≥ −cγ γ

k ‖u‖γ .

Therefore,

−cγ γ

k ρ
γ

k ≤ inf
u∈Zk, ‖u‖≤ρk

ϕ(u) ≤ 0,

so we have

inf
u∈Zk, ‖u‖≤ρk

ϕ(u) → 0

for rk, gk ® 0, as k ® ∞.

For any u Î Yk \ {0} with ||u|| ≤ 1,

ϕ(u) =
∫ T

0

1
p(t)

|u̇(t)|p(t)dt +
∫ T

0

1
p(t)

|u(t)|p(t)dt −
∫ T

0
a(t)|u(t)|γ dt

≤ 1
p− ‖u‖p− −

∫ T

0
a(t)|u(t)|γ dt

≤ 1
p− ‖u‖p− − ε1‖u‖γmeas(�u)

≤ 1
p− ‖u‖p− − ε21‖u‖γ ,

where ε1 is given in (3.18), and

�u := meas{t ∈ [0,T] : a(t)|u(t)|γ ≥ ε1‖u‖γ } ≥ ε1, ∀u ∈ Yk\{0}.

Zhang et al. Boundary Value Problems 2011, 2011:33
http://www.boundaryvalueproblems.com/content/2011/1/33

Page 13 of 15



Choosing
0 < rk < min{ρk, (

p−ε2

2
)

1
p− − γ }, we conclude

ik := max
u∈Yk , ‖u‖=rk

ϕ(u) < − 1
p− rp

−

k < 0 ∀ k ∈ N,

i.e., the condition (A6) in Lemma 2.15 is satisfied. The proof of Theorem 3.3 is

complete.

4. Example
In this section, we give three examples to illustrate our results.

Example 4.1. In system (1.1), let
F(t, x) = |x|8+

T
2
and

p(t) =

{
7 + t, 0 ≤ t ≤ T/2,

−t + T + 7, T/2 < t ≤ T.

Choose

β = 8 +
T

2
, r = 2, μ = μ′ = 8 +

T

2
and Q = Q′ = 1,

so it is easy to verify that all the conditions (B1)-(B4) are satisfied. Then by Theorem

3.1, system (1.1) has infinite solutions {uk} in W1,p(t)
T

for every positive integer k such

that ||uk||∞ ® +∞, as k ® ∞.

Example 4.2. In system (1.1), let F(t, x) = |x|8 and

p(t) =

{
5, 0 ≤ t ≤ T/2

5 + sin
2π t
T

, T/2 < t ≤ T.

We choose β =
13
2
, r = 2, μ’ = 8, r1 = 7, Q’ = 1 and M = 1, so it is easy to verify that

all the conditions of Theorem 3.2 are satisfied. Then by Theorem 3.2, so system (1.1)

has infinite solutions {uk} in W1,p(t)
T

for every positive integer k such that ||uk||∞ ® +∞,

as k ® ∞.

Example 4.3. In system (1.1), let F(t, x) = a(t)|x|3 where

a(t) =
{
T, t = 0
t, 0 < t ≤ T,

and

p(t) =

{
5, 0 ≤ t ≤ T/2

5 + sin
2π t
T

, T/2 < t ≤ T.

It is easy to verify that all the conditions of Theorem 3.3 are satisfied. Then by Theo-

rem 3.3, so system (1.1) has infinite solutions {uk} in W1,p(t)
T

for every positive integer k.
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