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Abstract
In this paper, we are concerned with the following quasilinear elliptic equation
|ulP~2u -2 -2
—Apu — wp M)l u+g(x)ul* ?uin Q, u=0o0n9%,
X

where O € RV is a smooth domain with smooth boundary d) such that 0 € Q, A,u
= di([Vul"?Vu), 1 <p <N, p < ji= (N;")P, A >0, 1 < g < p, sign-changing weight
functions fand g are continuous functions on §, it = (N;")” is the best Hardy
constant and p* = ,\1,\]_”17 is the critical Sobolev exponent. By extracting the Palais-Smale
sequence in the Nehari manifold, the multiplicity of positive solutions to this

equation is verified.

Keywords: Multiple positive solutions, critical Sobolev exponent, concave-convex,
Hardy terms, sign-changing weights

1 Introduction and main results

Let QO be a smooth domain (not necessarily bounded) in RN (N = 3) with smooth
boundary 0Q such that 0 € Q. We will study the multiplicity of positive solutions for
the following quasilinear elliptic equation

[ulP~2u 5 . .
= A (2) w7 u + g(x)|ulP*u, in Q,

x| on 0%,

(1.1)
u=0,
where A,u = div(|Vul??Vu), 1 <p <N, u < i = (N;p ), ii is the best Hardy constant,
A>0,1<qg<p, p*= [\[,\]_pp is the critical Sobolev exponent and the weight functions
f,g: Q2 — R are continuous, which change sign on Q.
Let Dé”’(gz) be the completion of C§°(£2) with respect to the norm ( |VulPdx)V/P.
The energy functional of (1.1) is defined on ’Dé’p(sz) by

1 |u|? A 1 "
I(u) = /(Vu”— )dx— / ul9dx — / ulP dx.
3 (u) 0 Jg [Vul /le|p q Qf| | p le |

Then J, e C! (D(l)’p(Q), R) ue D(l)’p(Q)\{o} is said to be a solution of (1.1) if
(J5(u), vy =0 for all y € D(l)"’(sz) and a solution of (1.1) is a critical point of J;.
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Problem (1.1) is related to the well-known Hardy inequality [1,2]:

ulP 1 0
w dx < _ | |Vulfdx, Yue CP(RQ).
Q X rJa

By the Hardy inequality, Dé'p(Q) has the equivalent norm ||u||,, where

ulf _
||U||Z=/ (|Vu|p—ltI | )dx, w € (—oo, ).
Q

|x[P

Therefore, for 1 < p < N, and < 1, we can define the best Sobolev constant:

Jo (170l = 1) e
S.(2)= inf ,

(1.2)
1p p
ueDy" (2)\{0} (fQ | P*dx) P

It is well known that S,(Q) = S”(RN = S,. Note that S, = Sy when y < 0 [3].

Such kind of problem with critical exponents and nonnegative weight functions has
been extensively studied by many authors. We refer, e.g., in bounded domains and for
p = 2 to [4-6] and for p >1 to [7-11], while in RY and for p = 2 to [12,13], and for p
>1 to [3,14-17], and the references therein.

In the present paper, our research is mainly related to (1.1) with 1 < g < p < N, the
critical exponent and weight functions f, g that change sign on Q. When p = 2,1 < ¢
<2, n € [0, i), f;, g are sign changing and Q is bounded, [18] studied (1.1) and obtained
that there exists A >0 such that (1.1) has at least two positive solutions for all A € (0,
A). For the case p = 2, [19] studied (1.1) and obtained the multiplicity of positive solu-
tions when 1 < g < p < N, u = 0, f, g are sign changing and Q is bounded. However,
little has been done for this type of problem (1.1). Recently, Wang et al. [11] have stu-
died (1.1) in a bounded domain Q under the assumptions 1 < ¢ < p < N, N > p?,
—00 < 0 < it and f; g are nonnegative. They also proved that there existence of Ay >0
such that for A € (0, Ay), (1.1) possesses at least two positive solutions. In this paper,
we study (1.1) and extend the results of [11,18,19] to the more general case 1 < g < p
< N, —00 < i < [i, f, g are sign changing and Q is a smooth domain (not necessarily
bounded) in RN (N > 3). By extracting the Palais-Smale sequence in the Nehari mani-
fold, the existence of at least two positive solutions of (1.1) is verified.

The following assumptions are used in this paper:

(Hp<pg,A>0,1<g<p<N N=3.

() feC@NLHQ) (¢"= /) = max{f, 0} £ 0 in Q.

(f2) There exist By and po >0 such that B(xo; 2p9) € Q and f (x) = By for all x € B(xy;
2po)

(g1) g € C(Q)NL>(Q) and ¢" = max{g, 0} # 0 in Q.

(g2) There exist x5 € Q and 8 >0 such that

18loo = 8(x0) = maxg(x),  g(x) > 0. Vx € Q,
xXe
8(x) = g(xo) + o(lx —x0/”) asx— 0

where | - |.. denotes the L™() norm.
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Set

p—q b px—p N o)+ ]
- k] * — 2 (P—q)+
A=A = s? r (1.3)
=) ((p*—q)|g+|oo) ((p*—q)m*) z

The main results of this paper are concluded in the following theorems. When Q is
an unbounded domain, the conclusions are new to the best of our knowledge.

Theorem 1.1 Suppose (H), (1) and (g1) hold. Then, (1.1) has at least one positive
solution for all A € (0, Ay).

Theorem 1.2 Suppose (H), (f1) - (g2) hold, and vy is the constant defined as in Lemma
22.If0<p < i, %o = 0 and B > py, then (1.1) has at least two positive solutions for
all € (0, J A1),

Theorem 1.3 Suppose (H), (f1) - (g2) hold. If u <0, xo = 0, B > [:__lpzmd N < p?, then

(1.1) has at least two positive solutions for all A € (O, ZA1(0)).

Remark 1.4 As Q is a bounded smooth domain and p = 2, the results of Theorems
1.1, 1.2 are improvements of the main results of [18].

Remark 1.5 As Q is a bounded smooth domain and p # 2, u = 0, then the results of
Theorems 1.1, 1.2 in this case are the same as the known results in [19].

Remark 1.6 In this remark, we consider that Q is a bounded domain. In [11], Wang
et al. considered (1.1) with p < ji, A >0 and 1 < q < p < p* <N. As 0 < u < frand 1
w<q <p <N, the results of Theorems 1.1, 1.2 are improvements of the main results of
[11]. As u < 0 and 1 <q <p <N < p°, Theorem 1.3 is the complement to the results in
[[11], Theorem 1.3].

This paper is organized as follows. Some preliminaries and properties of the Nehari
manifold are established in Sections 2 and 3, and Theorems 1.1-1.3 are proved in Sec-
tions 4-6, respectively. Before ending this section, we explain some notations employed
in this paper. In the following argument, we always employ C and C; to denote various
positive constants and omit dx in integral for convenience. B(xy; R) is the ball centered
at xo € R" with the radius R >0, (D;”(2))~! denotes the dual space of D,”(), the
norm in I7(Q) is denoted by |-|,, the quantity O(&") denotes |O(&")/¢| < C, o(¢") means
lo(e%)/&| — 0 as & — 0 and o(1) is a generic infinitesimal value. In particular, the quan-
tity O;(¢") means that there exist C;, C, >0 such that Ci& < O(¢") < Cyé’ as ¢ is small
enough.

2 Preliminaries
Throughout this paper, (f}) and (g;) will be assumed. In this section, we will establish
several preliminary lemmas. To this end, we first recall a result on the extremal func-
tions of S, ;.

Lemma 2.1 [16]Assume that 1 < p < N and 0 < u < ji. Then, the limiting problem
w1

=uP*1, in RN\{0},

x|P

ue DY(RN), u>o0, inRN\{0},

—Aplt — (2.1)
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has positive radial ground states

_N=p X _N=p x
Voue(x)=¢ P Uy, (s) =e P U, (|8|), foralle > 0,

that satisfy
N

Ve (%) 17 .
/ IV Ve ()P — o " = / Ve ()P = S0 .
RN |x[P RN

Furthermore, U, ,(|x|) = U, (r) is decreasing and has the following properties:

1
N(@ — p)\re—rp
u,,.(1) = ,
pu(1) ( N—p
lim r*U, (1) = ¢; > 0, lim W, (1)) = cra(p) > 0,
r—0*

r—0*

rﬁmoo rb(“)Up,u(r) =c¢; >0, rﬁ};noo rb(“)+1|U/p,M(r)| =cb(p) > 0,
a(u) b(w) N —
3 <U,u(r)(r & +r 8 )‘S <cy, 6:= ) p,

where ¢; (i = 1, 2, 3, 4) are positive constants depending on N, u and p, and a(u) and
b(u) are the zeros of the function h(t) = (p - 1)t - (N - p)t*" + u, t > 0, satisfying
0<a(n) <™ P <b(u)< 7.

Take p >0 small enough such that B(0; p) € Q, and define the function

N—p X
U (%) = 10WVpe@) =€ 7 n()Ups ('8'), 2.2)

where n € CP(B(0; p) is a cutoff function such that n(x) = 1 in B(0, ).
Lemma 2.2 [9,20]Suppose 1 < p < N and 0 < pu < fi. Then, the following estimates

hold when ¢ — 0.

N
lluellf, = S +O(e),

N
f lug|P* = Sf + O(e"),
Q

O1(e”), by <9< P%
/Q|u€|q =1 0y(c))Ine|, q= b@),
O, (1), 1<q< 0

where 8 = 7,6 = N~ " qand v = bly) - 5.

We also recall the following known result by Ben-Naoum, Troestler and Willem,

which will be employed for the energy functional.
Lemma 2.3 [21]Let Q) be an domain, not necessarily bounded, in RN 1< p <N,

p* p* ,
k(x) c Lh—q (Q)cmd k(x) c L4 (Q)Then, thefunctlomzl
Dy’ (Q) > R:ur> / Te(x) [u|7dx
RN

is well-defined and weakly continuous.
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3 Nehari manifold
As ], is not bounded below on Dé’p (Q), we need to study /, on the Nehari manifold

N = {u € Dy (N0} : (J, (1), u) = 0}.

Note that N, contains all solutions of (1.1) and y € N if and only if

ullf, = kf flul? — f glul* = 0. (3.1)
Q Q

Lemma 3.1 J, is coercive and bounded below on N/,.
Proof Suppose u € N,. From (f}), (3.1), the Holder inequality and Sobolev embedding
theorem, we can deduce that

CpE—p o pr—d [
nw =" P =" [ g

1 px—q + q
> N||U||Z—)» pxg If g ulps (3.2)
p q

*—(q ., p
> ullf, = pxg f 1S Hull]

Thus, J; is coercive and bounded below on A/;. O
Define ;. (u) = (J; (1), u). Then, for u e N,

(' (u), u) = pllul?, —qA/QquI" —p*/Qqul”*
=(p—Dlullh, = (p*—q) fgglul”* (3.3)

= Ap* — q_ - .

Ap q)/gflul (p = —=p)Ilull,

Arguing as in [22], we split N, into three parts:
N ={ueN,: ¥, (u),u) >0},

P ={ue N : (Y5 (u),u) =0},
N, ={ueN,: (¥, (u) u) <0}

Lemma 3.2 Suppose u; is a local minimizer of J, on Nyand u, ¢ N.

Then, J; (uy) = Oin (Dé/p(Q))—l.

Proof The proof is similar to [[23], Theorem 2.3] and is omitted. O

Lemma 3.3 N o @for all 2 € (0, Ay).

Proof We argue by contradiction. Suppose that there exists A € (0, A;) such that
N} # 0. Then, the fact u € N and (3.3) imply that

p*—q
ullf, = / ulP,
Y op—q Qg

and

P*—qf
P_ q.
lllf =3, [ flul
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By (f1), (g1), the Holder inequality and Sobolev embedding theorem, we have that

I N
Ilulluz[ p—q }p_ps”z

(0" — 9)18" 1o "
and
* 07
lull, < [xz :Z|f*|q*sﬂ]"q.
Consequently,
p—q
p*=p

N q
p—q ) < pr—p ) RGO
A > S =A,
- ((p* —9)Ig* | " —lf*le )" '
which is a contradiction. O

For each y ¢ Dé"’(gz) with ng|u|p* > 0, we set

1

G D\,
(" — q) Jo 8lul”

Lemma 3.4 Suppose that A € (0, Ay) and u € Dé’p(ﬂ)is a function satisfying with
Jo8lulP” > o.
(i) If [oflul9 < 0, then there exists a unique t >tmay such that t—u € Ny and

Io(t"u) = sup J, (tu).
t>0

(ii) If [oflul? <0, then there exists a unique t* such that 0 <t <tm., <t,
t“u € N and t"u € N, . Moreover,

Tu(ttu) = 0<i[r<1tf (), L(tTu)= iggh(tu).

Proof See Brown-Wu [[24], Lemma 2.6]. O
We remark that it follows Lemma 3.3, Ny = NJ UN, for all A € (0, A,). Further-
more, by Lemma 3.4, it follows that A} and N, are nonempty, and by Lemma 3.1, we

may define

@ = inf @), e = inf R, o = inf )

Lemma 3.5 (i) If A € (0, Ay), then we have o). < o < 0.

(ii) If » € (O, ZAl), then oy > dofor some positive constant d.
In particular, for each A € (0, TA1), we have a5 = o} <0 < aj.
Proof (i) Suppose that u € N}. From (3.3), it follows that

;*__qqllullﬁ > /Q glul”". (3.4)

Page 6 of 15
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According to (3.1) and (3.4), we have

Ji(u) = (; - ;) ull, + (; - pl) fﬂg|u|”"
<[(a) e () () J

p—q
=— N llullf, <.

By the definitions of ; and o, we get that a;, < af < 0.
(if) Suppose X € (0, ZA1) and u € N. Then, (3.3) implies that
p—q .
< [ 35
pr—q " Ja e
Moreover, by (g;) and the Sobolev embedding theorem, we have

o
/glm”* <18 10eSu ” lulf?]. (3.6)
Q

From (3.5) and (3.6), it follows that
LN
ull, > ((p* p;)l?g*l )p pSﬁz forallu e N . (3.7)
- oo
By (3.2) and (3.7), we get

q
1 * _ _
],\(u) > ||u||Z |:N||u||zq — )\_pp*qqlf+|q*sup:|

P=4  N(p—q)

) N[, -~
>< p—q )p pSf ( p—q )p psupz
(r* —9)Ig" N\ (p* — 9)Ig* o

* q
pr—q + p
—A If 1S

p*q IMlerSi :|

which implies that
Ji(u) > do forallu e Ny,

for some positive constant d,. O
Remark 3.6 If A € (0, TAo), then by Lemmas 3.4 and 3.5, for each y ¢ Dy (Q)with

ng|u|P* > 0, we can easily deduce that

tTue N, and J, (t"u) = sup J,(tu) > o; > 0.
t>0

4 Proof of Theorem 1.1
First, we define the Palais-Smale (simply by (PS)) sequences, (PS)-values and (PS)-con-
ditions in Dé’p(Q) for J; as follows:

Definition 4.1 (i) For ¢ € R, a sequence {u,} is a (PS).-sequence in D(l)’p (for I if In
(1) = ¢ + 0(1) and (J;) (u,) = o(1) strongly in (Dé’p(Q))*las n—> oo,

Page 7 of 15
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(ii) c € R is a (PS)-value in Dé’p ()for ], if there exists a (PS).-sequence in Dé’p ()for
T

(iii) J, satisfies the (PS).-condition in D) (Q)if any (PS).-sequence {u,} in Dy* (Q)for
J) contains a convergent subsequence.

Lemma 4.2 (i) If L € (0, Ay), then ] has a (PS)q,-sequence {u,} C N,.

(ii) If 1 € (O, ZA1), then Jj, has a (PS)q,-sequence {un} C N, .

Proof The proof is similar to [19,25] and the details are omitted. O

Now, we establish the existence of a local minimum for J;, on MN/.

Theorem 4.3 Suppose that N > 3, u < fi, 1 <q <p <N and the conditions (f1), (g1)
hold. If A € (0, A,), then there exists u, € N such that

(@) L(u) = oz = a3,

(ii) uy, is a positive solution of (1.1),

(iii) |[#a]], = 0 as A — 07,

Proof By Lemma 4.2 (i), there exists a minimizing sequence {u,} C N, such that

Ju(un) = +0(1) and J.(u,) =o(1) in (DY (). (4.1)

Since J, is coercive on N, (see Lemma 2.1), we get that (u,) is bounded in D(l)”’(gz).

Passing to a subsequence, there exists u, e D(l)’p () such that as n — oo

u, — u; weakly in Dé'p(Q),
up, — u,, weakly in L (), (4.2)
up — u; strongly in Lj () forall 1 <r < p*, '
U, —> U, a.e. in Q.
By (f1) and Lemma 2.3, we obtain
A foflunl® = A [ flun|? +0(1) as n — oo. (3)

From (4.1)-(4.3), a standard argument shows that u, is a critical point of J,. Further-

more, the fact {u,} C N, implies that

g_4a*=p), ., Pq
i | S AT ACS! (4.4

Taking n — oo in (4.4), by (4.1), (4.3) and the fact o3 < 0, we get
p*q
)»/Qflml" > T qﬂlx > 0. (4.5)

Thus, u, € N, is a nontrivial solution of (1.1).
Next, we prove that u,, — u; strongly in Dé/p () and J5(u;) = a;. From (4.3), the fact

up, Uy, € N, and the Fatou’s lemma it follows that

1 *—
MEAWU=NWMﬂ—K2quﬂmW

.. 1 P —q
p q
fll,fnmf<N””"”u A o /Qflun| )

= liminfJ, (u,) = ax,
n—o00
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which implies that /;(4) = &t and limy,_, oo ||t4n]}, = ||u||}- Standard argument shows
that u, — u; strongly in D)?(Q). Moreover, u; € Ny. Otherwise, if u, € Ny, by
Lemma 3.4, there exist unique t{ and t; such that fu, € N}, t;u; € N and
t; <t, =1 Since

a . a2
dt]'\(t*u'\) =0 and dtlh(t*u'\) >0,

there exists t € (¢, t; ) such that J;(t;uy) < Ja(tu). By Lemma 3.4, we get that
L(Guw) < Li(tun) < Ia(t w) = 1(u),

which is a contradiction. If u € N}, then |u| € N}, and by J3(u;) = Ji(|uz|) = o, we
get [u;| € N} is a local minimum of J; on Nj. Then, by Lemma 3.2, we may assume
that u, is a nontrivial nonnegative solution of (1.1). By Harnack inequality due to Tru-
dinger [26], we obtain that u; > 0 in Q. Finally, by (3.3), the Holder inequality and
Sobolev embedding theorem, we obtain

p*

q
nmmﬁ<xw_ZWw&”

which implies that ||u,||, - 0asA — 0". O
Proof of Theorem 1.1 From Theorem 4.3, it follows that the problem (1.1) has a posi-
tive solution u; € N for all A € (0, Ap). O

5 Proof of Theorem 1.2
For 1 <p <N and u < f, let
1 _N-p N
+ P
= I8 " S

Lemma 5.1 Suppose {u,} is a bounded sequence in D(l)”’ () If {uu} is a (PS)-sequence
for J,, with ¢ € (0, ¢), then there exists a subsequence of {u,} converging weakly to a
nonzero solution of (1.1).

Proof Let {u,} C Dé’p(Q) be a (PS).-sequence for J; with ¢ € (0, ¢). Since {u,} is
bounded in Dé”’(gz), passing to a subsequence if necessary, we may assume that as #
—> oo

u, — up weakly in D(l,'p(ﬂ),
up — up weakly in L (), (5.1)

u, — ug strongly in Lj (2) for 1 <r < p*,
U, — Up a.e. in Q.

By (1), (1), (5.1) and Lemma 2.3, we have that J; (uo) = 0 and
A/f|un|q=)»/f|u0|q+o(1) asn — oo. (5.2)
Q Q

Next, we verify that uy ¥ 0. Arguing by contradiction, we assume u, = 0. Since
Ji(un) = 0(1) as n — o and {u,,} is bounded in Dé"’(gz), then by (5.2), we can deduce
that
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0 = (lim ];‘(Un), u,) = lim (”un“ﬁ - / g|un|p*> .
n— o0 n— o0 Q
Then, we can set
lim [[u,]|?, = lim / glunl” = 1. (5.3)
n—oo n—oo Q

If [ = 0, then we get ¢ = lim,, ,.. J3(1,) = 0, which is a contradiction. Thus, we con-
clude that / > 0. Furthermore, the Sobolev embedding theorem implies that

p

«\ P*
lunllf, = S;L(f glunl")
Q
p
g * p*
>S |u |”>
“(/Q 18*loe
_N—p e
=Sulg" e N (f glwl”) :
Q

Then, as n — o we have -

N—=p p
. - «, which implies that
limy ool lunll = S,lg7loc N 107 ™ P

NN (5.4)
12180 © SE. '
Hence, from (5.2)-(5.4), we get

c= lim J; (u,)
n—oo
1 x 1 *
- i p_ i q_ i p
= Jim a1, qnlggo/Qflunl - nlggo/leunl

1 1
{i-2)
p P
. N-p N
> 8 " SE
This is contrary to ¢ <c. Therefore, u, is a nontrivial solution of (1.1). O
Lemma 5.2 Suppose (H)and (f;) - (g) hold. If 0 < u < fi, xo = 0 and 8 > py, then for
any A > 0, there exists v, € D(l)'p(sz)such that

sup J; (t13) < ¢*. (5.5)

t>0

In particular, &, < c*for all L € (0, Ay).
Proof From [[11], Lemma 5.3], we get that if ¢ is small enough, there exist ¢, > 0 and
the positive constants C; (i = 1, 2) independent of ¢, such that

sup J,. (tue) = Ji(teus) and 0 < C; <t < C; < o0. (5.6)
>0 ’

Page 10 of 15
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By (g,), we conclude that

p*
P
‘/Qg(x)|us| /Qg(o)|us|

< / 18(x) — 8(0)1 1"
Q

-0 (/ |x|ﬂ|u£|"*)
B(0;p)

= O(sﬁ),

which together with Lemma 2.2 implies that

N
/ () uc P = g(0)S) +O(e"7) + O(eP). (5.7)
Q

From the fact A > 0, 1 <q <p, B > py and

* N-—
o NI
max Bl — 32 = Bl 82 ’ B] > O,Bz > 0,
=0 \p p* N

and by Lemma 2.2, (5.7) and (f;), we get

£ & ool
]A(tsus) = ||us||ﬁ - / g|us|p —A /f|us|q
p Q q Ja

p*
N _N-p q
1 » (/ p*) p C /
= Ug Ug —A |9
= el le | qﬁo Q| |
N N N _N-p
p p
=Alz(55 +O(8”V)> (g(O)S,f +O(ef’*y)+0(eﬁ)> (5.8)
Cq
-2l f |ue |
q Po Q

1 _N» N loid
= 5(0) P 8P +O(E") +O(P) =21 By / |9,
N q Q

By (5.6) and (5.8), we have that
Cq
sup J;, (tug) < c* + O(e”) + O(eP) — A ql ﬂo/ lug 7. (5.9)
t>0 Q

i) Ifl <qg< ba)’ then by Lemma 2.2 and y =b(u) — 8 = b(u) — Np_p > 0 we have
that

/ e = 04 (7).
Q

Combining this with (5.9), for any A > 0, we can choose ¢; small enough such that

sup i (tug, ) < c*.
t>0

(ii) If bai) < g < p, then by Lemma 2.2 and y > 0 we have that

/ g |9 = O1(e”), q> 4
e O1(e%linel), =40,

Page 11 of 15
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and
N
py =b(u)p+p—N>N+(1- p)67=9-

Combining this with (5.9), for any A > 0, we can choose ¢; small enough such that

sup [, (tue, ) < c*.
t>0

From (i) and (ii), (5.5) holds by taking Vx = Us,.
In fact, by (f3), (g2) and the definition of Us,, we have that

/f|u,3A|‘7 >0 and /g|usl|p* > 0.
Q Q

From Lemma 3.4, the definition of @, and (5.5), for any 4 € (0, Ay), there exists
te, > O such that t,,u,, € N, and

o, < Jo(te, ) < sup Ji(tte, ue,) < "
t>0

The proof is thus complete. O

Now, we establish the existence of a local minimum of J; on N, -

Theorem 5.3 Suppose (H)and (f1) - (g2) hold. If 0 < u < fi, o = 0, B = py and
e (0, ZAI), then there exists U, € N such that

@) (W) = oy,
(i) U, is a positive solution of (1.1).

Proof If A € (0, ZA1), then by Lemmas 3.5 (ii), 4.2 (ii) and 5.2, there exists a
{un} C N -sequence {u,} C N, in Dé’p(Q) for J, with a; € (0, c*). Since J is coercive
on N, (see Lemma 3.1), we get that {u,} is bounded in Dé’p(Q). From Lemma 5.1,
there exists a subsequence still denoted by {x,} and a nontrivial solution U, € D(l)’p ()
of (1.1) such that u, - U, weakly in Dé’p(ﬂ)-

First, we prove that U, € N;. On the contrary, if U, € N}, then by N, U {0} is
closed in D(l)'p(sz), we have ||U,]], < lim inf,_,.. ||u,||, From (g) and U; # 0 in Q,
we have ng|U,\|p* > 0. Thus, by Lemma 3.4, there exists a unique £, such that
tU, € N . If u € A, then it is easy to see that

)= Gt = (") [ ar (5.10)

From Remark 3.6, u, € N, and (5.10), we can deduce that
a, <L(6U) < nliglo])\(t)\un) < ,}L‘th(“") =0, .

This is a contradiction. Thus, U; € N} .
Next, by the same argument as that in Theorem 4.3, we get that u,, — U strongly in

Dé’p(sz) and L, (Uy) =a; >0 for all A € (O,ZA1). Since Ji(U;) = J(|U]) and

|U;| € N, by Lemma 3.2, we may assume that U/, is a nontrivial nonnegative solution
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of (1.1). Finally, by Harnack inequality due to Trudinger [26], we obtain that U} is a
positive solution of (1.1). O

Proof of Theorem 1.2 From Theorem 4.3, we get the first positive solution u; € N}
for all A € (0, Ag). From Theorem 5.3, we get the second positive solution Uj € N

for all € (0, ] Ao). Since N;” NN, =@, this implies that u; and LI, are distinct. O

6 Proof of Theorem 1.3

In this section, we consider the case # < 0. In this case, it is well-known S, = S, where

N-p N

S, is defined as in (1.2). Thus, we have Poghp when y < 0.
0

c = ﬁ]lg+|oo
Lemma 6.1 Suppose (H)and (f1) - (g2) hold. If N < P2 U <0, x =0 and
’; >y = pgj), then for any A > 0 and p < 0, there exists v, , € D(l)'p(sz)such that

sup Ji(tv, ) < ¢*. (6.1)
t>0

In particular, o;. < c*for all 2 € (0, Ay).

Proof Note that Sy has the following explicit extremals [27]:

p

_ _N=p lx — xo] pfl
Ve(x)=Ce 7 1+( 0) , Ve>0,x €RY,
&

where ¢ > ( is a particular constant. Take p > 0 small enough such that B(xy; p) €
Q\{0} and set @i, (x) = ¢(x) Ve (x), where ¢(x) € CJ°(B(xo; p) is a cutoff function such
that ¢(x) = 1 in B(xg; p/2). Arguing as in Lemma 2.2, we have

N

/Q |Viie|P = S + O(e7), (6.2)
N
[ 1p =8 e v0er7), (63)
N(p—1) *
o) 0 , _ <q< p ,
719 = 1(89) N = No-1)
i1 = { O1(e”|Inel), q="N_p - (6.4)
Q O1(e7), 1<q< Njg):pl),

where 6 = N — Np_pq. Note that 8 > py, p*y > py. Arguing as in Lemma 5.2, we
deduce that there exists £, satisfying 0 < C; < %, < C,, such that

]A(tﬂs) < SUPL\(tﬁs) = ])L(zsﬁs)
t>0

A P .o AR
= |ViL]? — f PR f |1 |9 — °
p /sz p* Qg q szf MP Q |xP

N-p N

LN o ) (6.5)
< 80 7 82 w0 =2 gy [

LG
~ ulixol = oI 2/ .
P Ja
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From (H), N < p* and (6.4), we can deduce that

1<qf<pf=p_fspsNg:;)
and
N(p-1)
. 5 . O, (&P |Ine|), p="N_p
|7 = O (7 d/ P = el N—p
/Qlul 1(¢7) an Q|u| 01 ("), 1<p< N[g)_—pl).

Combining this with (6.5), for any 4 > 0 and y < 0, we can choose ¢, , small enough

such that
1 N W
sup /i (tils, ) < ;8(x0) 7 Sg =¢c",
>0

Therefore, (6.1) holds by taking i, = i, ,.
In fact, by (f), (g2) and the definition of i, ,, we have that

/ﬂ%wﬂ>0 and /mmWW>o
Q Q

From Lemma 3.4, the definition of @, and (6.1), for any A € (0, Ay) and p < 0, there

exists te,, > O such that t,, @i, , € N, and

o, < ilte,, e, ,) < sug L(tte, , te, ) < c*.
=

The proof is thus complete. O
Proof of Theorem 1.3 Let A1(0) be defined as in (1.3). Arguing as in Theorems 4.3
and 5.3, we can get the first positive solution i, € N} for all A € (0, A;(0)) and the

second positive solution U, € N for all A € (0, ZA1(0)). Since N}y NN, =, this

implies that @ and (7, are distinct. O
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