Vanishing heat conductivity limit for the 2D Cahn-Hilliard-Boussinesq system

Zaihong Jiang ${ }^{1 *}$ and Jishan Fan²

* Correspondence: jzhong@zjnu.cn
${ }^{1}$ Department of Mathematics, Zhejiang Normal University, Jinhua 321004, People's Republic of China Full list of author information is available at the end of the article

Abstract

This article studies the vanishing heat conductivity limit for the 2D Cahn-Hilliardboussinesq system in a bounded domain with non-slip boundary condition. The result has been proved globally in time.
2010 MSC: 35Q30; 76D03; 76D05; 76D07.
Keywords: Cahn-Hilliard-Boussinesq, inviscid limit, non-slip boundary condition

1 Introduction

Let $\Omega \subseteq \mathbb{R}^{2}$ be a bounded, simply connected domain with smooth boundary $\partial \Omega$, and n is the unit outward normal vector to $\partial \Omega$. We consider the following Cahn-HilliardBoussinesq system in $\Omega \times(0, \infty)$ [1]:

$$
\begin{align*}
& \partial_{t} u+(u \cdot \nabla) u+\nabla \pi-\Delta u=\mu \nabla \phi+\theta e_{2}, \tag{1.1}\\
& \operatorname{div} u=0, \tag{1.2}\\
& \partial_{t} \theta+u \cdot \nabla \theta=\varepsilon \Delta \theta, \tag{1.3}\\
& \partial_{t} \phi+u \cdot \nabla \phi=\Delta \mu, \tag{1.4}\\
& -\Delta \phi+f^{\prime}(\phi)=\mu, \tag{1.5}\\
& u=0, \theta=0, \frac{\partial \phi}{\partial n}=\frac{\partial \mu}{\partial n}=0 \quad \text { on } \quad \partial \Omega \times(0, \infty), \tag{1.6}\\
& (u, \theta, \phi)(x, 0)=\left(u_{0}, \theta_{0}, \phi_{0}\right)(x), x \in \Omega, \tag{1.7}
\end{align*}
$$

where u, π, θ and φ denote unknown velocity field, pressure scalar, temperature of the fluid and the order parameter, respectively. $\varepsilon>0$ is the heat conductivity coefficient and $e_{2}:=(0,1)^{t} . \mu$ is a chemical potential and $f(\phi):=\frac{1}{4}\left(\phi^{2}-1\right)^{2}$ is the double well potential.
When $\varphi=0$, (1.1), (1.2) and (1.3) is the well-known Boussinesq system. In [2] Zhou
 system with partial viscosity. Later, in [3] Zhou and Fan studied the Cauchy problem
of certain Boussinesq- α equations in n dimensions with $n=2$ or 3 . We establish regularity for the solution under $\nabla u \in L^{1}\left(0, T ; \dot{B}_{\infty, \infty}^{0}\right)$. Here $\dot{B}_{\infty, \infty}^{0}$ denotes the homogeneous Besov space. Chae [4] studied the vanishing viscosity limit $\varepsilon \rightarrow 0$ when $\Omega=\mathbb{R}^{2}$. The aim of this article is to prove a similar result. We will prove that
Theorem 1.1. Let $\left(u_{0}, \theta_{0}\right) \in H_{0}^{1} \cap H^{2}, \varphi_{0} \in H^{4}$, div $u_{0}=0$ in Ω and $\frac{\partial \phi_{0}}{\partial n}=\frac{\partial \mu_{0}}{\partial n}=0$ on $\partial \Omega$. Then, there exists a positive constant C independent of ε such that

$$
\begin{align*}
& \left\|u_{\varepsilon}\right\|_{L^{\infty}\left(0, T ; H^{2}\right)} \leq C,\left\|\theta_{\varepsilon}\right\|_{L^{\infty}\left(0, T ; H^{2}\right)} \leq C \\
& \left\|\phi_{\varepsilon}\right\|_{L^{\infty}\left(0, T ; H^{4}\right)} \leq C,\left\|\partial_{t}\left(u_{\epsilon}, \theta_{\varepsilon}, \phi_{\epsilon}\right)\right\|_{L^{2}\left(0, T ; L^{2}\right)} \leq C \tag{1.8}
\end{align*}
$$

for any $T>0$, which implies

$$
\begin{equation*}
\left(u_{\varepsilon}, \theta_{\varepsilon}, \phi_{\varepsilon}\right) \rightarrow(u, \theta, \phi) \text { strongly in } L^{2}\left(0, T ; H^{1}\right) \text { when } \varepsilon \rightarrow 0 \tag{1.9}
\end{equation*}
$$

Here, (u, θ, φ) is the solution of the problem (1.1)-(1.7) with $\varepsilon=0$.

2 Proof of Theorem 1.1

Since (1.9) follows easily from (1.8) by the Aubin-Lions compactness principle, we only need to prove the a priori estimates (1.8). From now on, we will drop the subscript ε and throughout this section C will be a constant independent of ε.
First, by the maximum principle, it follows from (1.2), (1.3), and (1.6) that

$$
\begin{equation*}
\|\theta\|_{L^{\infty}\left(0, T ; L^{\infty}\right)} \leq\left\|\theta_{0}\right\|_{L^{\infty}} \leq C \tag{2.1}
\end{equation*}
$$

Testing (1.3) by θ, using (1.2) and (1.6), we see that

$$
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t} \int \theta^{2} \mathrm{~d} x+\varepsilon \int|\nabla \theta|^{2} \mathrm{~d} x=0
$$

whence

$$
\begin{equation*}
\sqrt{\varepsilon}\|\theta\|_{L^{2}\left(0, T ; H^{1}\right)} \leq C \tag{2.2}
\end{equation*}
$$

Testing (1.1) and (1.4) by u and μ, respectively, using (1.2), (1.6), (2.1), and summing up the result, we find that

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t} \int \frac{1}{2} u^{2}+\frac{1}{2}|\nabla \phi|^{2}+f(\phi) \mathrm{d} x+\int|\nabla u|^{2}+|\nabla \mu|^{2} \mathrm{~d} x \\
= & \int \theta e_{2} u \mathrm{~d} x \leq\|\theta\|_{L^{2}}\|u\|_{L^{2}} \leq C\|u\|_{L^{2}},
\end{aligned}
$$

which gives

$$
\begin{align*}
& \|\phi\|_{L^{\infty}\left(0, T ; H^{1}\right)} \leq C \tag{2.3}\\
& \|u\|_{L^{\infty}\left(0, T ; L^{2}\right)}+\|u\|_{L^{2}\left(0, T ; H^{1}\right)} \leq C, \tag{2.4}\\
& \|\nabla \mu\|_{L^{2}\left(0, T ; L^{2}\right)} \leq C . \tag{2.5}
\end{align*}
$$

Testing (1.4) by φ, using (1.2), (1.5) and (1.6), we infer that

$$
\begin{aligned}
& \frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t} \int \phi^{2} \mathrm{~d} x+\int|\Delta \phi|^{2} \mathrm{~d} x=\int\left(\phi^{3}-\phi\right) \Delta \phi \mathrm{d} x \\
= & -3 \int \phi^{2}|\nabla \phi|^{2} \mathrm{~d} x-\int \phi \Delta \phi \mathrm{d} x \leq-\int \phi \Delta \phi \mathrm{d} x \\
\leq & \frac{1}{2} \int|\Delta \phi|^{2} \mathrm{~d} x+\frac{1}{2} \int \phi^{2} \mathrm{~d} x,
\end{aligned}
$$

which leads to

$$
\begin{equation*}
\|\phi\|_{L^{2}\left(0, T ; H^{2}\right)} \leq C . \tag{2.6}
\end{equation*}
$$

We will use the following Gagliardo-Nirenberg inequality:

$$
\begin{equation*}
\|\phi\|_{L^{\infty}}^{2} \leq C\|\phi\|_{L^{6}}\|\phi\|_{H^{2}} . \tag{2.7}
\end{equation*}
$$

It follows from (2.6), (2.7), (2.5), (2.3) and (1.5) that

$$
\begin{align*}
& \int_{0}^{T} \int|\nabla \Delta \phi|^{2} \mathrm{~d} x \mathrm{~d} t \\
= & \int_{0}^{T} \int\left|\nabla\left(f^{\prime}(\phi)-\mu\right)\right|^{2} \mathrm{~d} x \mathrm{~d} t \\
\leq & C \int_{0}^{T} \int|\nabla \mu|^{2} \mathrm{~d} x \mathrm{~d} t+C \int_{0}^{T} \int\left|\nabla\left(\phi^{3}-\phi\right)\right|^{2} \mathrm{~d} x \mathrm{~d} t \\
\leq & C+C \int_{0}^{T} \int \phi^{4}|\nabla \phi|^{2} \mathrm{~d} x \mathrm{~d} t \tag{2.8}\\
\leq & C+C\|\nabla \phi\|_{L^{\infty}\left(0, T ; L^{2}\right)}^{2} \int_{0}^{T}\|\phi\|_{L^{\infty}}^{4} \mathrm{~d} t \\
\leq & C+C \int_{0}^{T}\|\phi\|_{L^{6}}^{2}\|\phi\|_{H^{2}}^{2} \mathrm{~d} t \\
\leq & C+C\|\phi\|_{L^{\infty}\left(0, T ; H^{1}\right)}^{2} \int_{0}^{T}\|\phi\|_{H^{2}}^{2} \mathrm{~d} t \leq C
\end{align*}
$$

which yields

$$
\begin{align*}
& \|\phi\|_{L^{2}\left(0, T ; H^{3}\right)} \leq C \tag{2.9}\\
& \|\phi\|_{L^{4}\left(0, T ; L^{\infty}\right)} \leq C \tag{2.10}\\
& \|\nabla \phi\|_{L^{2}\left(0, T ; L^{\infty}\right)} \leq C \tag{2.11}
\end{align*}
$$

Testing (1.4) by $\Delta^{2} \varphi$, using (1.5), (2.4), (2.3), (2.10) and (2.11), we derive

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{\mathrm{~d} t} \int|\Delta \phi|^{2} \mathrm{~d} x+\int\left|\Delta^{2} \phi\right|^{2} \mathrm{~d} x \\
= & -\int u \cdot \nabla \phi \cdot \Delta^{2} \phi \mathrm{~d} x+\int \Delta\left(\phi^{3}-\phi\right) \cdot \Delta^{2} \phi \mathrm{~d} x \\
\leq & \|u\|_{L^{2}}\|\nabla \phi\|_{L^{\infty}}\left\|\Delta^{2} \phi\right\|_{L^{2}}+\left\|\Delta\left(\phi^{3}-\phi\right)\right\|_{L^{2}}\left\|\Delta^{2} \phi\right\|_{L^{2}} \\
\leq & C\|\nabla \phi\|_{L^{\infty}}\left\|\Delta^{2} \phi\right\|_{L^{2}} \\
& +C\left(\|\phi\|_{L^{\infty}}^{2}\|\Delta \phi\|_{L^{2}}+\|\phi\|_{L^{\infty}}\|\nabla \phi\|_{L^{\infty}}\|\nabla \phi\|_{L^{2}}+\|\Delta \phi\|_{L^{2}}\right)\left\|\Delta^{2} \phi\right\|_{L^{2}} \\
\leq & C\|\nabla \phi\|_{L^{\infty}}\left\|\Delta^{2} \phi\right\|_{L^{2}} \\
& +C\left(\|\phi\|_{L^{\infty}}^{2}\|\Delta \phi\|_{L^{2}}+\|\phi\|_{H^{2}}\|\nabla \phi\|_{L^{\infty}}+\|\Delta \phi\|_{L^{2}}\right)\left\|\Delta^{2} \phi\right\|_{L^{2}} \\
\leq & \frac{1}{2}\left\|\Delta^{2} \phi\right\|_{L^{2}}^{2}+C\|\nabla \phi\|_{L^{\infty}}^{2}+C\|\phi\|_{L^{\infty}}^{4}\|\Delta \phi\|_{L^{2}}^{2} \\
& +C\|\nabla \phi\|_{L^{\infty}}^{2}\|\phi\|_{H^{2}}^{2}+C\|\Delta \phi\|_{L^{2}}^{2}
\end{aligned}
$$

which implies

$$
\begin{equation*}
\|\phi\|_{L^{\infty}\left(0, T ; H^{2}\right)}+\|\phi\|_{L^{2}\left(0, T ; H^{4}\right)} \leq C . \tag{2.12}
\end{equation*}
$$

Testing (1.1) by $-\Delta u+\nabla \pi$, using (1.2), (1.6), (2.12), (2.1) and (2.4), we reach

$$
\begin{aligned}
& \frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t} \int|\nabla u|^{2} \mathrm{~d} x+\int(-\Delta u+\nabla \pi)^{2} \mathrm{~d} x \\
= & \int\left(\mu \nabla \phi+\theta e_{2}-u \cdot \nabla u\right)(-\Delta u+\nabla \pi) \mathrm{d} x \\
\leq & \left(\|\mu\|_{L^{2}}\|\nabla \phi\|_{L^{\infty}}+\|\theta\|_{L^{2}}+\|u\|_{L^{4}}\|\nabla u\|_{L^{4}}\right)\|-\Delta u+\nabla \pi\|_{L^{2}} \\
\leq & C\left(\|\nabla \phi\|_{L^{\infty}}+1+\|u\|_{L^{2}}^{1 / 2}\|\nabla u\|_{L^{2}}^{1 / 2} \cdot\|\nabla u\|_{L^{2}}^{1 / 2}\|\Delta u\|_{L^{2}}^{1 / 2}\right)\|-\Delta u+\nabla \pi\|_{L^{2}} \\
\leq & C\|\nabla \phi\|_{L^{\infty}}^{2}+C+C\|\nabla u\|_{L^{2}}^{4}+\frac{1}{2}\|-\Delta u+\nabla \pi\|_{L^{2}}^{2},
\end{aligned}
$$

which yields

$$
\begin{equation*}
\|u\|_{L^{\infty}\left(0, T ; H^{1}\right)}+\|u\|_{L^{2}\left(0, T ; H^{2}\right)} \leq C . \tag{2.13}
\end{equation*}
$$

Here, we have used the Gagliardo-Nirenberg inequalities:
$\|u\|_{L^{4}}^{2} \leq C\|u\|_{L^{2}}\|\nabla u\|_{L^{2}}$,
$\|\nabla u\|_{L^{4}}^{2} \leq C\|\nabla u\|_{L^{2}}\|u\|_{H^{2}}$,
and the H^{2}-theory of the Stokes system:

$$
\begin{equation*}
\|u\|_{H^{2}}+\|\pi\|_{H^{1}} \leq C\|-\Delta u+\nabla \pi\|_{L^{2}} . \tag{2.14}
\end{equation*}
$$

Similarly to (2.13), we have

$$
\begin{equation*}
\left\|\partial_{t} u\right\|_{L^{2}\left(0, T ; L^{2}\right)} \leq C . \tag{2.15}
\end{equation*}
$$

(1.1), (1.2), (1.6) and (1.7) can be rewritten as

$$
\left\{\begin{array}{l}
\partial_{t} u-\Delta u+\nabla \pi=g:=\mu \nabla \phi+\theta e_{2}-u \cdot \nabla u, \text { in } \Omega \times(0, \infty), \\
u=0, \text { on } \partial \Omega \times(0, \infty), \\
u(x, 0)=u_{0}(x)
\end{array}\right.
$$

Using (2.12), (2.1), (2.13), and the regularity theory of Stokes system, we have

$$
\begin{align*}
&\left\|\partial_{t} u\right\|_{L^{2}\left(0, T ; L^{p}\right)}+\|u\|_{L^{2}\left(0, T ; W^{2, p}\right)} \leq C\|g\|_{L^{2}\left(0, T ; L^{p}\right)} \\
& \leq C\|\mu\|_{L^{2}\left(0, T ; L^{\infty}\right)}\|\nabla \phi\|_{L^{\infty}\left(0, T ; L^{p}\right)}+C\|\theta\|_{L^{\infty}\left(0, T ; L^{\infty}\right)} \tag{2.16}\\
& \quad+C\|u\|_{L^{\infty}\left(0, T ; L^{2 p}\right)}\|\nabla u\|_{L^{2}\left(0, T ; L^{2 p}\right)} \leq C,
\end{align*}
$$

for any $2<p<\infty$.
(2.16) gives

$$
\begin{equation*}
\|\nabla u\|_{L^{2}\left(0, T ; L^{\infty}\right)} \leq C \tag{2.17}
\end{equation*}
$$

It follows from (1.3) and (1.6) that

$$
\begin{equation*}
\Delta \theta=0 \text { on } \partial \Omega \times(0, \infty) . \tag{2.18}
\end{equation*}
$$

Applying Δ to (1.3), testing by $\Delta \theta$, using (1.2), (1.6), (2.16), (2.17) and (2.18), we obtain

$$
\begin{aligned}
& \frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t} \int|\Delta \theta|^{2} \mathrm{~d} x+\varepsilon \int|\nabla \Delta \theta|^{2} \mathrm{~d} x \\
= & -\int(\Delta(u \cdot \nabla \theta)-u \nabla \Delta \theta) \Delta \theta \mathrm{d} x \\
\leq & C\left(\|\Delta u\|_{L^{4}}\|\nabla \theta\|_{L^{4}}\|\nabla u\|_{L^{\infty}}\|\Delta \theta\|_{L^{2}}\right)\|\Delta \theta\|_{L^{2}} \\
\leq & C\left(\|\Delta u\|_{L^{4}}\|\nabla \nabla\|_{L^{\infty}}\right)\|\Delta \theta\|_{L^{2}}^{2},
\end{aligned}
$$

which implies

$$
\begin{equation*}
\|\theta\|_{L^{\infty}\left(0, T ; H^{2}\right)}+\sqrt{\varepsilon}\|\theta\|_{L^{2}\left(0, T ; H^{3}\right)} \leq C . \tag{2.19}
\end{equation*}
$$

It follows from (1.3), (1.6), (2.19) and (2.13) that

$$
\begin{equation*}
\left\|\partial_{t}\right\|_{L^{\infty}\left(0, T ; L^{2}\right)} \leq C . \tag{2.20}
\end{equation*}
$$

Taking ∂_{t} to (1.4) and (1.5), testing by $\partial_{t} \varphi$, using (1.2), (1.6), (2.12), and (2.15), we have

$$
\begin{aligned}
& \frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t} \int\left|\partial_{t} \phi\right|^{2} \mathrm{~d} x+\int\left|\Delta \partial_{t} \phi\right|^{2} \mathrm{~d} x \\
= & -\int \partial_{t} u \cdot \nabla \phi \cdot \partial_{t} \phi \mathrm{~d} x+\int \Delta\left(3 \phi^{2} \partial_{t} \phi-\partial_{t} \phi\right) \cdot \partial_{t} \phi \mathrm{~d} x \\
= & -\int \partial_{t} u \cdot \nabla \phi \cdot \partial_{t} \phi \mathrm{~d} x+\int\left(3 \phi^{2} \partial_{t} \phi-\partial_{t} \phi\right) \Delta \partial_{t} \phi \mathrm{~d} x \\
\leq & \left\|\partial_{t} u\right\|_{L^{2}}\|\nabla \phi\|_{L^{\infty}}\left\|\partial_{t} \phi\right\|_{L^{2}}+\left(\|3 \phi\|_{L^{\infty}}^{2}+1\right)\left\|\partial_{t} \phi\right\|_{L^{2}}\left\|\Delta \partial_{t} \phi\right\|_{L^{2}} \\
\leq & \left\|\partial_{t} u\right\|_{L^{2}}\|\nabla \phi\|_{L^{\infty}}\left\|\partial_{t} \phi\right\|_{L^{2}}+\frac{1}{2}\left\|\Delta \partial_{t} \phi\right\|_{L^{2}}^{2}+C\left\|\partial_{t} \phi\right\|_{L^{2}}^{2},
\end{aligned}
$$

which gives

$$
\begin{equation*}
\left\|\partial_{t} \phi\right\|_{L^{\infty}\left(0, T ; L^{2}\right)}+\left\|\partial_{t} \phi\right\|_{L^{2}\left(0, T ; H^{2}\right)} \leq C . \tag{2.21}
\end{equation*}
$$

By the regularity theory of elliptic equation, it follows from (1.4), (1.5), (1.6), (2.21), (2.13) and (2.12) that

$$
\begin{align*}
&\|\phi\|_{L^{\infty}\left(0, T ; H^{4}\right)} \leq C\|\Delta \phi\|_{L^{\infty}\left(0, T ; H^{2}\right)} \leq C\left\|\mu-f^{\prime}(\phi)\right\|_{L^{\infty}\left(0, T ; H^{2}\right)} \\
& \leq C\|\mu\|_{L^{\infty}\left(0, T ; H^{2}\right)}+C\left\|f^{\prime}(\phi)\right\|_{L^{\infty}\left(0, T ; H^{2}\right)} \\
& \leq C\|\Delta \mu\|_{L^{\infty}\left(0, T ; L^{2}\right)}+C\left\|f^{\prime}(\phi)\right\|_{L^{\infty}\left(0, T ; H^{2}\right)} \tag{2.22}\\
& \leq C\left\|\partial_{t} \phi+u \cdot \nabla \phi\right\|_{\left.L^{\infty}\left(0, T L^{2}\right)^{2}\right)}+C\left\|f^{\prime}(\phi)\right\|_{L^{\infty}\left(0, T ; H^{2}\right)} \\
& \leq C\left\|\partial_{t} \phi\right\|_{L^{\infty}\left(0, T ; L^{2}\right)}+C\|u\|_{L^{\infty}\left(0, T ; L^{4}\right)}\|\nabla \phi\|_{L^{\infty}\left(0, T ; L^{4}\right)} \\
&+C\left\|f^{\prime}(\phi)\right\|_{L^{\infty}\left(0, T ; H^{2}\right)} \leq C .
\end{align*}
$$

Taking ∂_{t} to (1.1), testing by $\partial_{t} u$, using (1.2), (1.6), (2.17), (2.22), (2.21) and (1.5), we conclude that

$$
\begin{aligned}
& \frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t} \int\left|\partial_{t} u\right|^{2} \mathrm{~d} x+\int\left|\nabla \partial_{t} u\right|^{2} \mathrm{~d} x \\
&=-\int \partial_{t} u \cdot \nabla u \cdot \partial_{t} u \mathrm{~d} x+\int\left(\partial_{t} \mu \cdot \nabla \phi+\mu \cdot \nabla \partial_{t} \phi+\partial_{t} \theta e_{2}\right) \partial_{t} u \mathrm{~d} x \\
& \leq\|\nabla u\|_{L^{\infty}}\left\|\partial_{t} u\right\|_{L^{2}}^{2}+\left(\left\|\partial_{t} u\right\|_{L^{2}}\|\nabla \phi\|_{L^{\infty}}+\|\mu\|_{L^{\infty}}\left\|\nabla \partial_{t} \phi\right\|_{L^{2}}+\left\|\partial_{t} \theta\right\|_{L^{2}}\right)\left\|\partial_{t} u\right\|_{L^{2}} \\
& \leq\|\nabla u\|_{L^{\infty}}\left\|\partial_{t} u\right\|_{L^{2}}^{2}+C\left(\left\|\Delta \partial_{t} \phi\right\|_{L^{2}}+\left\|\partial_{t}\left(\phi^{3}-\phi\right)\right\|_{L^{2}}+\left\|\nabla \partial_{t} \phi\right\|_{L^{2}}+1\right)\left\|\partial_{t} u\right\|_{L^{2}},
\end{aligned}
$$

which implies

$$
\begin{equation*}
\left\|\partial_{t} u\right\|_{L^{\infty}\left(0, T ; L^{2}\right)}+\left\|\partial_{t} u\right\|_{L^{2}\left(0, T ; H^{1}\right)} \leq C . \tag{2.23}
\end{equation*}
$$

Using (2.23), (2.22), (2.1), (2.13), (1.1), (1.2), (1.6) and the H^{2}-theory of the Stokes system, we arrive at

$$
\|u\|_{L^{\infty}\left(0, T ; H^{2}\right)} \leq C .
$$

This completes the proof.

Acknowledgements

This study was supported by the NSFC (No. 11171154) and NSFC (Grant No. 11101376).

Author details

Department of Mathematics, Zhejiang Normal University, Jinhua 321004, People's Republic of China ${ }^{2}$ Department of Applied Mathematics, Nanjing Forestry University, Nanjing 210037, People's Republic of China

Authors' contributions

All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests
Received: 18 October 2011 Accepted: 22 December 2011 Published: 22 December 2011

References

1. Boyer, Franck: Mathematical study of multi-phase flow under shear through order parameter formulation. Asymptot Anal. 20, 175-212 (1999)
2. Fan, Jishan, Zhou, Yong: A note on regularity criterion for the 3D Boussinesq system with partial viscosity. Appl Math Lett. 22, 802-805 (2009). doi:10.1016/j.aml.2008.06.041
3. Zhou, Yong, Fan, Jishan: On the Cauchy problems for certain Boussinesq-a equations. Proc R Soc Edinburgh Sect A. 140, 319-327 (2010). doi:10.1017/S0308210509000122
4. Chae, Dongho: Global regularity for the 2D Boussinesq equations with partial viscosity terms. Adv Math. 203, 497-513 (2006). doi:10.1016/j.aim.2005.05.001
[^0]
Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

[^0]: doi:10.1186/1687-2770-2011-54
 Cite this article as: Jiang and Fan: Vanishing heat conductivity limit for the 2D Cahn-Hilliard-Boussinesq system. Boundary Value Problems 2011 2011:54.

