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Abstract

In this article, we investigate the multiplicity of positive solutions for a fourth-order
system of integral boundary value problem on time scales. The existence of multiple
positive solutions for the system is obtained by using the fixed point theorem of
cone expansion and compression type due to Krasnosel’skill. To demonstrate the
applications of our results, an example is also given in the article.
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1 Introduction
Boundary value problem (BVP) for ordinary differential equations arise in different

areas of applied mathematics and physics and so on, the existence and multiplicity of

positive solutions for such problems have become an important area of investigation in

recent years, lots of significant results have been established by using upper and lower

solution arguments, fixed point indexes, fixed point theorems and so on (see [1-8] and

the references therein). Especially, the existence of positive solutions of nonlinear BVP

with integral boundary conditions has been extensively studied by many authors (see

[9-18] and the references therein).

However, the corresponding results for BVP with integral boundary conditions on time

scales are still very few [19-21]. In this article, we discuss the multiple positive solutions

for the following fourth-order system of integral BVP with a parameter on time scales
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(4�)(t) + λf (t, x(t), x�(t), x��(t), y(t), y�(t), y��(t)) = 0, t ∈ (0, σ (T))T,

y(4�)(t) + μg(t, x(t), x�(t), x��(t), y(t), y�(t), y��(t)) = 0, t ∈ (0, σ (T))T,

x(0) = x�(0) = 0,

y(0) = y�(0) = 0,

a1x
��(0) − b1x

���(0) =

σ (T)∫
0

x��(s)A1(s)�s,

c1x
��(σ (T)) + d1x

���(σ (T)) =

σ (T)∫
0

x��(s)B1(s)�s,

a2y��(0) − b2y���(0) =

σ (T)∫
0

y��(s)A2(s)�s,

c2y��(σ (T)) + d2y���(σ (T)) =

σ (T)∫
0

y��(s)B2(s)�s,

(1:1)
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where ai, bi, ci, di ≥ 0, and ri = aicis(T) + aidi + bici >0(i = 1, 2), 0 < l, μ <+∞, f,

g ∈ C((0, σ (T))T × (R+)6,R+), ℝ+ = [0, +∞), Ai and Bi are nonnegative and rd-continu-

ous on [0, σ (T)]T(i = 1, 2).

The main purpose of this article is to establish some sufficient conditions for the exis-

tence of at least two positive solutions for system (1.1) by using the fixed point theorem of

cone expansion and compression type. This article is organized as follows. In Section 2,

some useful lemmas are established. In Section 3, by using the fixed point theorem of

cone expansion and compression type, we establish sufficient conditions for the existence

of at least two positive solutions for system (1.1). An illustrative example is given in

Section 4.

2 Preliminaries
In this section, we will provide several foundational definitions and results from the

calculus on time scales and give some lemmas which are used in the proof of our

main results.

A time scale T is a nonempty closed subset of the real numbers ℝ.

Definition 2.1. [22]For t ∈ T, we define the forward jump operator σ : T → T by

σ (t) = inf{τ ∈ T : τ > t}, while the backward jump operator ρ : T → Tby

ρ(t) = sup{τ ∈ T : τ < t}.
In this definition, we put inf∅ = supT and sup ∅ = infT, where ∅, denotes the empty

set. If s(t) > t, we say that t is right-scattered, while if r(t) < t, we say that t is left-

scattered. Also, if t < supT and s(t) = t, then t is called right-dense, and if t > inf T
and r(t) = t, then t is called left-dense. We also need, below, the set Tk, which is

derived from the time scale T as follows: if T has a left-scattered maximum m, then

Tk = T − m. Otherwise, Tk = T.

Definition 2.2. [22]Assume that x : T → Ris a function and let t ∈ Tk. Then x is

called differentiable at t ∈ Tif there exists a θ Î ℝ such that for any given ε >0, there is

an open neighborhood U of t such that

|x(σ (t)) − x(s) − x�(t)|σ (t) − s| | ≤ ε|σ (t) − s|, s ∈ U.

In this case, xΔ(t) is called the delta derivative of x at t. The second derivative of x(t)

is defined by xΔΔ(t) = (xΔ)Δ(t).

In a similar way, we can obtain the fourth-order derivative of x(t) is defined by x(4Δ)

(t) = (((xΔ)Δ)Δ)Δ(t).

Definition 2.3. [22]A function f : T → Ris called rd-continuous provided it is contin-

uous at right-dense points in Tand its left-sided limits exist at left-dense points in T.

The set of rd-continuous functions f : T → Rwill be denoted by Crd(T).

Definition 2.4. [22]A function F : T → Ris called a delta-antiderivative of

f : T → Rprovide FΔ(t) = f(t) holds for all t ∈ Tk. In this case we define the integral of f by

t∫
a
f (s) = F(t) − F(a).

For convenience, we denote I = [0, σ (T)]T, I′ = (0, σ (T))T and for i = 1, 2, we set

D1i =
Q1i

1 − P1i
, D2i =

P2i
1 − Q2i

, K1i =
1

1 − P1i
, K2i =

1
1 − Q2i

,
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where

P1i =

σ (T)∫
0

Bi(s)
ais + bi

ρi
�s, P2i =

σ (T)∫
0

Ai(s)
ais + bi

ρi
�s,

Q1i =

σ (T)∫
0

Bi(s)
di + ci(σ (T) − s)

ρi
�s, Q2i =

σ (T)∫
0

Ai(s)
di + ci(σ (T) − s)

ρi
�s.

To establish the existence of multiple positive solutions of system (1.1), let us list the

following assumptions:

(H1)Pji,Qji ∈ [0, 1),D11D21 ∈ [0, 1),D21D22 ∈ [0, 1), j, i = 1, 2.

In order to overcome the difficulty due to the dependence of f, g on derivatives, we

first consider the following second-order nonlinear system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u��(t) + λf (t,A2u,A1u,A0u,A2v,A1v,A0v) = 0, t ∈ (0, σ (T))T,

v��(t) + μg(t,A2u,A1u,A0u,A2v,A1v,A0v) = 0, t ∈ (0, σ (T))T,

a1u(0) − b1u�(0) =

σ (T)∫
0

u(s)A1(s)�s,

c1u(σ (T)) + d1u�(σ (T)) =

σ (T)∫
0

u(s)B1(s)�s,

a2v(0) − b2v
�(0) =

σ (T)∫
0

v(s)A2(s)�s,

c2v(σ (T)) + d2v
�(σ (T)) =

σ (T)∫
0

v(s)B2(s)�s,

(2:1)

where A0 is the identity operator, and

Aiu(t) =

t∫
0

(t − σ (s))i−1u(s)�s, Aiv(t) =

t∫
0

(t − σ (s))i−1v(s)�s, i = 1, 2. (2:2)

For the proof of our main results, we will make use of the following lemmas.

Lemma 2.1. The fourth-order system (1.1) has a solution (x, y) if and only if the non-

linear system (2.1) has a solution (u, v).

Proof. If (x, y) is a solution of the fourth-order system (1.1), let u(t) = xΔΔ(t), v(t) =

yΔΔ(t), then it follows from the boundary conditions of system (1.1) that

A1u(t) = x�(t), A2u(t) = x(t),A1v(t) = y�(t),A2v(t) = y(t).

Thus (u, v) = (xΔΔ(t), yΔΔ(t)) is a solution of the nonlinear system (2.1).

Conversely, if (u, v) is a solution of the nonlinear system (2.1), let x(t) = A2u(t), y(t) =

A2v(t), then we have

x�(t) = A1u(t), x��(t) = u(t), y�(t) = A1v(t), y��(t) = v(t),
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which imply that

x(0) = 0, x�(0) = 0, y(0) = 0, y�(0) = 0.

Consequently, (x, y) = (A2u(t), A2v(t)) is a solution of the fourth-order system (1.1).

This completes the proof.

Lemma 2.2. Assume that D11D21 ≠ 1 holds. Then for any h1 Î C(I’, ℝ+), the following

BVP ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u��(t) + h1(t) = 0, t ∈ (0, σ (T))T,

a1u(0) − b1u�(0) =
σ (T)∫
0

u(s)A1(s)�s,

c1u(σ (T)) + d1u�(σ (T)) =
σ (T)∫
0

u(s)B1(s)�s

(2:3)

has a solution

u(t) =
σ (T)∫
0

H1(t, s)h1(s)�s,

where

H1(t, s) = G1(t, s) + r1(t)

σ (T)∫
0

B1(τ )G1(τ , s)�τ + r2(t)

σ (T)∫
0

A1(τ )G1(τ , s)�τ ,

G1(t, s) =
1
ρ1

{
(a1σ (s) + b1)[d1 + c1(σ (T) − t)], σ (s) < t,
(a1t + b1)[d1 + c1(σ (T) − σ (s))], t ≤ σ (s),

r11(t) =
K11(a1t + b1) + K11D21[d1 + c1(σ (T) − t)]

ρ1(1 − D11D21)
,

r21(t) =
K21D11(a1t + b1) + K21[d1 + c1(σ (T) − t)]

ρ1(1 − D11D21)
.

Proof. First suppose that u is a solution of system (2.3). It is easy to see by integra-

tion of BVP(2.3) that

u�(t) = u�(0) −
t∫

0

h1(s)�s. (2:4)

Integrating again, we can obtain

u(t) = u(0) + tu�(0) −
t∫

0

(t − σ (s))h1(s)�s. (2:5)

Let t = s(T) in (2.4) and (2.5), we obtain

u�(σ (T)) = u�(0) −
σ (T)∫
0

h1(s)�s, (2:6)

u(σ (T)) = u(0) + σ (T)u�(0) −
σ (T)∫
0

(σ (T) − σ (s))h1(s)�s. (2:7)
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Substituting (2.6) and (2.7) into the second boundary value condition of system (2.3),

we obtain

c1u(0) + (c1σ (T) + d1)u�(0) =

σ (T)∫
0

[d1 + c1(σ (T) − σ (s))]h1(s)�s

+

σ (T)∫
0

u(s)B1(s)�s.

(2:8)

From (2.8) and the first boundary value condition of system (2.3), we have

u�(0) =
a1
ρ1

⎛
⎜⎝

σ (T)∫
0

[d1 + c1(σ (T) − σ (s))]h1(s)�s +

σ (T)∫
0

u(s)B1(s)�s (2:9)

− c1
a1

σ (T)∫
0

u(s)A1(s)�s

⎞
⎟⎠ ,

u(0) =
b1
ρ1

⎛
⎜⎝

σ (T)∫
0

[d1 + c1(σ (T) − σ (s))]h1(s)�s +

σ (T)∫
0

u(s)B1(s)�s

− c1
a1

σ (T)∫
0

u(s)A1(s)�s

⎞
⎟⎠ +

1
a1

σ (T)∫
0

u(s)A1(s)�s.

(2:10)

Substituting (2.9) and (2.10) into (2.5), we have

u(t) =

σ (T)∫
0

G1(t, s)h1(s)�s +
a1t + b1

ρ1

σ (T)∫
0

u(s)B1(s)�s

+
d1 + c1(σ (T) − t)

ρ1

σ (T)∫
0

u(s)A1(s)�s.

(2:11)

By (2.11), we get

σ (T)∫
0

u(s)B1(s)�s =
1

1 − P11

σ (T)∫
0

B1(s)

σ (T)∫
0

G1(s, τ )h1(τ )�τ�s

+
Q11

1 − P11

σ (T)∫
0

u(s)A1(s)�s,

(2:12)

σ (T)∫
0

u(s)A1(s)�s =
1

1 − Q21

σ (T)∫
0

B1(s)

σ (T)∫
0

G1(s, τ )h1(τ )�τ�s

+
P21

1 − Q21

σ (T)∫
0

u(s)B1(s)�s.

(2:13)
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By (2.12) and (2.13), we get

σ (T)∫
0

u(s)A1(s)�s =
K11D21

1 − D11D21

σ (T)∫
0

B1(s)

σ (T)∫
0

G1(s, τ )h1(τ )�τ�s

+
K21

1 − D11D21

σ (T)∫
0

A1(s)

σ (T)∫
0

G1(s, τ )h1(τ )�τ�s,

(2:14)

σ (T)∫
0

u(s)B1(s)�s =
K11

1 − D11D21

T∫
0

B1(s)

T∫
0

G1(s, τ )h1(τ )�τ�s

+
K21D11

1 − D11D21

σ (T)∫
0

A1(s)

σ (T)∫
0

G1(s, τ )h1(τ )�τ�s.

(2:15)

Substituting (2.14) and (2.15) into (2.11), we have

u(t) =

σ (T)∫
0

G1(t, s)h1(s)�s

+
K11(a1t + b1) + K11D21[d1 + c1(σ (T) − t)]

ρ1(1 − D11D21)

σ (T)∫
0

B1(s)

σ (T)∫
0

G1(s, τ )h1(τ )�τ�s

+
K21D11(a1t + b1) + K21[d1 + c1(σ (T) − t)]

ρ1(1 − D11D21)

σ (T)∫
0

A1(s)

σ (T)∫
0

G1(s, τ )h1(τ )�τ�s

=

σ (T)∫
0

G1(t, s)h1(s)�s + r11(t)

σ (T)∫
0

B1(s)

σ (T)∫
0

G1(s, τ )h1(τ )�τ�s

+ r21(t)

σ (T)∫
0

A1(s)

σ (T)∫
0

G1(s, τ )h1(τ )�τ�s

=

σ (T)∫
0

H1(t, s)h1(s)�s.

(2:16)

Conversely, suppose u(t) =
∫ σ (T)
0 H1(t, s)h1(s)�s, then

u(t) =

σ (T)∫
0

G1(t, s)h1(s)�s + r11(t)

σ (T)∫
0

B1(s)

σ (T)∫
0

G1(s, τ )h1(τ )�τ�s

+r21(t)

σ (T)∫
0

A1(s)

σ (T)∫
0

G1(s, τ )h1(τ )�τ�s.

(2:17)
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Direct differentiation of (2.17) implies

u�(t) =
1
ρ1

⎛
⎜⎝a1

σ (T)∫
t

[d1 + c1(σ (T) − σ (s))]h1(s)�s − c1

t∫
0

(a1σ (s) + b1)h1(s) � s

⎞
⎟⎠

+
a1K11 − c1K11D21

ρ1(1 − D11D21)

σ (T)∫
0

B1(s)

σ (T)∫
0

G1(s, τ )h1(τ )�τ�s

+
a1K21D11 − c1K21

ρ1(1 − D11D21)

σ (T)∫
0

A1(s)

σ (T)∫
0

G1(s, τ )h1(τ )�τ�s

and

u��(t) = −h1(t),

and it is easy to verify that

a1u(0) − b1u�(0) =

σ (T)∫
0

u(s)A1(s)�s,

c1u(σ (T)) + d1u�(σ (T)) =

σ (T)∫
0

u(s)B1(s)�s.

This completes the proof.

Lemma 2.3. Assume that D12D22 ≠ 1 holds. Then for any h2 Î C(I’, ℝ+), the following

BVP ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

v��(t) + h2(t) = 0, t ∈ (0, σ (T))T,

a2v(0) − b2v�(0) =
σ (T)∫
0

v(s)A2(s)�s,

c2v(σ (T)) + d2v�(σ (T)) =
σ (T)∫
0

v(s)B2(s)�s

has a solution

v(t) =
σ (T)∫
0

H2(t, s)h2(s)�s,

where

H2(t, s) = G2(t, s) + r12(t)

σ (T)∫
0

B2(τ )G2(τ , s)�τ + r22(t)

σ (T)∫
0

A2(τ )G2(τ , s)�τ ,

G2(t, s) =
1
ρ2

{
(a2σ (s) + b2)[d2 + c2(σ (T) − t)], σ (s) < t,
(a2t + b2)[d2 + c2(σ (T) − σ (s))], t ≤ σ (s),

r12(t) =
K12(a2t + b2) + K12D22[d2 + c2(σ (T) − t)]

ρ2(1 − D12D22)
,

r22(t) =
K22D12(a2t + b2) + K22[d2 + c2(σ (T) − t)]

ρ2(1 − D12D22)
.

Proof. The proof is similar to that of Lemma 2.2 and will omit it here.
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Lemma 2.4. Suppose that (H1) is satisfied, for all t, s Î I and i = 1, 2, we have

(i) Gi(t, s) >0, Hi(t, s) >0,

(ii) LimiGi(s(s), s) ≤ Hi(t, s) ≤ MiGi(s(s), s),
(iii) mGi(s(s), s) ≤ Hi(t, s) ≤ MGi(s(s), s),

where

Mi = 1 + r1i

σ (T)∫
0

Bi(τ )�τ + r2i

σ (T)∫
0

Ai(τ )�τ , rji = max
0≤t≤1

ri(t),

mi = 1 + r1i(t)

σ (T)∫
0

Bi(τ )�τ + r2i(t)

σ (T)∫
0

Ai(τ )�τ , rji = min
0≤t≤1

ri(t),

M = max{M1,M2}, m = min{L1m1, L2m2}, Li = min
{

di
di + ci

,
bi

ai + bi

}
, i, j = 1, 2.

Proof. It is easy to verify that Gi(t, s) >0, Hi(t, s) >0 and Gi(t, s) ≤ Gi(s(s), s), for all t,
s Î I. Since

Gi(t, s)
Gi(σ (s), s)

=

{
di+cz(σ (T)−t)

di+cz(σ (T)−σ (s)) , σ (s) < t,
ait+bi

aiσ (s)+bi
, σ (s) ≥ t.

Thus Gi(t, s)/Gi(s(s), s) ≥ Li and we have

Gi(t, s) ≥ LiGi(σ (s), s).

On the one hand, from the definition of Li and mi, for all t, s Î I, we have

Hi(t, s) = Gi(t, s) + r1i(t)

σ (T)∫
0

Bi(τ )Gi(τ , s)�τ + r2i(t)

σ (T)∫
0

Ai(τ )Gi(τ , s)�τ

≥ LiGi(σ (s), s)

⎛
⎜⎝1 + r1i(t)

σ (T)∫
0

Bi(τ )�τ + r2i(t)

σ (T)∫
0

Ai(τ )�τ

⎞
⎟⎠

≥ LimiGi(σ (s), s),

and on the other hand, we obtain easily that from the definition of Mi, for all t, s Î I,

Hi(t, s) ≤ Gi(σ (s), s) + r1i(t)

σ (T)∫
0

Bi(τ )Gi(σ (s), s)�τ + r2i(t)

σ (T)∫
0

Ai(τ )Gi(σ (s), s)�τ

≤ MiGi(σ (s), s).

Finally, it is easy to verify that mGi(s(s), s) ≤ Hi(t, s) ≤ MGi(s(s), s). This completes

the proof.

Lemma 2.5. [23]Let E be a Banach space and P be a cone in E. Assume that Ω1 and

Ω2 are bounded open subsets of E, such that 0 Î Ω1, �1 ⊂ �2, and let

T : P ∩ (�2\�1) → Pbe a completely continuous operator such that either

(i) ||Tu|| ≤ ||u||, ∀u Î P ∩ ∂Ω1 and ||Tu|| ≥ ||u||, ∀u Î P ∩ ∂Ω2, or

(ii) ||Tu|| ≥ ||u||, ∀u Î P ∩ ∂Ω1 and ||Tu|| ≤ ||u||, ∀u Î P ∩ ∂Ω2
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holds. Then T has a fixed point in P ∩ (�2\�1).

To obtain the existence of positive solutions for system (2.1), we construct a cone P

in the Banach space Q = C(I, ℝ+) × C(I, ℝ+) equipped with the norm

||(u, v)|| = ||u|| + ||v|| = max
t∈I

|u| + max
t∈I

|v| by

P =
{
(u, v) ∈ Q|u(t) ≥ 0, v(t) ≥ 0,min

t∈I
(u(t) + v(t)) ≥ m

M
||(u, v)||

}
.

It is easy to see that P is a cone in Q.

Define two operators Tl, Tμ : P ® C(I, ℝ+) by

Tλ(u, v)(t) = λ

T∫
0

H1(t, s)f (t,A2u,A1u,A0u,A2v,A1v,A0v)�s, t ∈ I,

Tμ(u, v)(t) = μ

T∫
0

H2(t, s)g(t,A2u,A1u,A0u,A2v,A1v,A0v)�s, t ∈ I.

Then we can define an operator T : P ® C(I, ℝ+) by

T(u, v) = (Tλ(u, v),Tμ(u, v)), ∀(u, v) ∈ P.

Lemma 2.6. Let (H1) hold. Then T : P ® P is completely continuous.

Proof. Firstly, we prove that T : P ® P. In fact, for all (u, v) Î P and t Î I, by Lemma

2.4(i) and (H1), it is obvious that Tl(u, v)(t) >0, Tμ(u, v)(t) >0. In addition, we have

Tλ(u, v)(t) = λ

σ (T)∫
0

H1(t, s)f (t,A2u,A1u,A0u,A2v,A1v,A0v)�s

≤ λM

σ (T)∫
0

G1(σ (s), s)f (t,A2u,A1u,A0u,A2v,A1v,A0v)�s,

(2:18)

which implies ||Tλ(u, v)|| ≤ λM
∫ σ (T)
0 G1(σ (s), s)f (t,A2u,A1u,A0u,A2v,A1v,A0v)�s.

And we have

Tλ(u, v)(t) ≥ λL1m1

σ (T)∫
0

G1(σ (s), s)f (t,A2u,A1u,A0u,A2v,A1v,A0v)�s

≥ m
M

||Tλ(u, v)||.

In a similar way,

Tμ(u, v)(t) ≥ m

M
||Tμ(u, v)||.

Therefore,

min
t∈I

(Tλ(u, v)(t) + Tμ(u, v)(t)) ≥ m
M

||Tλ(u, v)|| + m
M

||Tμ(u, v)||

=
m
M

||Tλ(u, v),Tμ(u, v)||.

This shows that T : P ® P.
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Secondly, we prove that T is continuous and compact, respectively. Let {(uk, vk)} Î P

be any sequence of functions with lim
k→∞

(uk, vk) = (u, v) ∈ P,

|Tλ(uk, vk)(t) − Tλ(u, v)(t)| ≤λM1 sup
t∈I

|f (t,A2uk,A1uk,A0uk,A2vk,A1vk,A0vk)

− f (t,A2u,A1u,A0u,A2v,A1v,A0v)|
σ (T)∫
0

G1(σ (s), s)�s,

from the continuity of f, we know that ||Tl(uk, vk) - Tl(u, v)|| ® 0 as k ® ∞. Hence

Tl is continuous.

Tl is compact provided that it maps bounded sets into relatively compact sets. Let

f̄ = sup
t∈I′

|f (t,A2u,A1u,A0u,A2v,A1v,A0v)|, and let Ω be any bounded subset of P, then

there exists r >0 such that ||(u, v)|| ≤ r for all (u, v) Î Ω. Obviously, from (2.16), we

know that

Tλ(u, v)(t) ≤ λMf̄
σ (T)∫
0

G1(σ (s), s)�s,

so, TlΩ is bounded for all (u, v) Î Ω. Moreover, let

L′
1 =

λf̄
ρ1

⎛
⎜⎝a1

σ (T)∫
0

[d1 + c1(σ (T) − σ (s))]�s + c1

σ (T)∫
0

(a1σ (s) + b1)�s

⎞
⎟⎠

+
λf̄ |a1K11 − c1K11D21|

ρ1(1 − D11D21)

σ (T)∫
0

B1(s)

σ (T)∫
0

G1(s, τ )�τ�s

+
λf̄ |a1K21D11 − c1K21|

ρ1(1 − D11D21)

σ (T)∫
0

A1(s)

σ (T)∫
0

G1(s, τ )�τ�s.

We have

|Tλ(u, v)�(t)|

≤ λ

ρ1

∣∣∣∣∣∣∣a1
σ (T)∫
t

[d1 + c1(σ (T) − σ (s))]f (s,A2u,A1u,A0u,A2v,A1v,A0v)�s

−c1

t∫
0

(a1σ (s) + b1)f (s,A2u,A1u,A0u,A2v,A1v,A0v)�s

∣∣∣∣∣∣
+

λ|a1K11 − c1K11D21|
ρ1(1 − D11D21)

σ (T)∫
0

B1(s)

σ (T)∫
0

G1(s, τ )f (s,A2u,A1u,A0u,A2v,A1v,A0v)�τ�s

+
λ|a1K21D11 − c1K21|

ρ1(1 − D11D21)

σ (T)∫
0

A1(s)

σ (T)∫
0

G1(s, τ )f (s,A2u,A1u,A0u,A2v,A1v,A0v)�τ�s

≤ L′
1.

Thus, for any (u, v) Î Ω and ∀ε >0, let δ = ε
L′

1
, then for t1, t2 Î I, |t1 - t2| < δ, we

have

|Tλ(u, v)(t1) − Tλ(u, v)(t2)| ≤ L′
1|t1 − t2| < ε.

Li and Dong Boundary Value Problems 2011, 2011:59
http://www.boundaryvalueproblems.com/content/2011/1/59

Page 10 of 18



So, for all (u, v) Î Ω, TlΩ is equicontinuous. By Ascoli-Arzela theorem, we obtain

that Tl : P ® P is completely continuous. In a similar way, we can prove that Tμ : P

® P is completely continuous. Therefore, T : P ® P is completely continuous. This

completes the proof.

3 Main results
In this section, we will give our main results on multiplicity of positive solutions of

system (1.1). In the following, for convenience, we set

fβ = lim
6∑
i=1

|ϕi|→β

inf
t∈I′

f (t,ϕ1, . . . ,ϕ6)

q1(t)
∑6

i=1 |ϕi|
, f α = lim

6∑
i=1

|ϕi|→α

sup
t∈I′

f (t,ϕ1, . . . ,ϕ6)

q2(t)
∑6

i=1 |ϕi|
,

gβ = lim
6∑
i=1

|ϕi|→β

inf
t∈I′

f (t,ϕ1, . . . ,ϕ6)

q3(t)
∑6

i=1 |ϕi|
, gα = lim

6∑
i=1

|ϕi|→α

sup
t∈I′

f (t,ϕ1, . . . ,ϕ6)

q4(t)
∑6

i=1 |ϕi|
,

where qi(t), qj(t) Î Crd(I’, ℝ
+) satisfy

0 <

σ (T)∫
0

G1(σ (s), s)qi(s)�s < +∞ (i = 1, 2),

0 <

σ (T)∫
0

G2(σ (s), s)qj(s)�s < +∞ (j = 3, 4).

Theorem 3.1. Assume that (H1) holds. Assume further that

(H2) there exist a constant R >0, and two functions pi(t) Î Crd(I, R+) satisfying

0 <
σ (T)∫
0

Gi(σ (s), s)pi(s)�s < +∞(i = 1, 2)such that

f (t,ϕ1, . . . ,ϕ6) ≤ Rp1(t), ∀t ∈ I, 0 <

6∑
i=1

|ϕi| ≤ R,

g(t,ϕ1, . . . ,ϕ6) ≤ Rp2(t), ∀t ∈ I, 0 <

6∑
i=1

|ϕi| ≤ R,

and one of the folloeing conditions is satisfied

(E1) λ ∈ (M3
f0
,M4), μ ∈ (N3

g∞
,N4),

(E2) λ ∈ (M3
f∞

,M4), μ ∈ (N3
g0
,N4),

(E3) λ ∈ (M3
Fα
,M4), μ Î (0, N4),

(E4) l Î (0, M4), μ ∈ (N3
Gα

,N4),

where

M3 =

⎛
⎜⎝m2

M

σ (T)∫
0

G1(σ (s), s)q1(s)�s

⎞
⎟⎠

−1

, M4 =

⎛
⎜⎝O1MN

σ (T)∫
0

G1(σ (s), s)p1(s)�s

⎞
⎟⎠

−1

,

N3 =

⎛
⎜⎝m2

M

σ (T)∫
0

G2(σ (s), s)q3(s)�s

⎞
⎟⎠

−1

, N4 =

⎛
⎜⎝o2MN

σ (T)∫
0

G2(σ (s), s)p2(s)�s

⎞
⎟⎠

−1

,

Fα = min{f0, f∞}, Gα = {g0, g∞},
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O1, O2 satisfy
1
O1

+ 1
O2

≤ 1,N = 1 + σ (T) + (σ (T))2. Then system (1.1) has at least two

positive solutions.

Proof. We only prove the case in which (H2) and (E1) hold, the other case can be

proved similarly. Firstly, from (2.2), we have

2∑
i=0

Aiu(t) +
2∑
i=0

Aiv(t) ≤ ||(u, v)|| + σ (T)||(u, v)|| + (σ (T))2||(u, v)|| = N||(u, v)||. (3:1)

Take R1 = R
N, and let Ω1 = {(u, v) Î Q; ||(u, v)|| < R1}. For any t Î I, (u, v) Î ∂Ω1 ∩

P, it follows from l < M4, μ < N4 and (H2) that

Tλ(u, v)(t) = λ

σ (T)∫
0

H1(t, s)f (s,A2u,A1u,A0u,A2v,A1v,A0v)�s

≤ M4M

σ (T)∫
0

G1(σ (s), s)f (s,A2u,A1u,A0u,A2v,A1v,A0v)�s

≤ M4MR

σ (T)∫
0

G1(σ (s), s)p1(s)�s

= NM4MR1

σ (T)∫
0

G1(σ (s), s)p1(s)�s ≤ 1
O1

R1

and

Tμ(u, v)(t) = μ

σ (T)∫
0

H2(t, s)g(s,A2u,A1u,A0u,A2v,A1v,A0v)�s

≤ N4M

σ (T)∫
0

G2(σ (s), s)g(s,A2u,A1u,A0u,A2v,A1v,A0v)�s

≤ N4MR

σ (T)∫
0

G2(σ (s), s)p2(s)�s

= N4MNR1

σ (T)∫
0

G2(σ (s), s)p2(s)�s ≤ 1
O2

R1.

Consequently, for any (u, v) Î ∂Ω1 ∩ P, we have

||T(u, v)|| = ||Tλ(u, v)|| + ||Tμ(u, v)|| <
1
O1

R1 +
1
O2

R1 ≤ R1. (3:2)

Second, from λ > M3
f0
, we can choose ε1 >0 such that lf0 > M3 + ε1, then there exists

0 < l1 < NR1 such that for any
∑6

i=1 |ϕi| < l1 and t Î I,

f (t,ϕ1, . . . ,ϕ6) ≥ M3 + ε1

λ
q1(t)

6∑
i=1

|ϕi|.
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And since

2∑
i=0

Aiu(t) +
2∑
i=0

Aiv(t) ≥ u(t) + v(t) ≥ m
M

||(u, v)||. (3:3)

Take

R2 =
l1
N

< R1.

For all (u, v) Î Ω2 ∩ P, where Ω2 = {(u, v) Î Q; ||(u, v)|| < R2}, we have

2∑
i=0

Aiu(t) +
2∑
i=0

Aiv(t) ≥ u(t) + v(t) ≥ m
M

R2.

Thus, for all (u, v) Î Ω2 ∩ P, we have

Tλ(u, v)(t) ≥ λm

σ (T)∫
0

G1(σ (s), s)f (s,A2u,A1u,A0u,A2v,A1v,A0v)�s

≥ m(M3 + ε1)

(
2∑
i=0

|Aiu| +
2∑
i=0

|Aiv|
) σ (T)∫

0

G1(σ (s), s)q1(s)�s

≥ M3
m2

M
R2

σ (T)∫
0

G1(σ (s), s)q1(s)�s = R2.

Consequently, for all (u, v) Î Ω2 ∩ P, we have

||T(u, v)|| ≥ ||Tλ(u, v)|| ≥ ||(u, v)||. (3:4)

Finally, from μ > N3/g∞, we can choose ε2 >0 such that μg∞ > N3 + ε2. then, there

exists l2 > m
MR such that for any

∑6
i=1 |ϕi| < l2 and t Î I,

g(t,ϕ1, . . . ,ϕ6) ≥ N3 + ε2

μ
q3(t)

6∑
i=1

|ϕi|.

Take

R3 =
(m
M

)−1
l2 > R1.

For all (u, v) Î Ω3 ∩ P, where Ω3 = {(u, v) Î Q; ||(u, v)|| < R3}, from (3.3), we have

2∑
i=0

Aiu(t) +
2∑
i=0

Aiv(t) ≥ m
M

R3 = l2. (3:5)

Thus, for all (u, v) Î Ω3 ∩ P, we have

Tμ(u, v)(t) ≥ μm

σ (T)∫
0

G2(σ (s), s)g(s,A2u,A1u,A0u,A2v,A1v,A0v)�s

≥ m(N3 + ε2)

(
2∑
i=0

|Aiu| +
2∑
i=0

|Aiv|
) σ (T)∫

0

G2(σ (s), s)q3(s)�s

≥ N3
m2

M
R3

σ (T)∫
0

G2(σ (s), s)q3(s)�s = R3.
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Consequently, for all (u, v) Î Ω3 ∩ P, we have

||T(u, v)|| ≥ ||Tμ(u, v)|| ≥ ||(u, v)||. (3:6)

From (3.2), (3.4), and (ii) of Lemma 2.5, it follows that system (2.1) has one positive

solution (u1, v1) Î P with R2 ≤ ||(u1, v1)|| ≤ R1. Therefore, from Lemma 2.1, it follows

that system (1.1) has one positive solution (x1, y1). In the same way, from (3.2), (3.6),

and (i) of Lemma 2.5, it follows that system (2.1) has one positive solution (u2, v2) Î P

with R1 ≤ ||(u2, v2)|| ≤ R3. Therefore, from Lemma 2.1, it follows that system (1.1) has

one positive solution (x2, y2). Above all, system (1.1) has at least two positive solutions.

This completes the proof.

Theorem 3.2. Assume that (H1) holds. Suppose further that

(H3) there exist a constant R0 >0, and two functions wi(t) Î Crd(I, R+) (i = 1, 2) satis-

fying 0 <
∫ σ (T)
0 Gi(σ (s), s)wi(s)�s < +∞such that

f (t,ϕ1, . . . ,ϕ6) ≥ R0w1(t), ∀t ∈ I,
6∑
i=1

|ϕi| > R0, (3:7)

or

g(t,ϕ1, . . . ,ϕ6) ≥ R0w2(t), ∀t ∈ I,
6∑
i=1

|ϕi| > R0. (3:8)

Then system (1.1) has at least two positive solutions for each λ ∈ (M5,
M6
F0 )and

μ ∈ (N5,
N6
G0 ), where

M5 =

⎛
⎜⎝m2

M

σ (T)∫
0

G1(σ (s), s)w1(s)�s

⎞
⎟⎠

−1

, N5 =

⎛
⎜⎝m2

M

σ (T)∫
0

G2(σ (s), s)w2(s)�s

⎞
⎟⎠

−1

,

M6 =

⎛
⎜⎝O1MN

σ (T)∫
0

G1(σ (s), s)q2(s)�s

⎞
⎟⎠

−1

, N6 =

⎛
⎜⎝o2MN

σ (T)∫
0

G2(σ (s), s)q4(s)�s

⎞
⎟⎠

−1

,

Fα = max{f 0, f∞} < ∞, Gα = max{g0, g∞} < ∞.

Proof. We only prove the case in which (3.7) holds. The other case in which (3.8)

holds can be proved similarly.

Take

R′
1 =

(m
M

)−1
R0

and let �4 = {(u, v) ∈ Q; ||(u, v)|| < R′
1}. For any t Î I, (u, v) Î ∂Ω4 ∩ P, it follows

from l > M5 and (H3) that

Tλ(u, v)(t) = λ

σ (T)∫
0

H1(t, s)f (s,A2u,A1u,A0u,A2v,A1v,A0v)�s

≥ M5m

σ (T)∫
0

G1(σ (s), s)f (s,A2u,A1u,A0u,A2v,A1v,A0v)�s

≥ mM5R0

σ (T)∫
0

G1(σ (s), s)w1(s)�s

= M5
m2

M
R′

1

σ (T)∫
0

G1(σ (s), s)w1(s)�s = R′
1.
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Consequently, for any (u, v) Î ∂Ω4 ∩ P, we have

||T(u, v)|| ≥ ||Tλ(u, v)|| ≥ ||(u, v)||. (3:9)

From λ < M6
Fα , μ < N6

Gα , we know that λ < M6
f 0 , μ < N6

g0 , we can choose ε3 >0 such that

M6 - ε3 >0, N6 - ε3 >0 and lf0 < M6 - ε3, μg0 < N6 - ε3. Then there exists

0 < l3 < NR0 < NR′
1 such that for any

∑6
i=1 |ϕi| < l3 and t Î I,

f (t,ϕ1, . . . ,ϕ6) ≤ M6 − ε3

λ
q2(t)

6∑
i=1

|ϕi|,

g(t,ϕ1, . . . ,ϕ6) ≤ N6 − ε3

μ
q4(t)

6∑
i=1

|ϕi|.

Take R′
2 = l3

N < R′
1 and �5 = {(u, v) ∈ Q; ||(u, v)|| < R′

2}. Then, for any (u, v) Î Ω5 ∩
P, from(3.1), we have

Tλ(u, v)(t) = λ

σ (T)∫
0

H1(t, s)f (s,A2u,A1u,A0u,A2v,A1v,A0v)�s

≤ λM

σ (T)∫
0

G1(σ (s), s)f (s,A2u,A1u,A0u,A2v,A1v,A0v)�s

≤ M(M6 − ε3)

(
2∑
i=0

|Aiu| +
2∑
i=0

|Aiv|
) σ (T)∫

0

G1(σ (s), s)q2(s)�s

≤ MNM6R
′
2

σ (T)∫
0

G1(σ (s), s)q2(s)�s =
1
O1

R′
2

and

Tμ(u, v)(t) = μ

σ (T)∫
0

H2(t, s)g(s,A2u,A1u,A0u,A2v,A1v,A0v)�s

≤ μM

σ (T)∫
0

G2(σ (s), s)g(s,A2u,A1u,A0u,A2v,A1v,A0v)�s

≤ M(N6 − ε3)

(
2∑
i=0

|Aiu| +
2∑
i=0

|Aiv|
) σ (T)∫

0

G2(σ (s), s)q4(s)�s

≤ MNN6R
′
2

σ (T)∫
0

G2(σ (s), s)q4(s)�s =
1
O2

R′
2.

Consequently, for any (u, v) Î ∂Ω5 ∩ P, we have

||T(u, v)|| = ||Tλ(u, v)|| + ||Tμ(u, v)|| <
1
O1

R′
2 +

1
O2

R′
2 ≤ R′

2. (3:10)
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From λ < M6
Fα , μ < N6

Gα we know that λ < M6
f∞ , μ < N6

g∞, we can choose ε4 >0 such that

M6 - ε4 >0, N6 - ε4 >0 and lf∞< M6 - ε4, μg
∞ < N6 - ε4. Then there exists l4 > m

MR′
1

such that for any
∑6

i=1 |ϕi| > l4 and t Î I,

f (t,ϕ1, . . . ,ϕ6) ≤ M6 − ε3

λ
q2(t)

6∑
i=1

|ϕi|,

g(t,ϕ1, . . . ,ϕ6) ≤ N6 − ε3

μ
q4(t)

6∑
i=1

|ϕi|.

Take R′
3 = (mM )−1l4 > R′

1 and let �6 = {(u, v) ∈ Q; ||(u, v)|| < R′
3}. Then, for any (u, v)

Î Ω6 ∩ P, we have

Tλ(u, v)(t) = λ

σ (T)∫
0

H1(t, s)f (s,A2u,A1u, 3A0u,A2v,A1v,A0v)�s

≤ λM

σ (T)∫
0

G1(σ (s), s)f (s,A2u,A1u,A0u,A2v,A1v,A0v)�s

≤ M(M6 − ε3)

(
2∑
i=0

|Aiu| +
2∑
i=0

|Aiv|
) σ (T)∫

0

G1(σ (s), s)q2(s)�s

≤ MNM6R
′
3

σ (T)∫
0

G1(σ (s), s)q2(s)�s =
1
O1

R′
3

and

Tμ(u, v)(t) = μ

σ (T)∫
0

H2(t, s)g(s,A2u,A1u,A0u,A2v,A1v,A0v)�s

≤ μM

σ (T)∫
0

G2(σ (s), s)g(s,A2u,A1u,A0u,A2v,A1v,A0v)�s

≤ M(N6 − ε3)

(
2∑
i=0

|Aiu| +
2∑
i=0

|Aiv|
) σ (T)∫

0

G2(σ (s), s)q4(s)�s

≤ MNN6R
′
3

σ (T)∫
0

G2(σ (s), s)q4(s)�s =
1
O2

R′
3.

Consequently, for any (u, v) Î ∂Ω6 ∩ P, we have

||T(u, v)|| = ||Tλ(u, v)|| + ||Tμ(u, v)|| <
1
O1

R′
3 +

1
O2

R′
3 ≤ R′

3. (3:11)

From (3.9), (3.10) and (i) of Lemma 2.5, it follows that system (2.1) has one positive

solution (u1, v1) Î P with R′
1 ≤ ||(u1, v1)|| ≤ R′

2. Therefore, from Lemma 2.1, it follows

that system (1.1) has one positive solution (x1, y1). In the same way, from (3.9), (3.11)

and (ii) of Lemma 2.5, it follows that system (2.1) has one positive solution (u2, v2) Î
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P with R′
1 ≤ ||(u2, v2)|| ≤ R′

3. Therefore, from Lemma 2.1, it follows that system (1.1)

has one positive solution (x2, y2). Above all, system (1.1) has at least two positive solu-

tions. This completes the proof.

4 An example
Consider the following BVP with integral boundary conditions:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(4�)(t) + λf (t, x(t), x�(t), x��(t), y(t), y�(t), y��(t)) = 0, t ∈ (0, σ (T))T,

y(4�)(t) + μg(t, x(t), x�(t), x��(t), y(t), y�(t), y��(t)) = 0, t ∈ (0, σ (T))T,

x(0) = x�(0) = 0,

y(0) = y�(0) = 0,

x��(0) − x���(0) =

σ (T)∫
0

x��(s)A1(s)�s,

x��(σ (T)) + x���(σ (T)) =

σ (T)∫
0

x��(s)B1(s)�s,

y��(0) − y���(0) =

σ (T)∫
0

y��(s)A2(s)�s,

y��(σ (T)) + y���(σ (T)) =

σ (T)∫
0

(s)B2(s)�s,

(4:1)

where A1(t) = B1(t) = t, A2(t) = B2(t) = t/2 and

f (t,φ1,φ2,φ3,φ4,φ5,φ6) = 2t

(
6∑
i=1

φi

) 1
2

, t ∈ (0, σ (T))T, φi ≥ 0, i = 1, . . . , 6,

g(t,φ1,φ2,φ3,φ4,φ5,φ6) =
t
2

(
6∑
i=1

φi

)3

, t ∈ (0, σ (T))T, φi ≥ 0, i = 1, . . . , 6.

we choose O1 = 2, O2 = 4, R = 1, p1(t) = 2t, p2(t) = t
2, q1(t) = q3(t) = 1. It is easy to

check that f0 = g∞ = ∞, (H1), (H2) and (E1) are satisfied. Therefore, by Theorem 3.1,

system (4.1) has at least two positive solutions for each l Î (0, M4), μ Î (0, N4).
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