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1 Introduction
In this article, we study the existence and uniqueness of solutions for the following

nonlinear fractional integro-differential equation:

Dαu(t) = f (t, u(t), (φu)(t), (ψu)(t)), t ∈ [0,T] , α ∈ (1 , 2] , (1:1)

subject to the boundary conditions of fractional order given by

Dα−2u(0+) = 0, (1:2)

Dα−1u(0+) = νIα−1u(η), 0 < η < T, ν is a constant, (1:3)

where Da denotes the Riemann-Liouville fractional derivative of order a, f: [0, T] × ℝ

× ℝ × ℝ ® ℝ is continuous, and

(φx)(t) =

t∫
0

γ (t, s)x(s)ds, (ψx)(t) =

t∫
0

δ(t, s)x(s)ds,

with g and δ being continuous functions on [0, T] × [0, T].

Boundary value problems for nonlinear fractional differential equations have recently

been investigated by several researchers. As a matter of fact, fractional derivatives

provide an excellent tool for the description of memory and hereditary properties of

various materials and processes (see [1]) and make the fractional-order models more

realistic and practical than the classical integer-order models. Fractional differential

equations arise in many engineering and scientific disciplines, such as physics, chemis-

try, biology, economics, control theory, signal and image processing, biophysics, blood
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flow phenomena, aerodynamics, fitting of experimental data, etc. (see [1,2]). For some

recent development on the topic, (see [3-19] and references therein).

2 Preliminaries
Let us recall some basic definitions (see [20,21]).

Definition 2.1 The Riemann-Liouville fractional integral of order a > 0 for a contin-

uous function u: (0, ∞) ® ℝ is defined as

Iαu(t) =
1

	(α)

t∫
0

(t − s)α−1u(s)ds,

provided the integral exists.

Definition 2.2 For a continuous function u: (0, ∞) ® ℝ, the Riemann-Liouville deri-

vative of fractional order a > 0, n = [a] + 1 ([a] denotes the integer part of the real

number a) is defined as

Dαu(t) =
1

	(n − α)

(
1
dt

)n t∫
0

(t − s)n−α−1u(s)ds =
(
d
dt

)n

In−αu(t),

provided it exists.

For a < 0, we use the convention that Dau = I-au. Also for b Î [0, a), it is valid that

Db Iau = Ia-bu.

Note that for l >-1, l ≠ a - 1, a - 2,..., a - n, we have

Dαtλ =
	(λ + 1)

	(λ − α + 1)
tλ−α ,

and

Dα tα−i = 0, i = 1, 2, . . . ,n.

In particular, for the constant function u(t) = 1, we obtain

Dα1 =
1

	(1 − α)
t−α , α /∈ N.

For a Î N, we get, of course, Da1 = 0 because of the poles of the gamma function at

the points 0, -1, -2,....

For a > 0, the general solution of the homogeneous equation

Dαu(t) = 0

in C(0, T) ∩ L(0, T) is

u(t) = c0t
α−n + c1t

α−n−1 + · · · + cn−2t
α−2 + cn−1t

α−1,

where ci, i = 1, 2,..., n - 1, are arbitrary real constants.

We always have DaIau = u, and

IαDαu(t) = u(t) + c0t
α−n + c1t

α−n−1 + · · · + cn−2t
α−2 + cn−1t

α−1.

To define the solution for the nonlinear problem (1.1) and (1.2)-(1.3), we consider

the following linear equation
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Dαu(t) = σ (t), α ∈ (1 , 2] , t ∈ [0,T] , T > 0, (2:1)

where s Î C[0, T].

We define

A = ν

η∫
0

sα−1(η − s)α−2

	(α − 1)
ds =

ν	(α)η2α−2

	(2α − 1)
, (2:2)

such that A ≠ Γ(a).
The general solution of (2.1) is given by

u(t) = c1t
α−1 + c0t

α−2 + Iασ (t), (2:3)

with Ia the usual Riemann-Liouville fractional integral of order a.
From (2.3), we have

Dα−1u(t) = c1	(α) + I1σ (t), (2:4)

Dα−2u(t) = c1	(α)t + c0	(α − 1) + I2σ (t). (2:5)

Using the conditions (1.2) and (1.3) in (2.4) and (2.5), we find that c0 = 0 and

c1 =
ν[

	(α) − A
]

η∫
0

(η − s)α−2

	(α − 1)

⎛
⎝ s∫

0

(s − x)α−1

	(α)
σ (x)dx

⎞
⎠ds,

where A is defined by (2.2).

Substituting the values of c0 and c1 in (2.3), the unique solution of (2.1) subject to

the boundary conditions (1.2)-(1.3) is given by

u(t) =

t∫
0

(t − s)α−1

	(α)
σ (s)ds

+
νtα−1[

	(α) − A
]

η∫
0

(η − s)α−2

	(α − 1)

⎛
⎝ s∫

0

(s − x)α−1

	(α)
σ (x)dx

⎞
⎠ds

=

t∫
0

(t − s)α−1

	(α)
σ (s)ds +

νtα−1[
	(α) − A

] I2α−1σ (η).

(2:6)

3 Main results
Let C = C([0,T],R) denotes the Banach space of all continuous functions from [0, T]

® ℝ endowed with the norm defined by ║u║ = sup{|u(t)|, t Î [0, T]}.

If u is a solution of (1.1) and (1.2)-(1.3), then

u(t) =

t∫
0

(t − s)α−1

	(α)
f (s, u (s) , (φu) (s) , (ψu) (s))ds

+ ν1tα−1

η∫
0

(η − s)2α−2

	(2α − 1)
f (s, u (s) , (φu) (s) , (ψu) (s))ds,
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where

ν1 =
ν[

	(α) − A
] .

Define an operator P : C → C as

(Pu) (t) =

t∫
0

(t − s)α−1

	(α)
f (s, u (s) , (φu) (s) , (ψu) (s))ds

+ ν1tα−1

η∫
0

(η − s)2α−2

	(2α − 1)
f (s, u (s) , (φu) (s) , (ψu) (s))ds, t ∈ [0,T] .

Observe that the problem (1.1) and (1.2)-(1.3) has solutions if and only if the opera-

tor equation Pu = u has fixed points.

Lemma 3.1 The operator Pis compact.

Proof

(i) Let B be a bounded set in C[0, T]. Then, there exists a constant M such that |f

(t,u(t), (�u)(t), (ψu)(t))| ≤ M, ∀u Î B, tÎ[0, T]. Thus

| (Pu) (t)| ≤ M

t∫
0

(t − s)α−1

	(α)
ds +M|ν1|tα−1

η∫
0

(η − s)2α−2

	(2α − 1)
ds

≤ MTα−1
(

T
	(α + 1)

+
|ν1|η2α−1

	(2α)

)
,

which implies that

|| (Pu) || ≤ MTα−1

(
T

	(α + 1)
+

|ν1|η2α−1

	(2α)

)
< ∞.

Hence, P(B) is uniformly bounded.

(ii) For any t1, t2 Î [0, T], u Î B, we have

| (Pu) (t1) − (Pu) (t2) |

=

∣∣∣∣∣∣
t1∫

0

(t1 − s)α−1

	(α)
f (s, u (s) , (φu) (s) , (ψu) (s))ds

−
t2∫

0

(t2 − s)α−1

	(α)
f (s, u (s) , (φu) (s) , (ψu) (s))ds

+ν1
(
tα−1
1 − tα−1

2

) η∫
0

(η − s)2α−s

	 (2α − 1)
f (s, u (s) , (φu) (s) , (ψu) (s))ds

∣∣∣∣∣∣
≤ M

⎛
⎝

∣∣∣∣∣∣
1

	(α)

t1∫
0

[
(t1 − s)α−1 − (t2 − s)α−1]ds − 1

	(α)

t2∫
t1

(t2 − s)α−1ds

∣∣∣∣∣∣
+

∣∣∣∣∣∣ν1
(
tα−1
1 − tα−1

2

) η∫
0

(η − s)2α−s

	 (2α − 1)
ds

∣∣∣∣∣∣
⎞
⎠ → 0 as t1 → t2.
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Thus, P(B) is equicontinuous. Consequently, the operator P is compact. This com-

pletes the proof. □
We need the following known fixed point theorem to prove the existence of solu-

tions for the problem at hand.

Theorem 3.1 ([22]) Let E be a Banach space. Assume that T: E ® E be a completely

continuous operator and the set V = {x Î E | x = μTx, 0 <μ < 1} be bounded.

Then, T has a fixed point in E.

Theorem 3.2 Assume that there exists a constant M > 0 such that

|f (t, u (t) , (φu) (t) , (ψu) (t)) | ≤ M, ∀t ∈ [0,T] , u ∈ R.

Then, the problem (1.1) and (1.2)-(1.3) has at least one solution on [0,T].

Proof We consider the set

V = {u ∈ R|u = μPu, 0 < μ < 1} ,
and show that the set V is bounded. Let u Î V, then u = μPu, 0 <μ < 1. For any t Î

[0, T], we have

|u (t) | ≤μ

⎡
⎣ t∫

0

(t − s)α−1

	(α)
|f (s, u (s) , (φu) (s) , (ψu) (s)) |ds

+|ν1|tα−1

η∫
0

(η − s)2α−2

	(2α − 1)
|f (s, u (s) , (φu) (s) , (ψu) (s)) |ds

⎤
⎦ .

As in part (i) of Lemma 3.1, we have

‖ (Pu) ‖≤ MTα−1
(

T
	 (α + 1)

+
|ν1|η2α−1

	(2α)

)
< ∞.

This implies that the set V is bounded independently of μ Î (0,1). Using Lemma 3.1

and Theorem 3.1, we obtain that the operator P has at least a fixed point, which

implies that the problem (1.1) and (1.2)-(1.3) has at least one solution. This completes

the proof.

Theorem 3.3 Assume that

(A1) there exist positive functions L1(t), L2(t), L3(t) such that

|f (t, u (t) , (φu) (t) , (ψu) (t)) − f (t, v (t) , (φv) (t) , (ψv) (t)) |
≤ L1 (t) |u − v| + L2 (t) |φu − φv| + L3 (t) |ψu − ψv|, ∀t ∈ [0, 1] , u, v ∈ R.

(A2) Λ = (ξ1 + |ν1|T
a-1ξ2)(1 + g0 + δ0) < 1, where

γ0 = sup
t∈[0,1]

|
t∫

0

γ (t, s)ds|, δ0 = sup
t∈[0,1]

|
t∫

0

δ (t, s)ds|,

ξ1 = sup
t∈[0,T]

{|IqL1 (t) |, |IqL2 (t) |, |IqL3 (t) |} ,
ξ2 = max

{|I2α−1L1 (η) |, |I2α−1L2 (η) |, |I2α−1L3 (η) |} ,
Then the problem (1.1) and (1.2)-(1.3) has a unique solution on C[0, T].

Proof Let us set suptÎ[0, T] |f(t,0,0,0)| = M, and choose

r ≥ εM
1 − �

.
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Then we show that PBr ⊂ Br, where Br = {x ∈ C :‖ u ‖≤ r}. For x Î Br, we have

‖ (Pu) (t) ‖ = sup
t∈[0,T]

|
t∫

0

(t − s)α−1

	 (α)
f (s, u (s) , (φu) (s) , (ψu) (s))ds

+ ν1tα−1

η∫
0

(η − s)2α−2

	 (2α − 1)
f (s, u (s) , (φu) (s) , (ψu) (s))ds|

≤ sup
t∈[0,T]

⎛
⎝ t∫

0

(t − s)α−1

	 (α)

(|f (s, x (s) , (φx) (s) , (ψx) (s)) − f (s, 0, 0, 0) |

+ |f (s, 0, 0, 0) |)ds
+ |ν1|tα−1

η∫
0

(η − s)2α−s

	 (2α − 1)

(|f (s, x (s) , (φx) (s) , (ψx) (s)) − f (s, 0, 0, 0)

+ |f (s, 0, 0, 0) |)ds)
≤ sup

t∈[0,T]

⎛
⎝ t∫

0

(t − s)α−1

	 (α)
(L1 (s) |x (s) | + L2 (s) | (φx) (s) | + L3 (s) | (ψx) (s) | +M)ds

+ |ν1|tα−1

η∫
0

(η − s)2α−2

	 (2α − 1)
(L1 (s) |x (s) | + L2 (s) | (φx) (s) | + L3 (s) | (ψx) (s) | +M)ds

⎞
⎠

≤ sup
t∈[0,T]

⎛
⎝ t∫

0

(t − s)α−1

	 (α)
(L1 (s) |x (s) | + γ0L2 (s) |x (s) |

+ δ0L3 (s) |x (s) | +M)ds

+ |ν1|tα−1

η∫
0

(η − s)2α−2

	 (2α − 1)
(L1 (s) |x (s) | + γ0L2 (s) |x (s) |

+ δ0L3 (s) |x (s) | +M)ds)

≤ sup
t∈[0,T]

((
IαL1(t) + γ0IαL2 (t) + δ0IαL3 (t)

)
r +

Mtq

	
(
q + 1

)
+ |ν1|tα−1

(
I(2α−1)L1(η) + γ0I(2α−1)L2(η) + δ0I(2α−1)L3(η)

)
r +

Mη2α−1

	(2α)

)

≤ (
ξ1 + |ν1|Tα−1ξ2

)
(1 + γ0 + δ0) r +MTα−1

(
T

	 (α + 1)
+

|ν1|ηα−1

	(2α)

)
= �r +Mε ≤ r

In view of (A1), for every t Î [0, T], we have

| (Pu) (t) − (Pv) (t) |

≤ supt∈[0,T]

⎛
⎝ t∫

0

(t − s)α−1

	 (α)
|f (

s, u (s) , (φu) (s) , (ψu) (s) − f (s, v (s) , (φv) (s) , (ψv) (s)) |ds

+|ν1|tα−1

η∫
0

(η − s)2α−2

	 (2α − 1)
|f (

s, u (s) , (φu) (s) , (ψu) (s) − f (s,υ (s) , (φv) (s) , (ψv) (s)) |ds)

≤ supt∈[0,T]

⎛
⎝ t∫

0

(t − s)α−1

	 (α)
(L1 (s) |u − v| + L2 (s) |φv| + L3 (s) |ψu − ψv|) ds

+|ν1|tα−1

η∫
0

(η − s)2α−2

	 (2α − 1)
| (
L1(s)|u − v| + L2(s)|φu − φv| + L3(s)|ψu − ψv|) ‖ ds

)
≤ supt∈[0,T]

((
IαL1(t) + γ0I

αL2(t) + δ0I
αL3(t)

) ‖ u − v ‖
+|ν1|Tα−1

(
I(2α−1)L1(η) + γ0I(2α−1)L2(η) + δ0I(2α−1)L3(η)

)
‖ u − v ‖

≤ (
ξ1 + |ν1|Tα−1ξ2

)
(1 + γ0 + δ0) ‖ u − v ‖= � ‖ u − v ‖
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By assumption (A2), Λ < 1, therefore, the operator P is a contraction. Hence, by

Banach fixed point theorem, we deduce that P has a unique fixed point which in fact

is a unique solution of problem (1.1) and (1.2)-(1.3). This completes the proof. □
Theorem 3.4 (Krasnoselskii’s fixed point theorem [22]). Let Mbe a closed convex

and nonempty subset of a Banach space X. Let A, B be the operators such that (i)

x, y ∈ Mwhenever x, y ∈ M; (ii) A is compact and continuous; (iii) B is a contraction

mapping. Then, there exists z ∈ Msuch that z = Az + Bz.

Theorem 3.5 Assume that f: [0, T] × ℝ × ℝ × ℝ ® ℝ is a continuous function and

the following assumptions hold:

(H1)

|f (t, u (t) , (φu) (t) , (ψu) (t)) − f (t, v (t) , (φv) (t) , (ψv) (t)) |
≤ L1(t)|u − v| + L2(t)|φu − φv| + L3(t)|ψu − ψv|, ∀t ∈ [0,T] , u, v ∈ R.

(H2) |f (t,u)| ≤ μ(t), ∀(t,u)Î[0, T] × ℝ, and μ Î C([0, T],ℝ+).

If

|ν1|Tα−1η2α−1

	 (2α)
< 1, (3:1)

then the boundary value problem (1.1) and (1.2)-(1.3) has at least one solution on [0,

T].

Proof Letting suptÎ[0, T] |μ(t)| = ||μ||, we fix

r̄ ≥‖ μ ‖ Tα−1

(
T

	(α + 1)
+

|ν1|η2α−1

	(2α)

)
,

and consider Br̄ = {u ∈ C :‖ u ‖ ≤ r̄}. We define the operators P1 and P2 on Br̄ as

(P1u) (t) =

t∫
0

(t − s)α−1

	(α)
f
(
s, u(s), (φu)(s), (ψu)(s)

)
ds,

(P2u) (t) = ν1t
α−1

η∫
0

(η − s)2α−s

	 (2α − 1)
f
(
s, u (s) , (φu) (s), (ψu(s))ds

)
.

For u, v ∈ Br̄, we find that

‖ P1u + P2v ‖≤‖ μ ‖ Tα−1
(

T
	(α + 1)

+
|ν1|η2α−1

	(2α)

)
≤ r̄.

Thus, P1u + P2v ∈ Br̄. It follows from the assumption (H1) together with (3.1) that P2

is a contraction mapping. Continuity of f implies that the operator P1 is continuous.

Also, P1 is uniformly bounded on Br̄ as

‖ P1u ‖ ≤ ‖ u ‖ Tα

	 (α + 1)
.

Now we prove the compactness of the operator P1.

In view of (H1), we define sup(t,x,φx,ψx)∈[0,T]×Br×Br×Br
|f (t, x,φx,ψx)| = f̄ , and conse-

quently we have
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| (P1u) (t1) − (P2u) (t2)|

=

∣∣∣∣ 1
	(α)

t1∫
0

[
(t1 − s)α−1 − (t2 − s)α−1

] (
s, u(s), (φu)(s), (ψu)(s)

)
ds

− 1
	(α)

t2∫
t1

(t2 − s)α−1f
(
s, u(s), (φu)(s), (ψu)(s)

)
ds

∣∣∣∣∣∣
≤ f̄

	(α + 1)
|2(t2 − t1)α + tα1 − tα2 |,

which is independent of u and tends to zero as t2 ® t1. So, P1 is relatively compact

on Br̄. Hence, by the Arzelá-Ascoli Theorem, P1 is compact on Br̄. Thus, all the

assumptions of Theorem 3.4 are satisfied. So the conclusion of Theorem 3.4 implies

that the boundary value problem (1.1) and (1.2)-(1.3) has at least one solution on [0,

T]. This completes the proof. □
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