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Abstract

Nonlinear problems for the one-dimensional heat equation in a bounded and
homogeneous medium with temperature data on the boundaries x = 0 and x = 1, and
a uniform spatial heat source depending on the heat flux (or the temperature) on the
boundary x = 0 are studied. Existence and uniqueness for the solution to non-classical
heat conduction problems, under suitable assumptions on the data, are obtained.
Comparisons results and asymptotic behavior for the solution for particular choices of
the heat source, initial, and boundary data are also obtained. A generalization for
non-classical moving boundary problems for the heat equation is also given.
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1. Introduction
In this article, we will consider initial and boundary value problems (IBVP), for the

one-dimensional non-classical heat equation motivated by some phenomena regarding

the design of thermal regulation devices that provides a heater or cooler effect [1-6]. In

Section 2, we study the following IBVP (Problem (P1)):

ut − uxx = −F(ux(0, t), t), 0 < x < 1, t > 0 (1:1)

u(0, t) = f (t), t > 0 (1:2)

(P1) u(1, t) = g(t), t > 0 (1:3)

u(x, 0) = h(x), 0 ≤ x ≤ 1, (1:4)

where the unknown function u = u(x,t) denotes the temperature profile for an homo-

geneous medium occupying the spatial region 0 < x <1, the boundary data f and g are

real functions defined on ℝ+, the initial temperature h(x) is a real function defined on

[0,1], and F is a given function of two real variables, which can be related to the evolu-

tion of the heat flux ux(0,t) (or of the temperature u(0,t)) on the fixed face x = 0. In

Sections 6 and 7 the source term F is related to the evolution of the temperature u(0,t)

when a heat flux ux(0,t) is given on the fixed face x = 0.
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Non-classical problems like (1.1) to (1.4) are motivated by the modelling of a system

of temperature regulation in isotropic media and the source term in (1.1) describes a

cooling or heating effect depending on the properties of F which are related to the

evolution of the heat ux(0,t). It is called the thermostat problem.

A heat conduction problem of the type (1.1) to (1.4) for a semi-infinite material was

analyzed in [5,6], where results on existence, uniqueness and asymptotic behavior for

the solution were obtained. In other frameworks, a class of heat conduction problems

characterized by a uniform heat source given as a multivalued function from ℝ into

itself was studied in [3] with results regarding existence, uniqueness and asymptotic

behavior for the solution. Other references on the subject are [2,4,7,8]. Recently, free

boundary problems (Stefan problems) for the non-classical heat equation have been

studied in [9-11], where some explicit solutions are also given.

Section 2 is devoted to prove the existence and the uniqueness of the solution to an

equivalent Volterra integral formulation for problems (1.1) to (1.4). In Section 3, 4 and

5, boundedness, comparisons results and asymptotic behavior regarding particular initial

and boundary data are obtained. In Section 6, a similar problem to (P1) is presented: the

heat source F depends on the temperature on the fixed face x = 0 when a heat flux

boundary condition is imposed on x = 0, and we obtain the existence of a solution

through a system of three second kind Volterra integral equations. In Section 7, we

solve a more general problem for a non-classical heat equation with a moving boundary

x = s(t) on the right side which generalizes the boundary constant case and it can be use-

ful for the study of free boundary problems for the classical heat-diffusion equation [12].

2. Existence and uniquenes of problem (P1)
For data h = h(x), g = g(t), f = f(t) and F in problems (1.1) to (1.4) we shall consider the

following assumptions:

(HA) g and f are continuously differentiable functions on ℝ+;

(HB) h is a continuously differentiable function in [0,1], which verifies the following

compatibility conditions:

h(0) = f (0), h(1) = g(0); (2:1)

(HC) The function F = F(V,t) verifies the following conditions:

(HC1) The function F is defined and continuous in the domain ℝ × ℝ+;

(HC2) For each M >0 and for |V| ≤ M, the function F is uniformly Hölder continu-

ous in variable t for each compact subset of R+
0;

(HC3) For each bounded set B of ℝ × ℝ +, there exists a bounded positive function

L0 = L0(t), which is independent on B, defined for t > 0, such that∣∣F(V2, t) − F(V1 , t) |≤ LO (t) |V2 − V1
∣∣,∀(V2 , t), (V1, t) ∈ B;

(HC4) The function F is bounded for bounded V for all t ≥ 0;

(HD) F(0,t) = 0, t >0.

Under these assumptions, from Th. 20.3.3 of [13] an integral representation for the

function u = u(x,t), which satisfies the conditions (1.1) to (1.4), can be written as below:

u(x, t) =
∫ 1

0

[
θ(x − ξ , t) − θ(x + ξ , t)

]
h(ξ)dξ−2

∫ t

0
θx(x, t − τ )f (τ )dτ + 2

∫ t

0
θx(x − 1, t − τ )g(τ )dτ

−
∫ t

0

{∫ 1

0

[
θ(x − ξ , t − τ ) − θ(x + ξ , t − τ )

]
dξ

}
F(V(τ ), τ )dτ

(2:2)
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where θ = θ (x,t) is the known theta function defined by

θ(x, t) = K(x, t) +
∞∑
j=1

[K(x + 2j, t) + K(x − 2j, t)] (2:3)

and K = K(x,t) is the fundamental solution to the heat equation defined by:

K(x, t) =
1

2
√

π t
e
−
x2

4t , t > 0. (2:4)

Moreover the function V = V(t), defined by

V(t) = ux(0, t), t > 0, (2:5)

as the heat flux on the face x = 0, must satisfy the following second kind Volterra

integral equation

V(t) = V0(t) −
∫ t

0
K(t − τ )F(V(τ ), τ )dτ (2:6)

where

Vo(t) =

1∫
0

(θξ (−ξ , t) − θξ (ξ , t))h(ξ)dξ − 2

t∫
0

θ(0, t − τ )ḟ (τ )dτ + 2

t∫
0

θ(−1, t − τ )ġ(τ )dτ

= 2

1∫
0

θ(ξ , t)h′(ξ)dξ − 2

t∫
0

θ(0, t − τ )ḟ (τ )dτ + 2

t∫
0

θ(−1, t − τ )ġ(τ )dτ , t > 0,

(2:7)

with K = K(t) and K1 (x, t; ξ, τ) defined by

K(t) =
∫ 1

0
K1(0, t; ξ , 0)dξ , t > 0, (2:8)

K1(x, t; ξ , τ ) = θx(x − ξ , t − τ ) − θx(x + ξ , t − τ ), t > τ . (2:9)

Taking into account that

1∫
0

K1(x, t; ξ , 0) dξ =

1∫
0

θx(x − ξ , t) dξ −
1∫

0

θx(x + ξ , t) dξ

=

x∫
1+x

θx(y, t) dy −
x−1∫
x

θx(y, t) dy = 2θ(x, t) − θ(x − 1, t) − θ(x + 1, t)

and θ(-1,t) = θ(1,t), we can obtain a new expression for K(t) given by

K(t) = 2
(
θ(0, t) − θ(1, t)

)
, t > 0. (2:10)

Then, problem (2.2), (2.5) to (2.7) provides an integral formulation for the problem

(1.1) to (1.4).

Theorem 1

Under the assumptions (HA) to (HC), there exists a unique solution to the problem

(P1). Moreover, there exists a maximal time T > 0, such that the unique solution to

(1.1) to (1.4) can be extended to the interval 0 ≤ t ≤ T.
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Proof

In order to prove the existence and uniqueness of problem (P1) on the interval [0,T],

we will verify the hypotheses (H1), (H2), (H3), (H5) and (H6) of the Theorem 1.2 of

[[14], p. 91]. From (HA) and (HB) we conclude that Vo(t) satisfies hypothesis (H1).

From (HC1) and the continuity of K we conclude that K̄(t − τ )F(V(τ ), τ ) satisfies

hypothesis (H2). If B is a bounded subset of D, then by (HC4) we have |F(V(τ),τ)| <M

and, therefore, there exists m = m(t,τ) such that:

∣∣K̄(t − τ )F(V(τ ), τ )
∣∣ < M

∣∣K̄(t − τ )
∣∣ < M

(
1√

π(t − τ )
+ 2erf

(
3

2
√
t − τ

))
< M

(
1√

π(t − τ )
+ 2

)
= m(t, τ ) (2:11)

From (2.11), hypothesis (H3) holds. From the continuity of K and (HC4) we have

hypothesis (H5). From (HC3), there exists k(t, τ ) = Lo(t)K̄(t − τ ) such that for 0 ≤ τ ≤

t ≤ K, V1,V2 Î B:∣∣K̄(t − τ )F(V1, τ ) − K̄(t − τ )F(V2, τ )
∣∣ = K̄(t−τ )

∣∣F(V1, τ ) − F(V2, τ )
∣∣ ≤ k(t, τ ) |V1 − V2|

then the hypothesis (H6) holds.

In order to extend the solution to a maximal interval we can apply the Theorem 2.3

[[14], p. 97]. Taking into account that function m = m(t,τ), defined in (2.11), verifies

also the complementary condition:

lim
t→0+

T+t∫
T

∣∣m(T + t, τ )
∣∣dτ = 0 (2:12)

then the required hypothesis (2.3) of [[14], p. 97] is fulfilled and the thesis holds.▀

3. Boundedness of the solution to problem (P1)
We obtain the following result.

Theorem 2

Under assumptions (HA) to (HD), the solution u to problem (P1) in [0,1] × [0,T],

given by Theorem 1, is bounded in terms of the initial and boundary data h, f and g.

Proof

The integral representation of the solution u to problem (P1) can be written as

u(x, t) = u0(x, t) −
∫ t

0

∫ 1

0

[
θ(x − ξ , t − τ ) − θ(x + ξ , t − τ )

]
F(V(τ ), τ )dξ dτ ,(3:1)

where

u0(x, t) =

1∫
0

[
θ(x − ξ , t) − θ(x + ξ , t)

]
h(ξ)dξ−2

t∫
0

θx(x, t − τ )f (τ )dτ+2

t∫
0

θx(x − 1, t − τ )g(τ )dτ , (3:2)

denotes the solution to (1.1) to (1.4) with null heat source (i.e. F ≡ 0 in such model).

From the continuity of function θ and hypothesis (HC3) and (HD), we have:

∣∣u(x, t) ∣∣≤ ∣∣u0(x, t)∣∣ +
∫ t

0

∫ 1

0

∣∣θ(x − ξ , t − τ ) − θ(x + ξ , t − τ )
∣∣ ∣∣F(V(τ ), τ )∣∣dξdτ

≤ ∣∣u0(x, t)∣∣ +M0

∫ t

0

∣∣F(V(τ ), τ )∣∣dτ ≤ ∣∣u0(x, t)∣∣ + C0

∫ t

0

∣∣V(τ )∣∣dτ ,

(3:3)
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where M0 is a positive constant which verifies the inequality
∫ 1

0

∣∣θ(x − ξ , t − τ ) − θ(x + ξ , t − τ )
∣∣dξ ≤ M0, 0 < τ < t ≤ T, 0 ≤ x ≤ 1, (3:4)

C0 = M0‖L0‖T , (3:5)

and ‖L0‖T = max
0≤t≤T

∣∣L0(t)∣∣, where we consider the bounded set [0,||V||] × [0,T]. Now,

taking into account assumptions (HA), (HB) and properties of function θ, we can write

|u0 (x, t) |≤ M0‖h‖∞ + C1
[∥∥f∥∥T + ∥∥g∥∥T] , 0 < τ < t ≤ T, (3:6)

where

C1 = 1 +
16 ζ (3)

3
√

π
T3/2 (3:7)

and ζ represents the Riemann’s Zeta function. From (2.6), (2.7) and hypothesis (HC3)

and (HD), we have:

∣∣V(t)∣∣ ≤ ∣∣Vo(t)∣∣ + ∫ t

0

∣∣K(t − τ )
∣∣ ∣∣F(V (τ ) , τ )

∣∣dτ ≤ ∣∣V0(t)
∣∣ + Co

M0

∫ t

0

∣∣K(t − τ )
∣∣ ∣∣V(τ )∣∣dτ

≤ C2
∥∥h′∥∥

∞ + C3

[∥∥∥ḟ∥∥∥
T
+
∥∥ġ∥∥T] + Co

Mo

∫ t

0

∣∣K(t − τ )
∣∣ ∣∣V(τ )∣∣dτ

(3:8)

where

C2 =
1√
π t

+ 1, C3 = 2

√
T
π

+ T. (3:9)

Finally, in view of (3.9) and inequality (2.10), we can apply the Gronwall inequality

which provides:

∣∣V(t)∣∣ ≤ [C2
∥∥h′∥∥

∞ + C3

(∥∥∥ḟ∥∥∥
T
+
∥∥ġ∥∥T)] exp

(
C0

M0

∫ t

0

∣∣K(t − τ )
∣∣dτ

)
, 0 < t ≤ T, (3:10)

and then, from (3.4) we obtain for 0 <t ≤ T the following estimation:

∣∣u(x, t)∣∣ ≤ M0‖h‖∞ + C1
[∥∥f∥∥T + ∥∥g∥∥T] + C0

∫ t

0

⎧⎪⎨
⎪⎩
[
C2
∥∥h′∥∥

∞ + C3

(∥∥∥ḟ∥∥∥
T
+
∥∥ġ∥∥T)] e

2C0

M0
√

π

√
τ

⎫⎪⎬
⎪⎭ dτ

≤ M0‖h‖∞ + C1
[∥∥f∥∥T + ∥∥g∥∥T] + C0C3e

2C0
√
T

M0
√

π
[∥∥h′∥∥

∞ + T
(∥∥∥ḟ∥∥∥

T
+
∥∥ġ∥∥T)]

(3:11)

and the thesis holds.▀

4. Qualitative analysis of problem (P1)
In this section, we shall consider problem (1.1) to (1.4) with the following assumptions:

(HE) V F(V, t) > 0, ∀ V 
= 0, ∀ t > 0;

(HF) f (t) ≡ 0 ∀t > 0, g(t) ≡ u10 > 0 ∀t > 0, h′(x) > 0 ∀ x ∈ [0, 1], h(1) ≤ u10 .

Lemma 3

(a) Under the hypothesis (HD) and (HF), we have that w(0,t) > 0, ∀ t > 0, where w(x,t)

is defined by

w(x, t) = ux(x, t) (4:1)
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and u(x,t) is the solution to problem (P1);

(b) Under the assumptions (HD), (HE) and (HF) we have that w(1,t) > 0, ∀ t > 0;

(c) Under the assumptions of part (b) we have that w(x,t) > 0, ∀ x Î (0,1), ∀ t > 0;

(d) Under the assumptions of part (b) we have that u(x,t) > 0, ∀ x Î [0,1], ∀ t > 0;

(e) Under the assumptions of part (b) we have that u(x,t) ≤ u1, ∀ x Î [0,1], ∀ t ≥ 0.

Proof

(a) Let us first observe that w(x,t), defined in (4.1), is a solution to the following auxili-

ary problem (P2):

wt − wxx = 0, (x, t) ∈ � ≡ {(x, t) : 0 < x < 1, 0 < t ≤ T} (4:2)

wx(0, t) = F(w(0, t), t), 0 < t ≤ T (4:3)

(P2) wx(1, t) = F(w(0, t), t), 0 < t ≤ T (4:4)

w(x, 0) = h′(x), 0 ≤ x ≤ 1 (4:5)

As w(x,0) = h’(x) >0 we have that the minimum of w(0,t) cannot be at x = 0. Sup-

pose that there exists to >0 such that w(0,to) = 0. By the Maximum Principle we know

that wx (0,t0) >0. Moreover, by assumption (HD), we have that wx (0,to) = F(w(0,to),t0)

= F(0,to) = 0, which is a contradiction. Therefore we have w(0,t) > 0, ∀ t > 0.

(b) As w(1,0) >0, we have that the minimum of w(1,t) cannot be at x = 0. Suppose

that there exists t1 > 0 such that w(1,t1) = 0. By the maximum principle we have that

wx (0,t1) <0. In other respects, we have that wx (1,t1) = F(w(0,t1),t1) and by assumption

(HE) follows that w(0,t1) <0, which is a contradiction. Therefore, we have w(1,t) > 0, ∀
t > 0.

(c) It is sufficient to use part (a), (b), h’(x) >0 and the maximum principle.

(d) Let us observe that

u(x, t) = u(0, t) +
x∫
0
w(ξ , t)dξ . (4:6)

By assumption (HF) and part (c) we have that u(x,t) >0, ∀ x Î [0,1], ∀ t ≥ 0.

(e) Let us observe that ut - uxx <0, which follows from (HE) and part (c). According

to the Maximum Principle, the maximum of u(x,t) must be on the parabolic boundary,

from which we obtain that

u(x, t) ≤ Max
{
h(1) , u1o

}
= u1o , (4:7)

and the result holds.▀

Lemma 4

Under the assumptions (HD), (HE) and (HF), we have that

0 ≤ u(x, t) ≤ uo(x, t), ∀ x ∈ [0, 1], ∀t > 0. (4:8)

Proof

Let v(x,t) = u(x,t) - u0(x,t), then v(x,t) is a solution to the following problem (P3):

vt − vxx < 0, (x, t) ∈ � ≡ {(x, t) : 0 < x < 1, 0 < t ≤ T} (4:9)
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v(0, t) = 0, 0 < t ≤ T (4:10)

(P3) v(1, t) = 0, 0 < t ≤ T (4:11)

v(x, 0) = 0, 0 ≤ x ≤ 1 (4:12)

From the maximum principle it follows that v(x,t) ≤ 0, ∀ x Î [0,1], ∀ t > 0.▀

Lemma 5

Under the same assumptions of Lemma 4, we have

lim
t→+∞ u(x, t) ≤ u10x ≤ u10 , ∀x ∈ [0, 1].

Proof

Let us observe that uo (x,t) is a solution to the following problem (P4):

uo t − uo xx = 0, (x, t) ∈ � ≡ {(x, t) : 0 < x < 1, 0 < t ≤ T} (4:13)

uo(0, t) = 0, 0 < t ≤ T (4:14)

(P4) uo(1, t) = u10, 0 < t ≤ T (4:15)

uo(x, 0) = h(x), 0 ≤ x ≤ 1. (4:16)

Therefore, lim
t→+∞ u0(x, t) = u10x ≤ u10 , ∀x ∈ (0, 1), and by Lemma 4, and (d) and (c)

of Lemma 3, the thesis holds.▀

5. Local comparison results
Now we will consider the continuous dependence of the functions V = V(t) and u = u

(x,t) given by (2.2) and (2.6), respectively, upon the data f, g, h and F. Let us denote by

Vi = Vi(t) (i = 1,2) the solution to (2.6) in the minimum interval [0,T] and ui = ui(x,t)

given by (2.2), respectively, for the data fi, gi, hi and F (i = 1,2) in problem (P1). Then

we obtain the following results.

Theorem 6

Let us consider the problem (P1) under the assumptions (HA) to (HD), then we have:

∣∣V2(t) − V1(t)
∣∣ ≤ [C2

∥∥h2′ − h1
′∥∥

∞ + C3

(∥∥∥ḟ2 − f1
∥∥∥
t
+
∥∥ġ2 − ġ1

∥∥
t

)]
exp

⎛
⎝‖L0‖ t

t∫
0

K̄(t − τ )dτ

⎞
⎠ (5:1)

and ∣∣u2(x, t) − u1(x, t)
∣∣ ≤ M0‖h2 − h1‖∞ + C1

(∥∥f2 − f1
∥∥
t +
∥∥g2 − g1

∥∥
t

)
+

+C0C3 exp
(
2C0

√
t

M0
√

π

)[∥∥h2′ − h1
′∥∥

∞ + t
(∥∥∥ḟ2 − ḟ1

∥∥∥
t
+
∥∥ġ2 − ġ1

∥∥
t

)]
.

(5:2)

Proof

From (2.6) and (2.7) we can write

V2(t) − V1(t) = 2

1∫
0

θ(ξ , t)
(
h2

′(ξ) − h1
′(ξ)
)
dξ − 2

t∫
0

θ(0, t − τ )
(
ḟ2(τ ) − ḟ1(τ )

)
dτ+

+2

t∫
0

θ(−1, t − τ )
(
ġ2(τ ) − ġ1(τ )

)
dτ +

∫ t

0
K(t − τ )

(
F(V1(τ ), τ ) − F(V2(τ ), τ )

)
dτ .

(5:3)
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Now, taking into account (HA), (HB), (HC3) and properties of function θ, we get:

∣∣V2(t) − V1(t)
∣∣ ≤ C2

∥∥h2′ − h1
′∥∥

∞+C3

(∥∥∥ḟ2 − ḟ1
∥∥∥
t
+
∥∥ġ2 − ġ1

∥∥
t

)
+‖L0‖t

t∫
0

K̄(t − τ ) |V2 − V1|dτ , 0 < τ < t ≤ T, (5:4)

where C2 and C3 are given by (3.10). Then, (5.1) follows from (5.4) by using the

Gronwall’s inequality. To obtain (5.2) we note that from (2.2) we can write

u2(x, t) − u1(x, t) =

1∫
0

(
θ(x − ξ , t) − θ(x + ξ , t)

) (
h2(ξ) − h1(ξ)

)
dξ − 2

t∫
0

θx(x, t − τ )
(
f2(τ ) − f1(τ )

)
dτ

+2

t∫
0

θx(x − 1, t − τ )
(
g2(τ ) − g1(τ )

)
dτ +

t∫
0

1∫
0

(
θ(x − ξ , t − τ ) − θ(x + ξ , t − τ )

) (
F(V1(τ ), τ ) − F(V2(τ ), τ )

)
dξdτ .

Now, taking into account assumptions (HA), (HB) and (HC), and using the same

constants as in (3.5) and (3.7) it follows (5.2).▀
Now, let ui = ui(x,t), Vi = Vi(t) (i = 1,2) be the functions given by (2.2) and (2.6) for

the data f, g, h and Fi (i = 1,2) in problem (P1). Then, we obtain the following result:

Theorem 7

Let us consider the problem (P1) under the assumptions (HA) to (HD), then we obtain

the following estimation:

∣∣u2(x, t) − u1(x, t)
∣∣ ≤ M0‖F2 − F1‖t,M

⎡
⎢⎢⎣t + 2

∥∥L02∥∥∞√
π

√
t e

‖L02‖∞
2
√
t√

π

⎤
⎥⎥⎦ (5:5)

where

‖F1 − F2‖t,M = sup
‖z‖t≤M
0<τ≤t

∣∣F1(z(τ ), τ ) − F2(z(τ ), τ )
∣∣ .

(5:6)

Proof

From (2.6) and (2.7) we can write

V2(t) − V1(t) =
∫ t

0
K(t − τ )

(
F1(V1(τ ), τ ) − F2(V2(τ ), τ )

)
dτ . (5:7)

Taking into account the inequality
∣∣F2(V2(τ ), τ ) − F1(V1(τ ), τ )

∣∣ ≤ ∣∣F2(V2(τ ), τ ) − F2(V1(τ ), τ )
∣∣+∣∣F2(V1(τ ), τ ) − F1(V1(τ ), τ )

∣∣ (5:8)

from (5.7) and (2.10) we obtain

∣∣V2(t) − V1(t)
∣∣ ≤ 2√

π
‖F2 − F1‖t,M

√
t +

t∫
0
K(t − τ )L02(τ )

∣∣V2(τ ) − V1(τ )
∣∣dτ . (5:9)

where L02(t) is given by (HC3), with respect to F2. Using a Gronwall’s inequality it

follows that

∣∣V2(t) − V1(t)
∣∣ ≤ 2√

π
‖F2 − F1‖t,M

√
t exp

⎛
⎝ t∫

0

K(t − τ )L02(τ )dτ

⎞
⎠ , 0 < t ≤ T. (5:10)
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Besides, in view of (5.6), (5.8) and assumption (HC3), from (2.2) we get:

∣∣u2(x, t) − u1(x, t)
∣∣ ≤ Mo‖F2 − F1‖t,Mt +Mo

t∫
0
L02(τ )

∣∣V2(t) − V1(t)
∣∣dτ , (5:11)

and the thesis holds.▀

6. Another related problem
Now, we will consider a new non-classical initial-boundary value problem (P5) for the

heat equation in the slab [0,1], which is related to the previous problem (P1), i.e. (6.1)

to (6.4):

ut − uxx = −F(u(0, t), t), (x, t) ∈ � ≡ {(x, t) : 0 < x < 1, t > 0} (6:1)

ux(0, t) = f (t), t > 0 (6:2)

(P5) ux(1, t) = g(t), t > 0 (6:3)

u(x, 0) = h(x), 0 ≤ x ≤ 1. (6:4)

The proof of their corresponding results follows a similar method to the one devel-

oped in previous Sections.

Theorem 8

Under the assumptions (HA) to (HD), the solution u to the problem (P5) has the

expression

u(x, t) =
∫ 1

0

[
θ(x − ξ , t) + θ(x + ξ , t)

]
h(ξ)dξ−2

∫ t

0
θ(x, t − τ )f (τ )dτ + 2

∫ t

0
θ(x − 1, t − τ )g(τ )dτ

−
∫ t

0

{∫ 1

0

[
θ(x − ξ , t − τ ) + θ(x + ξ , t − τ )

]
dξ

}
F(V(τ ), τ )dτ

(6:5)

where V = V(t), defined by

V(t) = u(0, t), t > 0 (6:6)

must satisfy the following second kind Volterra integral equation

V(t) = 2

1∫
0

θ(ξ , t)h(ξ)dξ − 2

t∫
0

θ(0, t − τ )f (τ )dτ + 2

t∫
0

θ(−1, t − τ )g(τ )dτ

−2

t∫
0

1∫
0

θ(ξ , t − τ )dξF(V(τ ), τ )dτ .

(6:7)

Proof

We follow the Theorem 1.▀

Theorem 9

Under the assumptions (HA) to (HD), there exists a unique solution to the problem

(P5). Moreover, there exists a maximal time T > 0, such that the unique solution to

(1.1) to (1.4) can be extended to the interval 0 ≤ t ≤ T.
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Proof

It is similar to the one given for Theorem 1.▀

Theorem 10

Under the assumptions (HA) to (HD), the solution u to problem (P5) in [0,1]×[0,T]

given by Theorem 9, it is bounded in terms of the initial and boundary data h, f and g,

in the following way:
∣∣u(x, t)∣∣ ≤ M1‖h‖∞+C3

(∥∥f∥∥T + ∥∥g∥∥T)+M1‖L0‖TT
[
C2‖h‖∞ + C3

(∥∥f∥∥T +
∥∥g∥∥T)] exp(C3‖L0‖T) (6:8)

here C2 and C3 are given by (3.9) and∫ 1

0

∣∣θ(x − ξ , t − τ ) + θ(x + ξ , t − τ )
∣∣dξ ≤ M1, 0 < τ < t ≤ T, 0 ≤ x ≤ 1. (6:9)

Let us denote by Vi = Vi(t) (i = 1,2) the solution to (6.7) and ui = ui(x,t) given by

(6.5), respectively, for the data fi, gi, hi and F (i = 1,2) in problem (P5).

Theorem 11

Let us consider the problem (P5) under the assumptions (HA) to (HD), then we obtain

the following estimations:∣∣V2(t) − V1(t)
∣∣ ≤ [C2‖h2 − h1‖∞ + C3

(∥∥f2 − f1
∥∥
t +
∥∥g2 − g1

∥∥
t

)]
exp(C3‖L0‖t), (6:10)

∣∣u2(x, t) − u1(x, t)
∣∣ ≤ M1‖h2 − h1‖∞ + C3

(∥∥f2 − f1
∥∥
t +
∥∥g2 − g1

∥∥
t

)
+

+ M1‖L0‖t
[
C3‖h2 − h1‖∞ + t

(∥∥f2 − f1
∥∥
t +
∥∥g2 − g1

∥∥
t

)]
exp(C3‖L0‖t).

(6:11)

Proof

It is similar to the one given for Theorem 6.▀
Now, let ui = ui(x,t), Vi = Vi(t) (i = 1,2) be the functions given by (6.5) and (6.7) for

the data f, g, h and Fi (i = 1,2) in problem (P5), respectively.

Theorem 12

Let us consider the problem (P5) under the assumptions (HA) to (HD), then we obtain

the following estimation:∣∣u2(x, t) − u1(x, t)
∣∣ ≤ M1‖F2 − F1‖t,Mt

[
1 +
∥∥L02∥∥tC3 exp(C3

∥∥L02∥∥t)] . (6:12)

Proof

It is similar to the one given for Theorem 7.▀
We consider the following assumptions:

(HG) f (t) ≡ 0 ∀t > 0, g(t) ≡ 0 ∀t > 0, h(x) > 0 ∀ x ∈ [0, 1] (6:13)

Theorem 13

Under the hypotheses (HG) and (HE), we have that

0 < u(x, t) < ‖h‖∞, ∀x ∈ [0, 1], ∀ t ≥ 0. (6:14)
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Proof

Suppose that there exists to >0 such that u(0,to) = 0. By assumption (HE) we have that

ut - uxx ≤ 0 for all 0 <x < 1, 0 <t ≤ to. By applying the maximum principle we get ux(0,

to) >0 which is a contradiction. Then, it implies that u(0,t) >0 for all t >0. Therefore,

by assumption (HE), we have that ut - uxx ≤ 0 for all (x,t) in Ω, and by the Maximum

Principle, the minimum of u must be at t = 0, which implies, by assumption (HG),

that u(x,t) > 0, ∀x Î [0,1], ∀t ≥ 0.

7. Non-classical moving boundary problems
In this Section, we will study some initial and boundary value problems for the non-

classical heat equation in the domain

�s ≡ {(x, t) : 0 < x < s(t), t > 0
}

(7:1)

where s = s(t) is a continuous function of t over the interval t > 0 and s(0) = 1. The

IBVP are reduced to equivalent systems of integral equations in order to get the exis-

tence of a solution.

We consider the following problem (P6):

ut − uxx = −F(u(0, t), t), 0 < x < s(t), t > 0 (7:2)

ux(0, t) = f (t), t > 0 (7:3)

(P6) u(s(t), t) = g(t), t > 0 (7:4)

u(x, 0) = h(x), 0 ≤ x ≤ 1. (7:5)

The function F is now related to the evolution of the temperature instead of the heat

flux at x = 0. The problem (P6) can be considered a non-classical moving boundary

problem for the heat equation as a generalization of the moving boundary problem for

the classical heat equation [13] which can be useful in the study of free boundary pro-

blems for the heat-diffusion equation [12].

We will use the Neumann function, which is defined by

N(x, t; ξ , τ ) = K(x − ξ , t − τ ) + K(x + ξ , t − τ ). (7:6)

Theorem 14

Under the assumptions (HA) to (HD) the solution u to the problem (P6) has the

expression

u(x, t) =

+∞∫
−∞

K(x − ξ , t)h(ξ)dξ − 2

t∫
0

K(x, t − τ ) ϕ1(τ )dτ + 2

t∫
0

Kx(x − s(τ ), t − τ ) ϕ2(τ )dτ

−
t∫

0

1∫
0

N(x, ξ , t, τ )F(V(τ ), τ )dξdτ

(7:7)

where the function V, defined by

V(t) = u(0, t), (7:8)
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and the piecewise continuous functions j1 and j2 must satisfy the following system

of three integral equations:

ϕ1(t) = f (t) −
+∞∫

−∞
Kx(−ξ , t)h(ξ)dξ − 2

t∫
0

Kxx(−s(τ ), t − τ ) ϕ2(τ )dτ , (7:9)

ϕ2(t) = g(t) −
+∞∫

−∞
K(s(t) − ξ , t)h(ξ)dξ + 2

t∫
0

K(s(t), t − τ ) ϕ1(τ )dτ − 2

t∫
0

Kx(s(t) − s(τ ), t − τ ) ϕ2(τ )dτ+

+

t∫
0

1∫
0

N(s(t), ξ , t, τ )F(V(τ ), τ )dξdτ ,

(7:10)

V(t) =

+∞∫
−∞

K(−ξ , t)h(ξ)dξ − 2

t∫
0

K(0, t − τ ) ϕ1(τ )dτ + 2

t∫
0

Kx(−s(τ ), t − τ ) ϕ2(τ )dτ+

−2

t∫
0

1∫
0

K(ξ , t − τ )dξF(V(τ ), τ )dτ .

(7:11)

Conversely, if V, j1 and j2 are solutions to the integral system (7.9)-(7.11), and u has

the expression (7.7), then u is a solution to the problem (P6). Moreover, V(t) = u(0,t)

and the solution u is unique among the class of solutions for which ux is bounded.

Proof

We first make a smooth extension of h outside of 0≤x≤1, so that the extended h is

bounded and has compact support. The solution u is now assumed to have the form (7.7),

where V, j1 and j2 are unknown continuous functions that they are to be determined.

Note that the initial condition (7.5) is satisfied. From the differential equation we obtain

ut(x, t) − uxx(x, t) = −F(V(t), t) (7:12)

and therefore by (7.8) the differential equation is satisfied. The system of integral

equations is derived from the boundary conditions. The second equation is obtained

allowing x to tend to s(t) and using the Lemma 14.2.3 of [13, page 218], i.e.,

g(t) =

+∞∫
−∞

K(s(t) − ξ , t)h(ξ)dξ − 2

t∫
0

K(s(t), t − τ ) ϕ1(τ )dτ + ϕ2(t) + 2

t∫
0

Kx(s(t) − s(τ ), t − τ ) ϕ2(τ )dτ

−
t∫

0

1∫
0

N(s(t), ξ , t, τ )F(V(τ ), τ )dξdτ .

(7:13)

Letting x to tend to zero in (7.7), we obtain the third equation, i.e.,

V(t) =

+∞∫
−∞

K(−ξ , t)h(ξ)dξ − 2

t∫
0

K(0, t − τ ) ϕ1(τ )dτ + 2

t∫
0

Kx(−s(τ ), t − τ ) ϕ2(τ )dτ

−
t∫

0

1∫
0

2K(ξ , t − τ )dξF(V(τ ), τ )dτ .

(7:14)

Now let us derive u with respect to x from (7.6) and we get,

ux(x, t) =

+∞∫
−∞

Kx(x − ξ , t)h(ξ)dξ − 2

t∫
0

Kx(x, t − τ ) ϕ1(τ )dτ + 2

t∫
0

Kxx(x − s(τ ), t − τ ) ϕ2(τ )dτ

−
t∫

0

1∫
0

Nx(x, ξ , t, τ )F(V(τ ), τ )dξdτ .

(7:15)
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When x tends to zero in (7.15), and using the jump formulae of the fundamental

solution to the heat equation [15], we obtain

f (t) =

+∞∫
−∞

Kx(−ξ , t)h(ξ)dξ + ϕ1(t) + 2

t∫
0

Kxx(−s(τ ), t − τ ) ϕ2(τ )dτ (7:16)

and the first integral equation holds. Consequently, if u possesses the form (6.7),

then the functions V, j1 and j2 must satisfy the system (7.9) to (7.11).

Moreover, if the continuous functions V, j1 and j2 verify the system (7.9) to (7.11)

for all 0 ≤ t ≤ T, then we can consider the expression (7.7) for u, which satisfies the

initial condition (7.5). Allowing x to tend to zero in (7.15), and using (7.10) we obtain

(7.8), and therefore the differential equation is satisfied. From Lemma 4.2.3 of [13,

page 50] we see that

lim
x↓0

ux(x, t) =
+∞∫

−∞
Kx(−ξ , t)h(ξ)dξ + ϕ1(t) + 2

t∫
0
Kxx(−s(τ ), t − τ )ϕ2(τ )dτ . (7:17)

Hence, from (7.8) we have ux (0,t) = f(t). Likewise, u assumes the value g as x tends

to s(t), and therefore the equivalence between (7.3) to (7.6) and (7.9) to (7.11) holds.

Finally, in order to prove the uniqueness and existence of solution to the system of

integral equations (7.9) to (7.11), we will verify hypothesis (8.2.40) to (8.2.44) of the

Corollary 8.2.1 of [13, p. 91]. First we define the following functions:

H1(t, τ ,V(τ ),ϕ1(τ ),ϕ2(τ )) = −2Kxx(−s(τ ), t − τ ) ϕ2(τ ), (7:18)

H2(t, τ ,V(τ ),ϕ1(τ ),ϕ2(τ )) = 2K(s(t), t−τ ) ϕ1(τ )−2Kx(s(t)−s(τ ), t−τ ) ϕ2(τ )+

1∫
0

N(s(t), ξ , t, τ )dξ F(V(τ ), τ ), (7:19)

H3(t, τ ,V(τ ),ϕ1(τ ),ϕ2(τ )) = −2K(0, t−τ ) ϕ1(τ )+2Kx(−s(τ ), t−τ ) ϕ2(τ )−2

1∫
0

K(ξ , t − τ )dξ F(V(τ ), τ ). (7:20)

Now we will prove (8.2.40) [13]. We have for i = 1,2,3:∣∣∣Hi(t, τ ,V,ϕ1,ϕ2) − Hi(t, τ , Ṽ , ϕ̃1, ϕ̃2)
∣∣∣ ≤ L(t, τ )

[∣∣∣V − Ṽ
∣∣∣ + |ϕ1 − ϕ̃1| + |ϕ2 − ϕ̃2|

]
. (7:21)

For the first function we have,∣∣∣H1(t, τ ,V,ϕ1,ϕ2) − H1(t, τ , Ṽ , ϕ̃1, ϕ̃2)
∣∣∣ ≤ 2

∣∣Kxx(−s(τ ), t − τ )
∣∣ |ϕ2 − ϕ̃2| (7:22)

and by using the classical inequality

exp(
x2

α(t − τ )
)

(t − τ )n/2
≤
( nα

2ex2

)n/2
, α, x > 0, t > τ , n ∈ N,

(7:23)

we deduce that

∣∣∣H1(t, τ ,V,ϕ1,ϕ2) − H1(t, τ , Ṽ, ϕ̃1, ϕ̃2)
∣∣∣ ≤ 1

4
√

π(s(τ ))3

(
2
(
6
e

)3/2

+
(
10
e

)5/2
)

|ϕ2 − ϕ̃2|

≤ 1
4
√

πD3

(
2
(
6
e

)3/2

+
(
10
e

)5/2
)[∣∣∣V − Ṽ

∣∣∣ + |ϕ1 − ϕ̃1| + |ϕ2 − ϕ̃2|
]
,

(7:24)
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where D = min
0<τ<T

s(τ ). For the second function, by using (HC3), we have

∣∣∣H2(t, τ ,V,ϕ1,ϕ2) − H2(t, τ , Ṽ , ϕ̃1, ϕ̃2)
∣∣∣ ≤ 2K(s(t), t − τ ) |ϕ1 − ϕ̃1| + 2

∣∣Kx(s(t) − s(τ ), t − τ )
∣∣ |ϕ2 − ϕ̃2|

+

1∫
0

N(s(t), ξ , t, τ )dξ L0(τ )
∣∣∣V − Ṽ

∣∣∣ . (7:25)

By using inequality (7.23), we can get

∣∣∣H2(t, τ ,V,ϕ1,ϕ2) − H2(t, τ , Ṽ , ϕ̃1, ϕ̃2)
∣∣∣ ≤ 2√

2πeD
|ϕ1 − ϕ̃1| +

∥∥s′∥∥T
2
√

π(t − τ )
|ϕ2 − ϕ̃2| + L0(τ )√

π(t − τ )

∣∣∣V − Ṽ
∣∣∣

≤
(

2√
2πeD

+

∥∥s′∥∥T + 2‖L0‖T
2
√

π(t − τ )
+

)[∣∣∣V − Ṽ
∣∣∣ + |ϕ1 − ϕ̃1| + |ϕ2 − ϕ̃2|

]
.

(7:26)

For the third function, by using (HC3), we have
∣∣∣H3(t, τ ,V,ϕ1,ϕ2) − H3(t, τ , Ṽ , ϕ̃1, ϕ̃2)

∣∣∣ = 2K(0, t − τ ) |ϕ1 − ϕ̃1| + 2
∣∣Kx(−s(τ ), t − τ )

∣∣ |ϕ2 − ϕ̃2|

+ 2

1∫
0

K(ξ , t − τ )dξ L0(τ )
∣∣∣V − Ṽ

∣∣∣ (7:27)

and by using inequality (7.23), we get

∣∣∣H3(t, τ ,V,ϕ1,ϕ2) − H3(t, τ , Ṽ , ϕ̃1, ϕ̃2)
∣∣∣ ≤ |ϕ1 − ϕ̃1|√

π(t − τ )
+

1

2
√

π
(
s(τ )

)2
(
6
e

)3/2

|ϕ2 − ϕ̃2| + L0(τ )√
π(t − τ )

∣∣∣V − Ṽ
∣∣∣

≤
(

1 + L0(τ )√
π(t − τ )

+
1

2
√

πD2

(
6
e

)3/2
)[∣∣∣V − Ṽ

∣∣∣ + |ϕ1 − ϕ̃1| + |ϕ2 − ϕ̃2|
]
.

(7:28)

If we define

L(t, τ ) =
1

4
√

πD3

(
2(1 +D)

(
6
e

)3/2

+
(
10
e

)5/2

+
(
8D
e

)1/2
)
+
(
1
2

∥∥s′∥∥T + 1 + ‖L0‖T
)

1√
π(t − τ )

(7:29)

the hypothesis (8.2.40) [13] is satisfied. Now let us prove (8.2.41) to (8.2.42) [13]. We

have

t2∫
t1

L(t2, τ )dτ ≤ C4(t2 − t1) + C5
√
t2 − t1 (7:30)

where C4 and C5 are positive constants. Therefore we define the function a as fol-

lows:

α(η) = C4 η + C5
√

η (7:31)

which is an increasing function and tends to zero, when h tends to zero. Let us note

that Hi (t,τ,0,0,0) = 0 for all i = 1, 2,3, and therefore hypothesis (8.2.43) and (8.2.44)

[13] are satisfied.▀
Now, we can consider the following problem (P7):

ut − uxx = −F(u(0, t), t), 0 < x < 1, t > 0 (7:32)

(P7) ux(0, t) = f (t), t > 0 (7:33)

u(1, t) = g(t), t > 0 (7:34)

u(x, 0) = h(x), 0 ≤ x ≤ 1. (7:35)
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In this case, the function F depends on the evolution of the temperature of the tem-

perature u(0,t) on the fixed face x = 0 while a heat flux condition is given by (7.33).

This non-classical problem (P7) can be consider as a complementary problem to the

previous problem (P1) given by (1.1) to (1.4) in which the source term F depends on

the heat flux on the fixed face x = 0 while a temperature boundary condition (1.2) is

given on the face x = 0.

Corollary 15

Under the same assumptions of Theorem 9, the solution u to the problem (P7) is given

by the expression

u(x, t) =

+∞∫
−∞

K(x − ξ , t)h(ξ)dξ − 2

t∫
0

K(x, t − τ ) ϕ1(τ )dτ + 2

t∫
0

Kx(x − 1, t − τ ) ϕ2(τ )dτ

−
t∫

0

1∫
0

N(x, ξ , t, τ )F(V(τ ), τ )dξdτ ,

(7:36)

and then the unknown function V, defined by (7.8), and the unknown piecewise con-

tinuous functions j1 and j2 are the solution to the following system of three integral

equations:

ϕ1(t) = f (t) −
+∞∫

−∞
Kx(−ξ , t)h(ξ)dξ − 2

t∫
0

Kxx(−1, t − τ ) ϕ2(τ )dτ , (7:37)

ϕ2(t) = g(t)−
+∞∫

−∞
K(1 − ξ , t)h(ξ)dξ+2

t∫
0

K(1, t − τ ) ϕ1(τ )dτ +

t∫
0

1∫
0

N(1, ξ , t, τ )F(V(τ ), τ )dξdτ , (7:38)

V(t) =

+∞∫
−∞

K(ξ , t)h(ξ)dξ − 2

t∫
0

K(0, t − τ ) ϕ1(τ )dτ + 2

t∫
0

Kx(−1, t − τ ) ϕ2(τ )dτ+

+2

t∫
0

1∫
0

K(ξ , t − τ )dξF(V(τ ), τ )dτ .

(7:39)

Conversely, if V, j1 and j2 are solutions to the integral system (7.37) to (7.39), and

we define u by the expression (7.36), then u is a solution to the problem (P7). More-

over, we have V(t) = u(0,t).

Theorem 16

Under the assumptions (HA) to (HD) the solution u to the problem (P8):

ut − uxx = −F(u(0, t), t)(x, t) ∈ �s (7:40)

(P8) ux(0, t) = f (t), 0 < t ≤ T (7:41)

ux(s(t), t) = g(t), 0 < t ≤ T (7:42)

u(x, 0) = h(x), 0 ≤ x ≤ 1 (7:43)

Salva et al. Boundary Value Problems 2011, 2011:4
http://www.boundaryvalueproblems.com/content/2011/1/4

Page 15 of 17



is given by:

u(x, t) =

+∞∫
−∞

K(x − ξ , t)h(ξ)dξ − 2

t∫
0

K(x, t − τ ) ϕ1(τ )dτ + 2

t∫
0

K(x − s(τ ), t − τ ) ϕ2(τ )dτ

−
t∫

0

1∫
0

N(x, ξ , t, τ )F(V(τ ), τ )dξdτ

(7:44)

where the unknown function V, defined by (7.8), and the unknown piecewise contin-

uous functions j1 and j2 are solutions to the following system of three integral equa-

tions:

ϕ1(t) = f (t) −
+∞∫

−∞
Kx(ξ , t)h(ξ)dξ − 2

t∫
0

Kx(−s(τ ), t − τ ) ϕ2(τ )dτ , (7:45)

ϕ2(t) = g(t) −
+∞∫

−∞
Kx(s(t) − ξ , t)h(ξ)dξ + 2

t∫
0

Kx(s(t), t − τ ) ϕ1(τ )dτ+

−2

t∫
0

Kx(s(t) − s(τ ), t − τ ) ϕ2(τ )dτ +

t∫
0

1∫
0

Nx(s(t), ξ , t, τ )F(V(τ ), τ )dξdτ ,

(7:46)

V(t) =

+∞∫
−∞

K(ξ , t)h(ξ)dξ − 2

t∫
0

K(0, t − τ ) ϕ1(τ )dτ + 2

t∫
0

K(−s(τ ), t − τ ) ϕ2(τ )dτ+

−2

t∫
0

1∫
0

K(ξ , t − τ )dξF(V(τ ), τ )dτ .

(7:47)

Conversely, if V, j1 and j2 are solutions to the integral system (7.45) to (7.47), and u

has the form (7.44), then u is a solution to the problem (P8). Moreover, we have V(t) =

u(0,t).

Proof

It is similar to the one given for Theorem 14.▀

Conclusions
In this article, we have proposed and obtained the existence and uniqueness of several

initial-boundary value problems for the one-dimensional non-classical heat equation in

the slab [0,1] with a heat source depending on the heat flux (or the temperature) on

the boundary x = 0. Moreover, a generalization for non-classical moving boundary pro-

blems for the heat equation is also given.
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