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Abstract

We study solutions of the initial value problem for the 2D regularized surface quasi-
geostrophic (RSQG) equation. For Ḣ1(�) ∩ Lq(�)(q < 2 < ∞) initial data, we prove
the global existence and uniqueness of weak solution for RSQG equation with
subcritical powers. For RSQG equation, we establish some regularization results and
prove the inviscid limit of the RSQG equation to the classical quasi-geostrophic
equation.
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1 Introduction
The quasi-geostrophic equation (QG) with periodic boundary conditions on a basic

period box Ω = [0, 2π]2 ⊂ ℝ2 is
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θt + div (uθ) = 0,

(−�)

1
2 ϕ = θ ,

∇⊥ϕ = u,∫
�

θdx = 0,
∫

�

ϕdx = 0,
∫

�

udx = 0,

θ(x, 0) = θ0 (x) .

(1:1)

where θ(x, t) is a real-valued function of x and t, which represents the potential tem-

perature, and u represents the incompressible horizontal velocity at the surface. The

advective velocity u in these equations is determined from θ by a stream function �

via the auxiliary relations

u = (u1, u2) =
(

− ∂ϕ

∂x2
,

∂ϕ

∂x1

)
, (1:2)

and the relationship (1.1)2. The equality relating u to θ in (1.2) and (1.1)2 can be

reformulated in terms of periodic Riesz transforms

u = (−∂x2�
−1θ , ∂x1�

−1θ) = (−R2θ ,R1θ),
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where Rj, j = 1, 2 , denotes the Riesz transforms defined by Fourier transform:

� ≡ (−�)
1
2 , � ≡ (−�)

1
2 is the pseudo-differential operator defined in the Fourier

space by
̂

(−�)

1
2 u(k) = |k|û(k)

, here � = ∂2

∂x2 +
∂2

∂y2 is the horizontal Laplacian operator.

We also write down the regularized surface quasi-geostrophic equation
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂tθ + div(uθ) + κ(−�)αθt = 0, (x, t) ∈ � × [0,∞],
u = (u1, u2) = (−R2θ ,R1θ) , (x, t) ∈ � × [0,∞],
∇⊥ϕ = u,∫
�

θdx = 0,
∫
�

ϕdx = 0,
∫
�
udx = 0,

θ(x, 0) = θ0(t), x ∈ �.

(1:3)

where 0 ≤ a ≤ 1 and � > 0 are real numbers. This model comes from [1]. The quasi-

geostrophic equation with dissipative term �(-Δ)aθ has received an extensive amount

of attentions and has many results in theory and numerical analysis (see e.g., [2-7] for

further references), but there are few results on the surface quasi-geostrophic equation

with regularized term �(-Δ)aθt. Therefore, in this paper, we mainly pay more attention

to the regularized equation (1.3) to obtain the global existence, regularity for the solu-

tion and the inviscid limit of (1.3). The key issue is still whether weak solutions are

regular for all the time. It is well known that for α > 1
2 , the so-called subcritical case,

the initial value problem with smooth periodic initial data θ0 has a global smooth solu-

tion [1,8].

The quasi-geostrophic equation (1.1) is an important model in geophysical fluid

dynamics. It is derived in the special case of constant potential vorticity and buoyancy

frequency. Indeed, Equation (1.1) is an important example of a 2D active scalar with a

specific structure most closely related to the 3D Euler equation (see [3]). The regular-

ized version of (1.1), (1.1) with the dissipative term �(-Δ)aθ or the regularized term

�(-Δ)aθt, is the dimensionally correct analogue of the 3D incompressible Navier-Stokes

equations when a = 1. In recent years, the 2D quasi-geostrophic equations with and

without the dissipative term have attracted significant attention. For the system (1.1),

in the previous works of Wu [1,9-12], the well-posedness results for initial data θ0 in

Lebesgue space Lp, homogeneous Sobolev space L̇s,p , Morry space Mp,l and Hölder

space Cr have been studied. Chae [7] obtained these results for the initial data θ0

which belongs to the Triebel-Lizorkin space Fsp,q with s > 1 + 2
p and p, q Î(1, ∞). For

the critical case, that is α > 1
2 , this problem was first dealt with by Constantin et al.

[13] who showed the global existence in Sobolev space H1 under smallness assumption

of the L∞-norm of the initial temperature θ, but the uniqueness is proved for initial

data H2. A. Córdoba and D. Córdoba [14] proved that the viscosity solutions are

smooth on the interval t ≤ T1 and t ≥ T2. A. Kiselev et al. [5] proved global existence

of large smooth solutions. Later, in [1], Wu reformulates the problem as an integral

equation and applies the Banach contraction mapping principle to prove local exis-

tence with initial value θ0 ÎHs(s > 1). Another recent progress on the critical dissipa-

tive QG equation was given in the work by Caffarelli and Vasseur [15]. The

supercritical case α > 1
2 is open. For more results, see [1,9,16-18] and references
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therein. However, all these results mainly concentrate on the general quasi-geostrophic

equation with dissipative term �(-Δ)aθ.

Recently, Khouider and Titi [6] study the following regularized model of surface

quasi-geostrophic equation:
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂θ̃α

∂t
+ div(uαθα) = 0,

(−�)
1
2 ϕα = θα ,

(1 − α2�)θα = θ̃ α,
∇⊥ψα = uα,
θα(x, 0) = θ0(x).

(1:4)

They showed that the model (1.4) admits a maximum principle and obtained a

necessary and sufficient condition that the solution of the regularized QG equations

(1.4) develops a singularity in finite time and proves that, if the initial condition is

smooth, then the regularized solution remains as smooth as the initial data for all

times.

In the present paper, we will study the model (1.3) in the subcritical α > 1
2 and criti-

cal case α > 1
2 . On the one hand, we will establish the solution with lower regularity

for initial data θ0 ∈ Ḣ1(�), and this improved the global existence for initial data θ0

ÎHs(s > 1) in [1]. On the other hand, we generalize the results for (1.4) to the generally

regularized models (1.3).

The rest of this article is organized as follows. In Section 2, we present the global

existence for the regularized Equation (1.3). In Section 3, we give the regularization

results for the regularized model (1.3) and obtain the maximum principle. Section 4 is

devoted to the inviscid limit from the regularized surface quasi-geostrophic equation

to classical surface quasi-geostrophic equation.

2 Global existence for the regularized surface quasi-geostrophic equation
In this section, we establish existence and uniqueness of global weak solutions of regu-

larized model (1.3).

Firstly, we rewrite the equation (1.3)1 as a functional differential equation in the form

(1 + κ�2α)θt = −div(uθ) (2:1)

or

θt = −(1 + κ�2α)−1div(uθ). (2:2)

Noticing that if θ is in the Sobolev space H1(Ω), then ψ = (−�)−
1
2 θ = �−1θ

belongs to the Sobolev space H2(Ω). This implies that u = ∇⊥ψ is in H1(Ω). Further-

more, we have the following lemma, which is proved in [6].

Lemma 2.1 Let θ ∈ Ḣ1(�) = {u ∈ H1(�),
∫
�
udx = 0}and u ∈ Ḣ1(�) × Ḣ1(�)then

div(uθ) ∈ Ḣ−1(�) , where Ḣ−1(�) is the dual space of Ḣ1(�). Moreover, for

u ∈ Ḣ1(�) × Ḣ1(�)fixed, θ ® div(θu) is a linear continuous operator from Ḣ1(�)to

Ḣ−1(�) .

This lemma immediately yields the following corollary:
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Corollary 2.2 Let u ∈ Ḣ1(�) × Ḣ1(�)satisfying divu = 0 and θ ∈ Ḣ1(�) , then < div

(uθ), θ > = 0.

Now, we state and prove the global existence result for weak solutions for all time if

the initial condition θ0 belongs to Ḣ1(�) . More precisely, we have the following

theorem.

Theorem 2.3 Let α > 1
2and θ0 ∈ Ḣ1(�) ∩ Lq(�) , 2 <q < ∞, then the initial value

problem (1.3) has a global unique solution θ ∈ C((0, +∞), Ḣ1(�)).

Proof. Due to (1.3) and (2.2), we can have

θt = −(1 + κ�2α)−1div(uθ) ≡ F(θ). (2:3)

Therefore, by Lemma 2.1, we know that div(uθ) ∈ Ḣ−1(�) (i.e., θt ∈ Ḣ−1(�)). We

first prove local existence and uniqueness. For this, it is enough to establish that the

function div(uθ) is locally Lipshitz as a map from Ḣ−1(�) into Ḣ−1(�) . Before prov-

ing the locally Lipshitz condition, we give some important inequality we will use.

Taking φ ∈ Ḣ1(�) , then

| < div(uθ),φ > | = |
∫

�

θ(x)u(x) · ∇φ(x)dx |
≤ C ‖ u‖L4(�) ‖ θ‖L4(�) ‖ ∇φ‖L2(�)

≤ C ‖ u ‖
1
2
L2(�)‖ ∇u ‖

1
2
L2(�)‖ θ ‖

1
2
L2(�)‖ ∇θ ‖

1
2
L2(�)‖ ∇φ‖L2(�),

by the 2D Gagliardo-Nirenberg-Ladyzhenskaya interpolation inequality, we can

obtain

‖ div(uθ)‖Ḣ−1 ≤ C ‖ u ‖
1
2
L2(�)‖ ∇u ‖

1
2
L2(�)‖ θ ‖

1
2
L2(�)‖ ∇θ ‖

1
2
L2(�)≤ ‖∇θ‖

1
2
L2 ,

(2:4)

which implies that div(uθ) is bounded in Ḣ−1(�) by using lemma 2.1.

Next, we use the inequality (2.4) to show the div(uθ) is locally Lipschitz

‖F(θ1) − F(θ2)‖Ḣ−1 = ‖(1 + κ�2α)−1(div(θ1u1) − div(θ2u2))‖Ḣ−1

≤ ‖(1 + κ�2α)−1‖L2 (‖div(u1(θ1 − θ2))‖Ḣ−1

+‖div(u1 − u2)θ2‖Ḣ−1 )

≤ C
(
‖u1‖

1
2
L2‖∇u1‖

1
2
L2‖θ1 − θ2‖

1
2
L2‖∇(θ1 − θ2)‖

1
2
L2

+‖u1 − u2‖
1
2
L2‖∇(u1 − u2)‖

1
2
L2‖θ2‖

1
2
L2‖∇θ2‖

1
2
L2

)
,

where we have used the boundedness of Riesz transforms in Ḣ−1 space. Then, using

the Poincaré inequality

‖u‖L2 ≤ C‖∇u‖L2 , ∀u ∈ Ḣ1(�), (2:5)

we have

‖F(θ1) − F(θ2)‖Ḣ−1 ≤ C(‖∇u1‖L2‖∇(θ1 − θ2)‖L2

+‖∇(u1 − u2)‖L2‖∇θ2‖
1
2
L2 ).
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On the other hand, using the facts that the functional operator

θ → u = ∇⊥[(−�)−
1
2 θ] is an isomorphism from Ḣ1 into Ḣ1 × Ḣ−1 and θ ® (1 +

�Λ2a)-1θt is a bounded operator from Ḣ1 into Ḣ−1 , and using the Poincaré inequality

(2.5), we know that the following norm is equivalent

‖∇u‖L2 ∼ ‖∇θ‖L2 ∼ ‖θ‖Ḣ1 .

Therefore,

‖F(θ1) − F(θ2)‖Ḣ−1 ≤ C(‖θ1 − θ2‖Ḣ−1 )(‖θ1‖Ḣ−1 + ‖θ2‖Ḣ−1 ).

Thus, by the fixed point theory, we have the short time existence and uniqueness of

solution for the functional differential equation (2.3).

Suppose that [0, T*] is the maximal interval of existence of the solution

θ ∈ C([0, T∗], Ḣ1(�)) .

Now, we show the global existence for (1.3). To do this, it suffices to prove that the

norm ‖θ‖Ḣ1 stays bounded on the maximal interval of existence for the solution θ of

the regularized surface quasi-geostrophic equation (1.3) in the subcritical case α > 1
2 .

Let θ ∈ C([0,T]; Ḣ1(�)) be the solution of the initial value problem (1.3). Take the

inner produce of Λ2-2aθ with the first Equation in (1.3)

1
2
d
dt
(‖�1−αθ‖22 + κ‖�θ‖22) = −(�2−2αθ , u · ∇θ). (2:6)

For the right-hand side of (2.6), we have

|(�2−2αθ , u · ∇θ)| = |(�2−2αθ ,∇(uθ))| ≤ ‖�1+a−αθ‖L2‖�2−a−α(uθ)‖L2 , (2:7)

where a ≤ a remains to be determined. By the calculus inequality for the Calderon-

Zygmund type singular integral, we obtain

‖�2−a−α(uθ)‖L2 ≤ C(‖�2−a−αu‖Lp‖θ‖Lq + ‖�2−a−αθ‖Lp‖u‖Lq), (2:8)

where 1
p +

1
q = 1

2 and 2 <q < ∞. Considering the second equation in (1.3), by the Cal-

deron-Zygmund inequalities, we obtain

‖u‖Lq ≤ C‖θ‖Lq , (2:9)

and

‖�2−a−αu‖Lq ≤ C‖�2−a−αθ‖Lq , (2:10)

where 1 <q < ∞.

By the Sobolev imbedding W
1+2− 2

p−α−a,2 ⊂ W2−α−a,q, then (2.10) becomes

‖�2−a−αu‖Lq ≤ C‖�2−a−αθ‖Lq ≤ C‖�1+2−a−α+ 2
p θ‖L2 . (2:11)

Putting (2.11) into (2.8), then (2.7) becomes

|(�2−2αθ , u · ∇θ)| ≤ C‖�1+a−αθ‖L2‖θ‖Lq‖�1+2−a−α+ 2
p θ‖L2 . (2:12)
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In the above analysis, a is essentially arbitrary and we can choose a = 1 + 1
p without

loss of generality so that 1 + a − α = 1 + 2 − α + 2
p − a . Therefore, we get

|(�2−2αθ , u · ∇θ)| ≤ C‖θ‖Lq‖�1+a−αθ‖2L2 . (2:13)

Putting (2.13) into (2.6), we have

1
2
d
dt
(‖�1−αθ‖2L2 + κ‖�θ‖2L2 )

≤ C‖θ‖Lq‖�1+a−αθ‖2L2
≤ C‖θ‖Lq‖�1−αθ‖

a
α
L2‖�θ‖1− a

α
L2

≤ C‖θ0‖Lq(C
κ

‖�1−αθ‖2L2 +
κ

C
‖�θ‖2L2 ),

(2:14)

where we have used the inequality ‖θ‖Lq ≤ ‖θ0‖Lq , 2 < q < ∞ , 2 <q < ∞, it is easy to

prove for the regularized surface quasi-geostrophic equation. By the inequality (2.14), we

obtain

1
2
d
dt

(‖�1−αθ‖2L2 + κ‖�θ‖2L2 ) ≤ C(‖�1−αθ‖2L2 + κ‖�θ‖2L2 ). (2:15)

Thanks to the Gronwall’s lemma, we obtain

‖�1−αθ‖2L2 + κ‖�θ‖2L2 ≤ (‖�1−αθ0‖2L2 + κ‖�θ0‖2L2)e
C
2 t. (2:16)

This guarantees that the Ḣ1 norm of θ is bounded. Therefore, the local solution can

be extended uniquely to [0, 2T0] and the global solution is obtained by repeating this

procedure. This completes the proof of Theorem 2.1.

3 Regularity results
In this section, we investigate the higher regularity and prove the maximum principle

for the regularized system (1.3).

Theorem 3.1 (Regularity) Let θ0 ∈ Ḣm(�) , m ≥ 1, a = 1, then the solution for the

regularized problem of quasi-geostrophic equation exists a solution

θ(t) ∈ C((0, +∞), Ḣm) .

Proof. The case m = 1 follows from Theorem 2.1. The case m > 1 had been obtained

by Wu in [1]. For completeness, here we give a different proof by following the proof.

We need to proceed the steps by induction.

It is obvious that if m ≥ 2 then θ ∈ Ḣm equivalent to u ∈ Ḣm × Ḣm , which hints that

div(uθ) ∈ Ḣm−2 . By applying the Gagliardo-Nirenberg-Ladyzhenskaya interpolation

inequality, as in Theorem 2.1, we have
∫

�

|Dm−2div(uθ)|2dx =
∫

�

|Dm−2(u · ∇θ)|2dx

≤ C
m−2∑
k=0

∫
�

|Dku · ∇Dm−2−kθ |2dx

≤ C
m−2∑
k=0

‖Dku‖2L4(�)‖∇Dm−k−2θ‖2L4(�)

≤ C
m−2∑
k=0

‖Dku‖L2(�)‖∇Dku‖L2(�)

×‖∇Dm−k−2θ‖L2(�)‖∇∇Dm−k−2u‖L2(�)

≤ C‖u‖2Hm(�)‖θ‖2Hm(�).
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In addition, similar steps as in the proof of Theorem 2.1 yield

‖F(θ1) − F(θ2)‖Ḣm−2

= ‖(1 + κ�2α)−1(div(θ1u1) − div(θ2u2))‖Ḣm−2

≤ ‖(1 + κ�2α)−1‖(‖div(u1(θ1 − θ2))‖Ḣm−2

+‖div(u1 − u2)θ2‖Ḣm−2 )

≤ C(‖u1‖Ḣm‖θ1 − θ2‖Ḣm−2

+‖u1 − u2‖Ḣm‖θ2‖Ḣm ,

This proves the local existence and uniqueness of smooth solutions for the (1.3) in

Ḣm−2 .

Next, we will show that the θ(t) is bounded in Ḣm(�) . To prove the global exis-

tence, i.e., it suffices to prove that ‖Dm−1θ(t)‖2L2 + ‖∇Dm−1θ(t)‖2L2 remains bounded in

any finite interval of time.

The case m = 1 is proved in Theorem 2.3. Assume by induction that

θ ∈ C((0, +∞),Hm−1 ∩ Ḣ−1) . If θ ∈ Ḣm ∩ Ḣ1 , then Dm−1θ ∈ Ḣ1 , thus �Dm−1θ ∈ Ḣ1

and we can obtain

< (Dm−1θt + κ(−�)Dm−1θt),Dm−1θ > = − < Dm−1(div(uθ)),Dm−1θ >,

Let φ(t) = ‖Dm−1θ(t)‖2L2 + ‖∇Dm−1θ(t)‖2L2 , we have

d
dt

φ(t)

= −
∫

�

m−1∑
k=0

Cm−1
k Dku · ∇(Dm−k−1θ)Dm−1θdx

= −
∫

�

m−2∑
k=0

Cm−1
k Dku · ∇(Dm−k−1θ)Dm−1θdx +

∫
�

u · ∇(Dm−1θ)Dm−1θdx

= −
∫

�

m−2∑
k=0

Cm−1
k Dku · ∇(Dm−k−1θ)Dm−1dx +

1
2

∫
�

div(u(Dm−1θ)2)dx

= −
∫

�

m−2∑
k=0

Cm−1
k Dku · ∇(Dm−k−1θ)Dm−1θdx

≤ C
m−2∑
k=1

‖Dku‖L2‖Dm−1−k∇θ‖L4‖Dm−1θ‖L4

≤ C
m−2∑
k=1

‖u‖Hk‖Dm−1−k∇θ‖
1
2
L2‖∇Dm−1−k∇θ‖

1
2
L2‖Dm−1θ‖

1
2
L2‖∇Dm−1θ‖

1
2
L2

≤ C(
m−2∑
k=1

‖u‖Hk)‖θ‖Hm−1‖∇θ‖Hm−1

≤ C(α)(
m−2∑
k=1

‖u‖Hk)φ(t) = ψ(t)φ(t),

Li and Wang Boundary Value Problems 2011, 2011:41
http://www.boundaryvalueproblems.com/content/2011/1/41

Page 7 of 11



where ψ(t) = C(α)(
m−2∑
k=1

‖u‖Hk). . Thus, by the Gronwall’s lemma we obtain,

φ(t) ≤ φ(0)exp
(∫ t

0
ψ(s)ds

)
.

Thanks to that ψ(t) is bounded by the induction assumption, we get j(t) is bounded
on any finite interval of time. This completes the proof of Theorem 3.1.

Then, we will extend the maximum principle in [14,17] to the regularized surface

quasi-geostrophic equation by using the method of Khouider and Titi [6].

Theorem 3.2 Let θ0 ∈ Ḣ1(�) ∩ L∞(�)and a = 1, � is positive number, then the

solution θ of the regularized problem (1.3) satisfies

‖θ(t)‖L∞ ≤ ‖θ0‖L∞ , ∀ t ≥ 0. (3:1)

Moreover, if θ0(x) ≥ 0, ∀x ÎΩ, then

θ(x, t) ≥ 0, t > 0, x ∈ �.

Proof. Let θ(x, t) be the solution of (1.3), then (θ + ‖θ0‖L∞) satisfies

∂

∂t
(θ + ‖θ0‖L∞) + κ(−�)

∂

∂t
(θ + ‖θ0‖L∞) + u · ∇(θ + ‖θ0‖L∞) = 0. (3:2)

Denote u- = max{-u, 0}, if u ∈ Ḣ1(�) then u− ∈ Ḣ1(�) , we have

∇u− =
{∇u, if u < 0,
0, if u ≥ 0.

(3:3)

Multiplying the above equation (3.2) by (θ + ‖θ0‖L∞)− , we have

1
2
d
dt

(∫
�

(θ + ‖θ0‖L∞)2−dx + k
∫

�

|∇(θ + ‖θ0‖L∞)−|2dx
)
= 0,

which yields

‖(θ + ‖θ0‖L∞)−‖L2 + k‖∇(θ + ‖θ0‖L∞)−‖2L2 (3:4)

= ‖(θ(0) + ‖θ0‖L∞)−‖L2 + k‖∇(θ0 + ‖θ0‖L∞)−‖2L2 , (3:5)

It is obvious that the right-hand side of (3.4) is zero, by the fact

(θ0 + ‖θ0‖L∞)− ≡ 0,

Therefore,

(θ + ‖θ0‖L∞)− ≡ 0.

which implies

θ(x, t) ≥ −‖θ0‖L∞ .

Similarly, we have

θ(x, t) ≤ ‖θ0‖L∞ .
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Hence (3.1) holds.

Next, we show the rest of Theorem 3.2. Assume θ0(x) ≥ 0, x ÎΩ. Multiplying the

evolution equation for θ by θ- = max{-θ, 0} and integrating over the domain in the

similar way as above, we have

1
2
d
dt

(∫
�

θ2
−dx + k

∫
�

—∇(θ−)—2dx
)
= 0,

i.e.,

‖θ−(t)‖2L2 + k‖∇θ−(t)‖2L2 = ‖θ−(0)‖2L2 + k‖∇θ−(0)‖2L2 = 0,

Owing to θ0 ≥ 0, we have θ-(t) ≡ 0, ∀t > 0. Therefore, θ(x, t) ≥ 0. This completes the

proof of Theorem 3.2.

4 Inviscid limit
In this section, we investigate the convergence of the solution of the regularized sur-

face quasi-geostrophic equation (1.3) to a solution of the classical surface quasi-geos-

trophic equation (1.1) as � tends to zero. We have the following result

Theorem 4.1 Let θ1 and θ2 be the smooth solutions of the RSQG equations (1.3) and

the classical QG equations (1.1) with the same initial data θ0 ∈ Ḣα+1(�) , defined on

the maximal time interval of existence [0, T*], then for any t <T*,

‖θ1(·, t) − θ2(·, t)‖L2(�) ≤ Cκ ,

where C is a constant depending only T* and ‖θ0‖Ḣα+1(�).

Proof. Let u1 and u2 be the velocity field corresponding θ1 and θ2, respectively.

Then, the difference θ(x, t) = θ1(x, t) - θ2(x, t) solves the equation

θt + u1∇θ + u · ∇θ2 + κ�2αθt + κ�2α(θ2)t = 0, (4:1)

where u = u1 - u2. Multiplying (4.1) by θ(x, t) and integrating over Ω, we get

1
2
d
dt

∫
�

(θ2 + κ | �αθ |2)dx = −
∫

�

u · ∇θ2 · θdx − κ

∫
�

θ�2α(θ2)tdx, (4:2)

where the two terms on the right-hand side of (4.2) may be estimated as follows,

−
∫

�

u · ∇θ2 · θdx ≤ ‖∇θ2‖L∞‖u‖L2‖θ‖L2 ,

Since ||u||2 ≤ C ||θ||2, it follows that,

−
∫

�

u · ∇θ2 · θdx ≤ C‖∇θ2(·, t)‖L∞‖θ‖2L2 .

To proceed, we need the calculus inequality for the Calderon-Zygmund type singular

integral

‖�γ (FG)‖Lr ≤ C(‖�γ F‖Lp‖G‖Lq + ‖F‖Lq‖�γG‖Lp), (4:3)

where g > 0, 1 <g ≤ p ≤ ∞ and
1
γ

=
1
p
+
1
q
. . Noticing the fact that (θ2)t + u2·∇θ2 = 0

and applying the inequality (4.3), we can bound the second term of right-hand side of
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(4.2) by

κ|
∫

�

θ�2α+1(u2θ2)dx|

≤ ‖�αθ‖2L2 +
κ2

4
‖�α+1(u2θ2)‖2L2

≤ ‖�αθ‖2L2 + Cκ2(‖�α+1u2‖L2‖θ2‖L∞ + ‖u2‖L∞‖�α+1θ2‖L2 )2
≤ ‖�αθ‖2L2 + Cκ2‖�α+1θ2‖2L2‖θ2‖2Hα+1

≤ ‖�αθ‖2L2 + Cκ2‖θ2‖4Hα+1 .

Therefore,

d
dt

∫
�

(θ2 + κ|�αθ |2)dx ≤ C(‖∇θ2(·, t)‖L∞

∫
�

θ2dx + ‖�αθ‖2L2) + Cκ2‖θ2‖4Hα+1 ,

where the constant C does not depend on �. By the Gronwall’s Lemma, we get the

desired result.
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