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Abstract

In this paper, we are concerned with the following quasilinear elliptic equation

−�pu − μ
|u|p−2u

|x|p = λf (x)|u|q−2u + g(x)|u|p∗−2u in �, u = 0 on ∂�,

where Ω ⊂ ℝN is a smooth domain with smooth boundary ∂Ω such that 0 Î Ω, Δpu
= div(|∇u|p-2∇u), 1 < p < N, μ < μ̄ = (N−p

p )p, l >0, 1 < q < p, sign-changing weight
functions f and g are continuous functions on �̄, μ̄ = (N−p

p )p is the best Hardy
constant and p∗ = Np

N−p is the critical Sobolev exponent. By extracting the Palais-Smale
sequence in the Nehari manifold, the multiplicity of positive solutions to this
equation is verified.

Keywords: Multiple positive solutions, critical Sobolev exponent, concave-convex,
Hardy terms, sign-changing weights

1 Introduction and main results
Let Ω be a smooth domain (not necessarily bounded) in ℝN (N ≥ 3) with smooth

boundary ∂Ω such that 0 Î Ω. We will study the multiplicity of positive solutions for

the following quasilinear elliptic equation⎧⎨
⎩−�pu − μ

|u|p−2u
|x|p = λf (x)|u|q−2u + g(x)|u|p∗−2u,

u = 0,

in �,
on ∂�,

(1:1)

where Δpu = div(|∇u|p-2∇u), 1 <p <N, μ < μ̄ = (N−p
p )p, μ̄ is the best Hardy constant,

l >0, 1 < q < p, p∗ = Np
N−p is the critical Sobolev exponent and the weight functions

f , g : �̄ → R are continuous, which change sign on Ω.

Let D1,p
0 (�) be the completion of C∞

0 (�) with respect to the norm (
∫
�

|∇u|pdx)1/p.
The energy functional of (1.1) is defined on D1,p

0 (�) by

Jλ(u) =
1
p

∫
�

(
|∇u|p − μ

|u|p
|x|p

)
dx − λ

q

∫
�

f |u|qdx − 1
p∗

∫
�

g|u|p∗
dx.

Then Jλ ∈ C1(D1,p
0 (�),R). u ∈ D1,p

0 (�)\{0} is said to be a solution of (1.1) if

〈J′λ(u), v〉 = 0 for all v ∈ D1,p
0 (�) and a solution of (1.1) is a critical point of Jl.
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Problem (1.1) is related to the well-known Hardy inequality [1,2]:∫
�

|u|p
|x|p dx ≤ 1

μ̄

∫
�

|∇u|pdx, ∀u ∈ C∞
0 (�).

By the Hardy inequality, D1,p
0 (�) has the equivalent norm ||u||μ, where

||u||pμ =
∫

�

(
|∇u|p − μ

|u|p
|x|p

)
dx, μ ∈ (−∞, μ̄).

Therefore, for 1 < p < N, and μ < μ̄, we can define the best Sobolev constant:

Sμ(�) = inf
u∈D1,p

0 (�)\{0}

∫
�

(
|∇u|p − μ

|u|p
|x|p

)
dx

(
∫
�

|u|p∗dx)
p
p∗

. (1:2)

It is well known that Sμ(Ω) = Sμ(ℝ
N) = Sμ. Note that Sμ = S0 when μ ≤ 0 [3].

Such kind of problem with critical exponents and nonnegative weight functions has

been extensively studied by many authors. We refer, e.g., in bounded domains and for

p = 2 to [4-6] and for p >1 to [7-11], while in ℝN and for p = 2 to [12,13], and for p

>1 to [3,14-17], and the references therein.

In the present paper, our research is mainly related to (1.1) with 1 < q < p < N, the

critical exponent and weight functions f, g that change sign on Ω. When p = 2, 1 < q

<2, μ ∈ [0, μ̄), f, g are sign changing and Ω is bounded, [18] studied (1.1) and obtained

that there exists Λ >0 such that (1.1) has at least two positive solutions for all l Î (0,

Λ). For the case p ≠ 2, [19] studied (1.1) and obtained the multiplicity of positive solu-

tions when 1 < q < p < N, μ = 0, f, g are sign changing and Ω is bounded. However,

little has been done for this type of problem (1.1). Recently, Wang et al. [11] have stu-

died (1.1) in a bounded domain Ω under the assumptions 1 < q < p < N, N > p2,

−∞ < μ < μ̄ and f, g are nonnegative. They also proved that there existence of Λ0 >0

such that for l Î (0, Λ0), (1.1) possesses at least two positive solutions. In this paper,

we study (1.1) and extend the results of [11,18,19] to the more general case 1 < q < p

< N, −∞ < μ < μ̄, f, g are sign changing and Ω is a smooth domain (not necessarily

bounded) in ℝN (N ≥ 3). By extracting the Palais-Smale sequence in the Nehari mani-

fold, the existence of at least two positive solutions of (1.1) is verified.

The following assumptions are used in this paper:

(H)μ < μ̄, l >0, 1 < q < p < N, N ≥ 3.

(f1) f ∈ C(�̄) ∩ Lq∗(�) (q∗ = p∗
p∗−q )f

+ = max{f, 0} ≢ 0 in Ω.

(f2) There exist b0 and r0 >0 such that B(x0; 2r0) ⊂ Ω and f (x) ≥ b0 for all x Î B(x0;

2r0)
(g1) g ∈ C(�̄) ∩ L∞(�) and g+ = max{g, 0} ≢ 0 in Ω.

(g2) There exist x0 Î Ω and b >0 such that

|g|∞ = g(x0) = max
x∈�̄

g(x), g(x) > 0,∀x ∈ �,

g(x) = g(x0) + o(|x − x0|β) as x → 0

where | · |∞ denotes the L∞(Ω) norm.
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Set

�1 = �1(μ) =
(

p − q
(p ∗ −q)|g+|∞

) p−q
p∗−p

(
p ∗ −p

(p ∗ −q)|f +|q∗

)
S
N
p2 (p−q)+

q
p

μ . (1:3)

The main results of this paper are concluded in the following theorems. When Ω is

an unbounded domain, the conclusions are new to the best of our knowledge.

Theorem 1.1 Suppose (H), (f1) and (g1) hold. Then, (1.1) has at least one positive

solution for all l Î (0, Λ1).

Theorem 1.2 Suppose (H), (f1) - (g2) hold, and g is the constant defined as in Lemma

2.2. If 0 ≤ μ < μ̄, x0 = 0 and b ≥ pg, then (1.1) has at least two positive solutions for

all λ ∈ (0, qp�1).

Theorem 1.3 Suppose (H), (f1) - (g2) hold. If μ <0, x0 ≠ 0, β ≥ N−p
p−1and N ≤ p2, then

(1.1) has at least two positive solutions for all λ ∈ (0, qp�1(0)).

Remark 1.4 As Ω is a bounded smooth domain and p = 2, the results of Theorems

1.1, 1.2 are improvements of the main results of [18].

Remark 1.5 As Ω is a bounded smooth domain and p ≠ 2, μ = 0, then the results of

Theorems 1.1, 1.2 in this case are the same as the known results in [19].

Remark 1.6 In this remark, we consider that Ω is a bounded domain. In [11], Wang

et al. considered (1.1) with μ < μ̄, l >0 and 1 < q < p < p2 <N. As 0 ≤ μ < μ̄and 1

w<q <p <N, the results of Theorems 1.1, 1.2 are improvements of the main results of

[11]. As μ < 0 and 1 <q <p <N ≤ p2, Theorem 1.3 is the complement to the results in

[[11], Theorem 1.3].

This paper is organized as follows. Some preliminaries and properties of the Nehari

manifold are established in Sections 2 and 3, and Theorems 1.1-1.3 are proved in Sec-

tions 4-6, respectively. Before ending this section, we explain some notations employed

in this paper. In the following argument, we always employ C and Ci to denote various

positive constants and omit dx in integral for convenience. B(x0; R) is the ball centered

at x0 Î ℝN with the radius R >0, (D1,p
0 (�))−1 denotes the dual space of D1,p

0 (�), the

norm in Lp(Ω) is denoted by |·|p, the quantity O(εt) denotes |O(εt)/εt| ≤ C, o(εt) means

|o(εt)/εt| ® 0 as ε ® 0 and o(1) is a generic infinitesimal value. In particular, the quan-

tity O1(ε
t) means that there exist C1, C2 >0 such that C1ε

t ≤ O1(ε
t) ≤ C2ε

t as ε is small

enough.

2 Preliminaries
Throughout this paper, (f1) and (g1) will be assumed. In this section, we will establish

several preliminary lemmas. To this end, we first recall a result on the extremal func-

tions of Sμ,s.

Lemma 2.1 [16]Assume that 1 < p < N and 0 ≤ μ < μ̄. Then, the limiting problem⎧⎨
⎩−�pu − μ

up−1

|x|p = up∗−1, in RN\{0},
u ∈ D1,p(RN), u > 0, in RN\{0},

(2:1)
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has positive radial ground states

Vp,μ,ε(x) = ε
−N−p

p Up,μ

( x
ε

)
= ε

−N−p
p Up,μ

( |x|
ε

)
, for all ε > 0,

that satisfy

∫
RN

(
|∇Vp,μ,ε(x)|p − μ

|Vp,μ,ε(x)|p
|x|p

)
=

∫
RN

|Vp,μ,ε(x)|p∗ = S
N
p

μ .

Furthermore, Up,μ(|x|) = Up,μ(r) is decreasing and has the following properties:

Up,μ(1) =
(
N(μ̄ − μ)
N − p

) 1
p∗−p

,

lim
r→0+

ra(μ)Up,μ(r) = c1 > 0, lim
r→0+

ra(μ)+1|U′
p,μ(r)| = c1a(μ) ≥ 0,

lim
r→+∞ rb(μ)Up,μ(r) = c2 > 0, lim

r→+∞ rb(μ)+1|U′
p,μ(r)| = c2b(μ) > 0,

c3 ≤ Up,μ(r)(r
a(μ)

δ + r
b(μ)

δ )δ ≤ c4, δ :=
N − p

p
,

where ci (i = 1, 2, 3, 4) are positive constants depending on N, μ and p, and a(μ) and

b(μ) are the zeros of the function h(t) = (p - 1)tp - (N - p)tp-1 + μ, t ≥ 0, satisfying

0 ≤ a(μ) <
N−p
p < b(μ) ≤ N−p

p−1 .

Take r >0 small enough such that B(0; r) ⊂ Ω, and define the function

uε(x) = η(x)Vp,μ,ε(x) = ε
−N−p

p η(x)Up,μ

( |x|
ε

)
, (2:2)

where η ∈ C∞
0 (B(0;ρ) is a cutoff function such that h(x) ≡ 1 in B(0, ρ

2 ) .

Lemma 2.2 [9,20]Suppose 1 < p < N and 0 ≤ μ < μ̄. Then, the following estimates

hold when ε ® 0.

||uε||pμ = S
N
p

μ +O(εpγ ),∫
�

|uε|p∗ = S
N
p

μ +O(εp∗γ ),

∫
�

|uε|q =

⎧⎪⎨
⎪⎩
O1(εθ),
O1(εθ |)lnε|,
O1(εqγ ),

N
b(μ) < q < p∗,

q = N
b(μ) ,

1 ≤ q < N
b(μ) ,

where δ = N−p
p , θ = N − N−p

p qand g = b(μ) - δ.

We also recall the following known result by Ben-Naoum, Troestler and Willem,

which will be employed for the energy functional.

Lemma 2.3 [21]Let Ω be an domain, not necessarily bounded, in ℝN, 1 ≤ p <N,

k(x) ∈ L
p∗

p∗−q (�)and k(x) ∈ L
p∗

p∗−q (�)Then, the functional

D1,p
0 (�) → R : u �→

∫
RN

k(x)|u|qdx

is well-defined and weakly continuous.
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3 Nehari manifold

As Jl is not bounded below on D1,p
0 (�), we need to study Jl on the Nehari manifold

Nλ = {u ∈ D1,p
0 (�)\{0} : 〈J′λ(u), u〉 = 0}.

Note that Nλ contains all solutions of (1.1) and u ∈ Nλ if and only if

||u||pμ − λ

∫
�

f |u|q −
∫

�

g|u|p∗ = 0. (3:1)

Lemma 3.1 Jl is coercive and bounded below on Nλ.

Proof Suppose u ∈ Nλ. From (f1), (3.1), the Hölder inequality and Sobolev embedding

theorem, we can deduce that

Jλ(u) =
p ∗ −p
pp∗ ||u||pμ − λ

p ∗ −q
p ∗ q

∫
�

f |u|q

≥ 1
N

||u||pμ − λ
p ∗ −q

p ∗ q
|f +|q∗|u|qp∗

≥ 1
N

||u||pμ − λ
p ∗ −q
p ∗ q

|f +|q∗S
− q
p

μ ||u||qμ.

(3:2)

Thus, Jl is coercive and bounded below on Nλ. □
Define ψλ(u) = 〈J′λ(u), u〉. Then, for u ∈ Nλ,

〈ψ ′
λ(u), u〉 = p||u||pμ − qλ

∫
�

f |u|q − p∗
∫

�

g|u|p∗

= (p − q)||u||pμ − (p ∗ −q)
∫

�

g|u|p∗

= λ(p∗ − q)
∫

�

f |u|q − (p ∗ −p)||u||pμ.

(3:3)

Arguing as in [22], we split Nλ into three parts:

N +
λ = {u ∈ Nλ : 〈ψ ′

λ(u), u〉 > 0},
N 0

λ = {u ∈ Nλ : 〈ψ ′
λ(u), u〉 = 0},

N−
λ = {u ∈ Nλ : 〈ψ ′

λ(u), u〉 < 0}.

Lemma 3.2 Suppose ul is a local minimizer of Jl on Nλand uλ /∈ N 0
λ .

Then, J′λ(uλ) = 0in (D1,p
0 (�))−1.

Proof The proof is similar to [[23], Theorem 2.3] and is omitted. □
Lemma 3.3 N 0

λ �= ∅for all l Î (0, Λ1).

Proof We argue by contradiction. Suppose that there exists l Î (0, Λ1) such that

N 0
λ �= ∅. Then, the fact u ∈ N 0

λ and (3.3) imply that

||u||pμ =
p ∗ −q
p − q

∫
�

g|u|p∗,

and

||u||pμ = λ
p∗ − q
p∗ − p

∫
�

f |u|q.
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By (f1), (g1), the Hölder inequality and Sobolev embedding theorem, we have that

||u||μ ≥
[

p − q

(p∗ − q)|g+|∞

] 1
p∗−p

S
N
p2
μ ,

and

||u||μ ≤
[
λ
p∗ − q
p∗ − p

|f +|q∗Sμ
− q
p

] 1
p−q

.

Consequently,

λ ≥
(

p − q
(p∗ − q)|g+|∞

) p−q
p∗−p

(
p∗ − p

(p∗ − q)|f +|q∗

)
S
N
p2 (p−q)+

q
p

μ = �1,

which is a contradiction. □
For each u ∈ D1,p

0 (�) with
∫
�
g|u|p∗

> 0, we set

tmax =

(
(p − q)||u||pμ

(p∗ − q)
∫
�
g|u|p∗

) 1
p∗−p

> 0.

Lemma 3.4 Suppose that l Î (0, Λ1) and u ∈ D1,p
0 (�)is a function satisfying with∫

�
g|u|p∗

> 0.

(i) If
∫
�
f |u|q ≤ 0, then there exists a unique t- >tmax such that t−u ∈ N−

λ and

Jλ(t−u) = sup
t≥0

Jλ(tu).

(ii) If
∫
�
f |u|q ≤ 0, then there exists a unique t± such that 0 <t+ <tmax <t-,

t−u ∈ N−
λ and t−u ∈ N−

λ . Moreover,

Jλ(t+u) = inf
0≤t≤tmax

Jλ(tu), Jλ(t−u) = sup
t≥t+

Jλ(tu).

Proof See Brown-Wu [[24], Lemma 2.6]. □
We remark that it follows Lemma 3.3, Nλ = N +

λ ∪ N−
λ for all l Î (0, Λ1). Further-

more, by Lemma 3.4, it follows that N +
λ and N−

λ are nonempty, and by Lemma 3.1, we

may define

αλ = inf
u∈Nλ

Jλ(u), α+
λ = inf

u∈N +
λ

Jλ(u), α−
λ = inf

u∈N−
λ

Jλ(u).

Lemma 3.5 (i) If l Î (0, Λ1), then we have αλ ≤ α+
λ < 0.

(ii) If λ ∈ (0, qp�1), then α−
λ > d0for some positive constant d0.

In particular, for each λ ∈ (0, qp�1), we have αλ = α+
λ < 0 < α−

λ .

Proof (i) Suppose that u ∈ N +
λ . From (3.3), it follows that

p − q
p∗ − q

||u||pμ >

∫
�

g|u|p∗
. (3:4)
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According to (3.1) and (3.4), we have

Jλ(u) =
(
1
p

− 1
q

)
||u||pμ +

(
1
q

− 1
p∗

) ∫
�

g|u|p∗

<

[(
1
p

− 1
q

)
+

(
1
q

− 1
p∗

)(
p − q
p∗ − q

)]
||u||pμ

= −p − q
qN

||u||pμ < 0.

By the definitions of al and α+
λ, we get that αλ ≤ α+

λ < 0.

(ii) Suppose λ ∈ (0, qp�1) and u ∈ N−
λ . Then, (3.3) implies that

p − q
p∗ − q

||u||pμ <

∫
�

|u|p∗
. (3:5)

Moreover, by (g1) and the Sobolev embedding theorem, we have

∫
�

g|u|p∗ ≤ |g+|∞S
− p∗

p
μ ||u||p∗

μ . (3:6)

From (3.5) and (3.6), it follows that

||u||μ >

(
p − q

(p∗ − q)|g+|∞

) 1
p∗−p

S
N
p2
μ for all u ∈ N−

λ . (3:7)

By (3.2) and (3.7), we get

Jλ(u) ≥ ||u||qμ
[
1
N

||u||p−q
μ − λ

p∗ − q
p∗q

|f +|q∗S
− q
p

μ

]

>

(
p − q

(p∗ − q)|g+|∞

) q
p∗−p

S
qN
p2

μ

⎡
⎣ 1
N

(
p − q

(p∗ − q)|g+|∞

) p−q
p∗−p

S
N(p−q)

p2
μ

−λ
p∗ − q
p∗q

|f +|q∗S
− q
p

μ

]

which implies that

Jλ(u) > d0 for all u ∈ N−
λ ,

for some positive constant d0. □

Remark 3.6 If λ ∈ (0, qp�0), then by Lemmas 3.4 and 3.5, for each u ∈ D1,p
0 (�)with∫

�
g|u|p∗

> 0, we can easily deduce that

t−u ∈ N−
λ and Jλ(t−u) = sup

t≥0
Jλ(tu) ≥ α−

λ > 0.

4 Proof of Theorem 1.1
First, we define the Palais-Smale (simply by (PS)) sequences, (PS)-values and (PS)-con-

ditions in D1,p
0 (�) for Jl as follows:

Definition 4.1 (i) For c Î ℝ, a sequence {un} is a (PS)c-sequence in D1,p
0 (�)for Jl if Jl

(un) = c + o(1) and (Jl)’(un) = o(1) strongly in (D1,p
0 (�))−1as n ® ∞.
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(ii) c Î ℝ is a (PS)-value in D1,p
0 (�)for Jl if there exists a (PS)c-sequence in D1,p

0 (�)for

Jl.

(iii) Jl satisfies the (PS)c-condition in D1,p
0 (�)if any (PS)c-sequence {un} in D1,p

0 (�)for

Jl contains a convergent subsequence.

Lemma 4.2 (i) If l Î (0, Λ1), then Jl has a (PS)αλ
-sequence {un} ⊂ Nλ.

(ii) If λ ∈ (0, qp�1), then Jl has a (PS)αλ
-sequence {un} ⊂ N−

λ .

Proof The proof is similar to [19,25] and the details are omitted. □
Now, we establish the existence of a local minimum for Jl on Nλ.

Theorem 4.3 Suppose that N ≥ 3, μ < μ̄, 1 <q <p <N and the conditions (f1), (g1)

hold. If l Î (0, Λ1), then there exists uλ ∈ N +
λ such that

(i) Jλ(uλ) = αλ = α+
λ,

(ii) ul is a positive solution of (1.1),

(iii) ||ul||μ ® 0 as l ® 0+.

Proof By Lemma 4.2 (i), there exists a minimizing sequence {un} ⊂ Nλ such that

Jλ(un) = αλ + o(1) and J′λ(un) = o(1) in (D1,p
0 (�))−1. (4:1)

Since Jl is coercive on Nλ (see Lemma 2.1), we get that (un) is bounded in D1,p
0 (�).

Passing to a subsequence, there exists uλ ∈ D1,p
0 (�) such that as n ® ∞⎧⎪⎪⎨

⎪⎪⎩
un ⇀ uλ weakly in D1,p

0 (�),
un ⇀ uλ weakly in Lp

∗
(�),

un → uλ strongly in Lrloc(�) for all 1 ≤ r < p∗,
un → uλ a.e. in �.

(4:2)

By (f1) and Lemma 2.3, we obtain

λ
∫
�
f |un|q = λ

∫
�
f |uλ|q + o(1) as n → ∞. (3)

From (4.1)-(4.3), a standard argument shows that ul is a critical point of Jl. Further-

more, the fact {un} ⊂ Nλ implies that

λ

∫
�

f |un|q = q(p∗ − p)
p(p∗ − q)

||un||pμ − p∗q
p∗ − q

Jλ(un). (4:4)

Taking n ® ∞ in (4.4), by (4.1), (4.3) and the fact al < 0, we get

λ

∫
�

f |uλ|q ≥ − p∗q
p∗ − q

αλ > 0. (4:5)

Thus, uλ ∈ Nλ is a nontrivial solution of (1.1).

Next, we prove that un ® ul strongly in D1,p
0 (�) and Jl(ul) = al. From (4.3), the fact

un, uλ ∈ Nλ and the Fatou’s lemma it follows that

αλ ≤ Jλ(uλ) =
1
N

||uλ||pμ − λ
p∗ − q
p∗q

∫
�

f |uλ|q

≤ lim inf
n→∞

(
1
N

||un||pμ − λ
p∗ − q
p∗q

∫
�

f |un|q
)

= lim inf
n→∞ Jλ(un) = αλ,
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which implies that Jl(ul) = al and limn→∞||un||pμ = ||uλ||pμ. Standard argument shows

that un ® ul strongly in D1,p
0 (�). Moreover, uλ ∈ N +

λ . Otherwise, if uλ ∈ N−
λ , by

Lemma 3.4, there exist unique t+λ and t−λ such that t+λuλ ∈ N +
λ , t−λ uλ ∈ N−

λ and

t+λ < t−λ = 1. Since

d
dt
Jλ(t+λuλ) = 0 and

d2

dt2
Jλ(t+λuλ) > 0,

there exists t̄ ∈ (t+λ , t
−
λ ) such that Jλ(t+λuλ) < Jλ(t̄uλ). By Lemma 3.4, we get that

Jλ(t+λuλ) < Jλ(t̄uλ) ≤ Jλ(t
−
λ uλ) = Jλ(uλ),

which is a contradiction. If u ∈ N +
λ , then |u| ∈ N +

λ , and by Jl(ul) = Jl(|ul|) = al, we

get |uλ| ∈ N +
λ is a local minimum of Jl on Nλ. Then, by Lemma 3.2, we may assume

that ul is a nontrivial nonnegative solution of (1.1). By Harnack inequality due to Tru-

dinger [26], we obtain that ul > 0 in Ω. Finally, by (3.3), the Hölder inequality and

Sobolev embedding theorem, we obtain

||uλ||p−q
μ < λ

p∗ − q
p∗ − p

|f +|q∗S
− q
p

μ .

which implies that ||ul||μ ® 0 as l ® 0+. □
Proof of Theorem 1.1 From Theorem 4.3, it follows that the problem (1.1) has a posi-

tive solution uλ ∈ N +
λ for all l Î (0, Λ0). □

5 Proof of Theorem 1.2
For 1 <p <N and μ < μ̄, let

c∗ =
1
N

|g+|
−N−p

p
∞ S

N
p

μ .

Lemma 5.1 Suppose {un} is a bounded sequence in D1,p
0 (�). If {un} is a (PS)c-sequence

for Jl with c Î (0, c*), then there exists a subsequence of {un} converging weakly to a

nonzero solution of (1.1).

Proof Let {un} ⊂ D1,p
0 (�) be a (PS)c-sequence for Jl with c Î (0, c*). Since {un} is

bounded in D1,p
0 (�), passing to a subsequence if necessary, we may assume that as n

® ∞ ⎧⎪⎪⎨
⎪⎪⎩
un ⇀ u0 weakly in D1,p

0 (�),
un ⇀ u0 weakly in Lp

∗
(�),

un → u0 strongly in Lrloc(�) for 1 ≤ r < p∗,
un → u0 a.e. in �.

(5:1)

By (f1), (g1), (5.1) and Lemma 2.3, we have that J′λ(u0) = 0 and

λ

∫
�

f |un|q = λ

∫
�

f |u0|q + o(1) as n → ∞. (5:2)

Next, we verify that u0 ≢ 0. Arguing by contradiction, we assume u0 ≡ 0. Since

J′λ(un) = o(1) as n ® ∞ and {un} is bounded in D1,p
0 (�), then by (5.2), we can deduce

that
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0 = 〈 lim
n→∞ J′λ(un), un〉 = lim

n→∞

(
||un||pμ −

∫
�

g|un|p∗
)
.

Then, we can set

lim
n→∞ ||un||pμ = lim

n→∞

∫
�

g|un|p∗
= l. (5:3)

If l = 0, then we get c = limn®∞ Jl(un) = 0, which is a contradiction. Thus, we con-

clude that l > 0. Furthermore, the Sobolev embedding theorem implies that

||un||pμ ≥ Sμ

(∫
�

g|un|p∗
) p

p∗

≥ Sμ

(∫
�

g
|g+|∞ |un|p∗

) p
p∗

= Sμ|g+|−
N−p
N∞

(∫
�

g|un|p∗
) p

p∗
.

Then, as n ® ∞ we have l = limn→∞||un||pμ ≥ Sμ|g+|−
N−p
N∞ l

p
p∗, which implies that

l ≥ |g+|
−N−p

p
∞ S

N
p
μ . (5:4)

Hence, from (5.2)-(5.4), we get

c = lim
n→∞ Jλ(un)

=
1
p

lim
n→∞ ||un||pμ − λ

q
lim
n→∞

∫
�

f |un|q − 1
p∗ lim

n→∞

∫
�

g|un|p∗

=
(
1
p

− 1
p∗

)
l

≥ 1
N

|g+|
−N−p

p
∞ S

N
p

μ .

This is contrary to c <c*. Therefore, u0 is a nontrivial solution of (1.1). □
Lemma 5.2 Suppose (H)and (f1) - (g2) hold. If 0 < μ < μ̄, x0 = 0 and b ≥ pg, then for

any l > 0, there exists vλ ∈ D1,p
0 (�)such that

sup
t≥0

Jλ(tvλ) < c∗. (5:5)

In particular, α−
λ < c∗for all l Î (0, Λ1).

Proof From [[11], Lemma 5.3], we get that if ε is small enough, there exist tε > 0 and

the positive constants Ci (i = 1, 2) independent of ε, such that

sup
t≥0

Jλ(tuε) = Jλ(tεuε) and 0 < C1 ≤ tε ≤ C2 < ∞. (5:6)
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By (g2), we conclude that∣∣∣∣∣
∫

�

g(x)|uε|p∗ −
∫

�

g(0)|uε|
p∗ ∣∣∣∣∣ ≤

∫
�

|g(x) − g(0)| |uε|p∗

= O
(∫

B(0;ρ)
|x|β |uε|p∗

)

= O(εβ),

which together with Lemma 2.2 implies that

∫
�

g(x)|uε|p∗
= g(0)S

N
p

μ +O(εp
∗γ ) +O(εβ). (5:7)

From the fact l > 0, 1 <q <p, b ≥ pg and

max
t≥0

(
tp

p
B1 − tp

∗

p∗ B2

)
=

1
N
B
N
p
1 B

−N−p
p

2 , B1 > 0,B2 > 0,

and by Lemma 2.2, (5.7) and (f2), we get

Jλ(tεuε) =
tpε
p

||uε||pμ − tp
∗

ε

p∗

∫
�

g|uε|p∗ − λ
tqε
q

∫
�

f |uε|q

≤ 1
N

||uε||
N
p

μ

(∫
�

g|uε|p∗
)−N−p

p − λ
Cq
1

q
β0

∫
�

|uε|q

=
1
N

(
S
N
p

μ +O(εpγ )

)N
p
(
g(0)S

N
p

μ +O(εp
∗γ ) +O(εβ)

)−N−p
p

− λ
Cq
1

q
β0

∫
�

|uε|q

=
1
N
g(0)

−N−p
p S

N
p

μ +O(εpγ ) +O(εβ) − λ
Cq
1

q
β0

∫
�

|uε|q.

(5:8)

By (5.6) and (5.8), we have that

sup
t≥0

Jλ(tuε) ≤ c∗ +O(εpγ ) +O(εβ) − λ
Cq
1

q
β0

∫
�

|uε|q. (5:9)

(i) If 1 < q < N
b(μ), then by Lemma 2.2 and γ = b(μ) − δ = b(μ) − N−p

p > 0 we have

that ∫
�

|uε|q = O1(εqγ ).

Combining this with (5.9), for any l > 0, we can choose εl small enough such that

sup
t≥0

Jλ(tuελ
) < c∗.

(ii) If N
b(μ) ≤ q < p, then by Lemma 2.2 and g > 0 we have that

∫
�

|uε|q =
{
O1(εθ), q > N

b(μ) ,
O1(εθ |lnε|), q = N

b(μ) ,
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and

pγ = b(μ)p + p − N > N + (1 − N
p
)q = θ .

Combining this with (5.9), for any l > 0, we can choose εl small enough such that

sup
t≥0

Jλ(tuελ
) < c∗.

From (i) and (ii), (5.5) holds by taking vλ = uελ.

In fact, by (f2), (g2) and the definition of uελ, we have that∫
�

f |uελ
|q > 0 and

∫
�

g|uελ
|p∗

> 0.

From Lemma 3.4, the definition of α−
λ and (5.5), for any l Î (0, Λ0), there exists

tελ
> 0 such that tελ

uελ
∈ N−

λ and

α−
λ ≤ Jλ(tελ

uελ
) ≤ sup

t≥0
Jλ(ttελ

uελ
) < c∗.

The proof is thus complete. □
Now, we establish the existence of a local minimum of Jl on N−

λ .

Theorem 5.3 Suppose (H)and (f1) - (g2) hold. If 0 < μ < μ̄, x0 = 0, b ≥ pg and

λ ∈ (0, qp�1), then there exists Uλ ∈ N−
λ such that

(i) Jλ(Uλ) = α−
λ ,

(ii) Ul is a positive solution of (1.1).

Proof If λ ∈ (0, qp�1), then by Lemmas 3.5 (ii), 4.2 (ii) and 5.2, there exists a

{un} ⊂ N−
λ -sequence {un} ⊂ N−

λ in D1,p
0 (�) for Jl with α−

λ ∈ (0, c∗). Since Jl is coercive

on N−
λ (see Lemma 3.1), we get that {un} is bounded in D1,p

0 (�). From Lemma 5.1,

there exists a subsequence still denoted by {un} and a nontrivial solution Uλ ∈ D1,p
0 (�)

of (1.1) such that un ⇀ Ul weakly in D1,p
0 (�).

First, we prove that Uλ ∈ N−
λ . On the contrary, if Uλ ∈ N +

λ , then by N−
λ ∪ {0} is

closed in D1,p
0 (�), we have ||Ul||μ < lim infn®∞ ||un||μ. From (g2) and Ul ≢ 0 in Ω,

we have
∫
�
g|Uλ|p∗

> 0. Thus, by Lemma 3.4, there exists a unique tl such that

tλUλ ∈ N−
λ . If u ∈ Nλ, then it is easy to see that

Jλ(u) =
1
N

||u||pμ − λ

(
p∗ − q
p∗q

)∫
�

f |u|q. (5:10)

From Remark 3.6, un ∈ N−
λ and (5.10), we can deduce that

α−
λ ≤ Jλ(tλUλ) < lim

n→∞ Jλ(tλun) ≤ lim
n→∞ Jλ(un) = α−

λ .

This is a contradiction. Thus, Uλ ∈ N−
λ .

Next, by the same argument as that in Theorem 4.3, we get that un ® Ul strongly in

D1,p
0 (�) and Jλ(Uλ) = α−

λ > 0 for all λ ∈ (0, qp�1). Since Jl(Ul) = Jl(|Ul|) and

|Uλ| ∈ N−
λ , by Lemma 3.2, we may assume that Ul is a nontrivial nonnegative solution
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of (1.1). Finally, by Harnack inequality due to Trudinger [26], we obtain that Ul is a

positive solution of (1.1). □
Proof of Theorem 1.2 From Theorem 4.3, we get the first positive solution uλ ∈ N +

λ

for all l Î (0, Λ0). From Theorem 5.3, we get the second positive solution Uλ ∈ N +
λ

for all λ ∈ (0, qp�0). Since N−
λ ∩ N−

λ = ∅, this implies that ul and Ul are distinct. □

6 Proof of Theorem 1.3
In this section, we consider the case μ ≤ 0. In this case, it is well-known Sμ = S0 where

Sμ is defined as in (1.2). Thus, we have c∗ = 1
N |g+|

−N−p
p

∞ S
N
p
0

when μ ≤ 0.

Lemma 6.1 Suppose (H)and (f1) - (g2) hold. If N ≤ p2, μ < 0, x0 ≠ 0 and
β

p ≥ γ̃ := N−p
p(p−1), then for any l > 0 and μ < 0, there exists vλ,μ ∈ D1,p

0 (�)such that

sup
t≥0

Jλ(tvλ,μ) < c∗. (6:1)

In particular, α−
λ < c∗for all l Î (0, Λ1).

Proof Note that S0 has the following explicit extremals [27]:

Vε(x) = C̄ε
−N−p

p

⎛
⎝1 +

( |x − x0|
ε

) p
p−1

⎞
⎠

−N−p
p

, ∀ε > 0, x0 ∈ RN,

where C̄ > 0 is a particular constant. Take r > 0 small enough such that B(x0; r) ⊂
Ω\{0} and set ũε(x) = ϕ(x)Vε(x), where ϕ(x) ∈ C∞

0 (B(x0;ρ) is a cutoff function such

that �(x) ≡ 1 in B(x0; r/2). Arguing as in Lemma 2.2, we have

∫
�

|∇ ũε|p = S
N
p
0 +O(εpγ̃ ), (6:2)

∫
�

|ũε|p∗
= S

N
P
0 + +O(εp

∗ γ̃ ), (6:3)

∫
�

|ũε|q =

⎧⎪⎨
⎪⎩
O1(εθ ),
O1(εθ |lnε|),
O1(εqγ̃ ),

N(p−1)
N−p < q < p∗,

q = N(p−1)
N−p ,

1 ≤ q <
N(p−1)
N−p ,

(6:4)

where θ = N − N−p
p q. Note that β ≥ pγ̃, p∗γ̃ > pγ̃. Arguing as in Lemma 5.2, we

deduce that there exists t̃ε satisfying 0 < C1 ≤ t̃ε ≤ C2, such that

Jλ(tũε) ≤ sup
t≥0

Jλ(tũε) = Jλ(t̃εũε)

=
t̃pε
p

∫
�

|∇ ũε|p − t̃p
∗

ε

p∗

∫
�

g|ũε|p∗ − λ
t̃qε
q

∫
�

f |ũε|q − μ
t̃pε
p

∫
�

|ũε|p
|x|p

≤ 1
N
g(x0)

−N−p
p S

N
p
μ +O(εpγ̃ ) − λ

Cq
1

q
β0

∫
�

|ũε|q

− μ||x0| − ρ|−p C
p
2

p

∫
�

|ũε|p.

(6:5)
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From (H), N ≤ p2 and (6.4), we can deduce that

1 < qγ̃ < pγ̃ =
N − p

p − 1
≤ p ≤ N(p − 1)

N − p

and

∫
�

|ũε|q = O1(εqγ̃ ) and
∫

�

|ũε|p =
{
O1(εp|lnε|),
O1(εpγ̃ ),

p = N(p−1)
N−p ,

1 < p <
N(p−1)
N−p .

Combining this with (6.5), for any l > 0 and μ < 0, we can choose εl,μ small enough

such that

sup
t≥0

Jλ(tũελ,μ) <
1
N
g(x0)

−N−p
p S

N
p
0 = c∗.

Therefore, (6.1) holds by taking vλ,μ = ũελ,μ.

In fact, by (f2), (g2) and the definition of ũελ,μ, we have that∫
�

f |ũελ,μ |q > 0 and
∫

�

g|ũελ,μ |p∗
> 0.

From Lemma 3.4, the definition of α−
λ and (6.1), for any l Î (0, Λ0) and μ < 0, there

exists tελ,μ > 0 such that tελ,μ ũελ,μ ∈ N−
λ and

α−
λ ≤ Jλ(tελ,μ ũελ,μ) ≤ sup

t≥0
Jλ(ttελ,μ ũελ,μ) < c∗.

The proof is thus complete. □
Proof of Theorem 1.3 Let Λ1(0) be defined as in (1.3). Arguing as in Theorems 4.3

and 5.3, we can get the first positive solution ũλ ∈ N +
λ for all l Î (0, Λ1(0)) and the

second positive solution Ũλ ∈ N−
λ

for all λ ∈ (0, qp�1(0)). Since N +
λ ∩ N−

λ = ∅, this
implies that ũλ and Ũλ are distinct. □
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