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Abstract

In this paper, we consider the following viscoelastic equations{
utt − �u +

∫ t
0 g(t − τ )�u(τ )dτ + ut = a1|v|q+1|u|p−1u

vtt − �v +
∫ t
0 g(t − τ )�v(τ )dτ + vt = a2|u|p+1|v|q−1v

with initial condition and zero Dirichlet boundary condition. Using the concavity
method, we obtained sufficient conditions on the initial data with arbitrarily high
energy such that the solution blows up in finite time.
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1 Introduction
In this work, we study the following wave equations with nonlinear viscoelastic term⎧⎪⎪⎨

⎪⎪⎩
utt − �u +

∫ t
0 g(t − τ )�u(τ )dτ + ut = a1|v|q+1|u|p−1u, (x, t) ∈ � × (0,∞),

vtt − �v +
∫ t
0 g(t − τ )�v(τ )dτ + vt = a2|u|p+1|v|q−1v, (x, t) ∈ � × (0,∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), v(x, 0) = v0(x), vt(x, 0) = v1(x), x ∈ �,
u(x, t) = 0, v(x, t) = 0, x ∈ ∂�,

(1:1)

where Ω is a bounded domain of Rn with smooth boundary ∂Ω, p > 1, q > 1 and g is

a positive function. The wave equations (1.1) appear in applications in various areas of

mathematical physics (see [1]).

If the equations in (1.1) have not the viscoelastic term
∫ t
0 g(t − τ )dτ, the equations are

known as the wave equation. In this case, the equations have been extensively studied by

many people. We observe that the wave equation subject to nonlinear boundary damp-

ing has been investigated by the authors Cavalcanti et al. [2,3] and Vitillaro [4,5]. It is

important to mention other papers in connection with viscoelastic effects such as Aassila

et al. [6,7] and Cavalcanti et al. [8]. Furthermore, related to blow up of the solutions of

equations with nonlinear damping and source terms acting in the domain we can cite

the work of Alves and Cavalcanti [9], Cavalcanti and Domingos Cavalcanti [10]. As

regards non-existence of a global solution, Levine [11] firstly showed that the solutions

with negative initial energy are non-global for some abstract wave equation with linear

damping. Later Levine and Serrin [12] studied blow-up of a class of more generalized

abstract wave equations. Then Pucci and Serrin [13] claimed that the solution blows up

in finite time with positive initial energy which is appropriately bounded. In [14] Levine
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and Todorova proved that there exist some initial data with arbitrary positive initial

energy such that the corresponding solution to the wave equations blows up in finite

time. Then Todorova and Vitillaro [15] improved the blow-up result above. However,

they did not give a sufficient condition for the initial data such that the corresponding

solution blows up in finite time with arbitrary positive initial energy. Recently, for pro-

blem (1.1) with g ≡ 0 and m = 1, Gazzalo and Squassina [16] established the condition

for initial data with arbitrary positive initial energy such that the corresponding solution

blows up in finite time. Zeng et al. [17] studied blowup of solutions for the Kirchhoff

type equation with arbitrary positive initial energy.

Now we return to the problem (1.1) with g ≢ 0; in [18] Cavalcanti et al. first studied⎧⎨
⎩
utt − �u +

∫ t
0 g(t − τ )�u(τ )dτ + a(x)ut = 0, (x, t) ∈ � × (0,∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ �,
u(x, t) = 0, x ∈ ∂�,

and obtained an exponential decay rate of the solution under some assumption on

g(s) and a(x). At this point it is important to mention some papers in connection with

viscoelastic effects, among them, Alves and Cavalcanti [9], Aassila et al. [7], Cavalcanti

and Oquendo [19] and references therein. Then Messaoudi [20] obtained the global

existence of solutions for the viscoelastic equation, at same time he also obtained a

blow-up result with negative energy. Furthermore, he improved his blow-up result in

[21]. Recently, Wang and Wang [22] investigated the following problem⎧⎨
⎩
utt − �u +

∫ t
0 g(t − τ )�u(τ )dτ + ut = a1|u|p−1u, (x, t) ∈ � × (0,∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ �,
u(x, t) = 0, x ∈ ∂�,

and showed the global existence of the solutions if the initial data are small enough.

Moreover, they derived decay estimate for the energy functional. In [23] Wang estab-

lished the blow-up result for the above problem when the initial energy is high.

In this paper, motivated by the work of [23] and employing the so called concavity

argument which was first introduced by Levine (see [11,24]), our main purpose is to

establish some sufficient conditions for initial data with arbitrary positive initial energy

such that the corresponding solution of (1.1) blows up in finite time. To this, we first

rewrite the problem (1.1) to the following equivalent form
⎧⎪⎪⎨
⎪⎪⎩

αutt − α�u + α
∫ t
0 g(t − τ )�u(τ )dτ + αut = a3(p + 1)|v|q+1|u|p−1u, (x, t) ∈ � × (0,∞),

vtt − �v +
∫ t
0 g(t − τ )�v(τ )dτ + vt = a3(q + 1)|u|p+1|v|q−1v, (x, t) ∈ � × (0,∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), v(x, 0) = v0(x), vt(x, 0) = v1(x), x ∈ �,
u(x, t) = 0, v(x, t) = 0, x ∈ ∂�,

(1:2)

where

α =
a2(p + 1)
a1(q + 1)

and a3 =
a2

q + 1
.

We next state some assumptions on g(s) and real numbers p > 1, q > 1.

(A1) g Î C1([0, ∞)) is a non-negative and non-increasing function satisfying∫ ∞
0 g(τ )dτ < 1.
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(A2) The function e
t
2 g(t) is of positive type in the following sense:

∫ t

0
v(s)

∫ s

0
e
s−τ
2 g(s − τ )v(τ )dτ ds ≥ 0

for all v Î C1([0, ∞)) and t > 0.

(A3) If n = 1, 2, then 1 <p, q < ∞. If n ≥ 3, then

q < p + 1 <
n + 2
n − 2

or p < q + 1 <
n + 2
n − 2

,

p < q + 1 <
n + 2
n − 2

or q < p + 1 <
n + 2
n − 2

.

Remark 1.1. It is clear that g(t) = εe -t (0 < ε < 1) satisfies the assumptions (A1) and

(A2).

Based on the method of Faedo-Galerkin and Banach contraction mapping principle,

the local existence and uniqueness of the problem (1.2) have been established in

[8,18,25,26] as follows.

Theorem 1.1. Under the assumptions (A1)-(A3), let the initial data

(u0, v0) ∈ H1
0(�) × H1

0(�), (u1, v1) Î L2(Ω) × L2(Ω). Then the problem (1.2) has a

unique local solution

(u, v) ∈ C([0,T);H1
0(�)) × C([0,T);H1

0(�))

for the maximum existence time T, where T Î (0, ∞].

Our main blow-up result for the problem (1.2) with arbitrarily positive initial energy

is stated as follows.

Theorem 1.2. Under the assumptions (A1)-(A3), if
∫ ∞

0
g(τ )dτ <

p + q
p + q + 2

, and the

initial data (u0, v0) ∈ H1
0(�) × H1

0(�) and (u1, v1) Î L2(Ω) × L2(Ω) satisfy

E(0) > 0, (1:3)

I(u0, v0) < 0, (1:4)

∫
�

αu0u1 + v0v1dx ≥ 0, (1:5)

α||u0||22 + ||v0||22 >
2(p + q + 2)

[(p + q) − (p + q + 2)k]χ
E(0), (1:6)

then the solution of the problem (1.2) blows up in finite time T < ∞, it means

lim
t→T−

(α||u(t)||22 + ||v(t)||22) = ∞, (1:7)

where c is the constant of the Poincaré’s inequality on Ω, k =
∫ ∞
0 g(τ )dτ, energy

functional E(t) and I(u, v) are defined as

I(u, v) := α||∇u||22 + ||∇v||22 − a3(p + q + 2)
∫

�

|u|p+1|v|q+1dx, (1:8)
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E(t) :=
1
2
(α||ut(t, ·)||22 + ||vt(t, ·)||22) +

1
2
(1 −

∫ t

0
g(s)ds)(α||∇u(t, ·)||22 + ||∇v(t, ·)||22)

+
1
2
[α(g ◦ ∇u)(t) + (g ◦ ∇v)(t)] − a3

∫
�

|u|p+1|v|q+1dx,
(1:9)

and (g ◦ v)(t) =
∫ t
0 g(t − τ )||v(t, ·) − v(τ , ·)||22dτ.

The rest of this paper is organized as follows. In Section 2, we introduce some lem-

mas needed for the proof of our main results. The proof of our main results is pre-

sented in Section 3.

2 Preliminaries
In this section, we introduce some lemmas which play a crucial role in proof of our

main result in next section.

Lemma 2.1. E(t) is a non-increasing function.

Proof. By differentiating (1.9) and using (1.2) and (A1), we get

E′(t) =
1
2

∫ t

0
g′(t − τ )

∫
�

(α|∇u(τ ) − ∇u(t))|2 + |∇v(τ ) − ∇v(t))|2)dxdτ

−
∫

�

(α|ut|2 + |vt|2)dx − 1
2
(α||∇u(t, ·)||22 + ||∇v(t, ·)||22)g(t)

≤ 0.

(2:1)

Thus, Lemma 2.1 follows at once. At the same time, we have the following

inequality:

E(t) ≤ E(0) −
∫ t

0
(α||uτ ||22 + ||vτ ||22)dx. (2:2)

Lemma 2.2. Assume that g(t) satisfies assumptions (A1) and (A2), H(t) is a twice

continuously differentiable function and satisfies⎧⎪⎨
⎪⎩
H′′(t) +H′(t) > 2

∫ t

0
g(t − τ )

∫
�

(α∇u(τ , x)∇u(t, x) + ∇v(τ , x)∇v(t, x))dxdτ ,

H(0) > 0, H′(0) > 0,
(2:3)

for every t Î [0, T0), and (u(x, t), v(x, t)) is the solution of the problem (1.2).

Then the function H(t) is strictly increasing on [0, T0).

Proof. Consider the following auxiliary ODE⎧⎪⎨
⎪⎩
h′′(t) + h′(t) = 2

∫ t

0
g(t − τ )

∫
�

(α∇u(τ , x)∇u(t, x) + ∇v(τ , x)∇v(t, x))dxdτ ,

h(0) = H(0), h′(0) = 0,
(2:4)

for every t Î [0, T0).

It is easy to see that the solution of (2.4) is written as follows

h(t) = h(0)+2
∫ t

0

∫ ζ

0
eξ−ζ

∫ ξ

0
g(ξ − τ )

∫
�

(α∇u(ζ , x)∇u(τ , x) + ∇v(ζ , x)∇v(τ , x))dxdτdξdζ (2:5)

for every t Î [0, T0).
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By a direct computation, we obtain

h′(t) = 2
∫ t

0
eξ e−t

∫ ξ

0
g(ξ − τ )

∫
�

(α∇u(ξ , x)∇u(τ , x) + ∇v(ξ , x)∇v(τ , x))dxdτdξ

= 2αe−t
∫

�

∫ t

0
(e

ξ

2 ∇u(ξ , x))
∫ ξ

0
(e

ξ−τ

2 g(ξ − τ ))(e
τ
2∇u(τ , x))dτdξdx

+ 2e−t
∫

�

∫ t

0
(e

ξ

2∇v(ξ , x))
∫ ξ

0
(e

ξ−τ

2 g(ξ − τ ))(e
τ
2 ∇v(τ , x))dτdξdx

for every t Î [0, T0).

Because g(t) satisfies (A2), then h’(t) ≥ 0, which implies that h(t) ≥ h(0) = H(0).

Moreover, we see that H’(0) >h’(0).

Next, we show that

H′(t) > h′(t) for t ≥ 0. (2:6)

Assume that (2.6) is not true, let us take

t0 = min{t ≥ 0 : H′(t) = h′(t)}.

By the continuity of the solutions for the ODES (2.3) and (2.4), we see that t0 > 0

and H’ (t0) = h’ (t0), and have{
H′′(t) − h′′(t) +H′(t) − h′(t) > 0, t ∈ [0,T0),

H(0) − h(0) = 0, H′(0) − h′(0) > 0,

which yields

H′(t0) − h′(t0) > e−t0 (H′(0) − h′(0)) > 0.

This contradicts H’(t0) = h’(t0). Thus, we have H’(t) >h’ (t) ≥ 0, which implies our

desired result. The proof of Lemma 2.2 is complete.

Lemma 2.3. Suppose that (u0, v0) ∈ H1
0(�) × H1

0(�), (u1, v1) Î L2(Ω) × L2(Ω) satisfies∫
�

αu0u1 + v0v1dx ≥ 0. (2:7)

If the local solution (u(t), v(t)) of the problem (1.2) exists on [0, T) and satisfies

I(u(t), v(t)) < 0, (2:8)

then H(t) = α||u(t, ·)||22 + ||v(t, ·)||22 is strictly increasing on [0, T ).

Proof. Since I(u, v) := α||∇u||22 + ||∇v||22 − a3(p + q + 2)
∫
�

|u|p+1|v|q+1dx < 0, and (u(t), v(t))

is the local solution of problem (1.2), by a simple computation, we have

1
2
dH
dt

=
∫

�

(αuut + vvt)dx,

1
2
d2H
dt2

=
∫

�

(α|ut|2 + |vt|2)dx +
∫

�

(αuutt + vvtt)dx

=
∫

�

(α|ut|2 + |vt|2)dx −
∫

�

(αuut + vvt)dx + a3(p + q + 2)
∫

�

|u|p+1|v|q+1dx

−
∫

�

(α|∇u|2 + |∇v|2)dx +
∫ t

0
g(t − τ )

∫
�

(α∇u(τ , x)∇u(t, x) + ∇v(τ , x)∇v(t, x))dxdτ

> −
∫

�

(αuut + vvt)dx +
∫ t

0
g(t − τ )

∫
�

(α∇u(τ , x)∇u(t, x) + ∇v(τ , x)∇v(t, x))dxdτ ,
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which yields

1
2

(
d2H
dt2

+
dH
dt

)
>

∫ t

0
g(t − τ )

∫
�

(α∇u(τ , x)∇u(t, x) + ∇v(τ , x)∇v(t, x))dxdτ .

Therefore, by Lemma 2.2, the proof of Lemma 2.3 is complete.

Lemma 2.4. If (u0, v0) ∈ H1
0(�) × H1

0(�), (u1, v1) Î L2(Ω) × L2(Ω) satisfy the

assumptions in Theorem 1.2, then the solution (u(x, t), v(x, t)) of problem (1.2) satisfies

I(u(t, x), v(t, x)) < 0, (2:9)

α||u(t, ·)||22 + ||v(t, ·)||22 >
2(p + q + 2)

((p + q) − (p + q + 2)k)χ
E(0) (2:10)

for every t Î [0, T).

Proof. We will prove the lemma by a contradiction argument. First we assume that

(2.9) is not true over [0, T), it means that there exists a time t1 such that

t1 = min{t ∈ (0,T) : I(u(t, x), v(t, x)) = 0} > 0. (2:11)

Since I (u(t, x), v(t, x)) < 0 on [0, t1), by Lemma 2.3 we see that

H(t) = α||u(t, ·)||22 + ||v(t, ·)||22 is strictly increasing over [0, t1), which implies

H(t) = α||u(t, ·)||22 + ||v(t, ·)||22 > α||u0||22 + ||v0||22 >
2(p + q + 2)

((p + q) − (p + q + 2)k)χ
E(0).

By the continuity of H(t) = α||u(t, ·)||22 + ||v(t, ·)||22 on t, we have

H(t1) = α||u(t1, ·)||22 + ||v(t1, ·)||22 >
2(p + q + 2)

((p + q) − (p + q + 2)k)χ
E(0). (2:12)

On the other hand, by (2.2) we get

1
2

(
1 −

∫ t1

0
g(s)ds

)
(α||∇u(t1, ·)||22 + ||∇v(t1, ·)||22) − a3

∫
�

|u|p+1|v|q+1dx ≤ E(0).(2:13)

It follows from (1.9) and (2.11) that

(
1 − k
2

− 1
p + q + 2

)(α||∇u(t1, ·)||22 + ||∇v(t1, ·)||22) ≤ E(0). (2:14)

Thus, by the Poincaré’s inequality and k <
p+q

p+q+2, we see that

H(t1) = α||u(t1, ·)||22 + ||v(t1, ·)||22 ≤ 2(p + q + 2)
((p + q) − (p + q + 2)k)χ

E(0). (2:15)

Obviously, (2.15) contradicts to (2.12). Thus, (2.9) holds for every t Î [0, T).

By Lemma 2.3, it follows that H(t) = α||u(t, ·)||22 + ||v(t, ·)||22 is strictly increasing on

[0, T), which implies

H(t) = α||u(t, ·)||22 + ||v(t, ·)||22 > α||u0||22 + ||v0||22 >
2(p + q + 2)

((p + q) − (p + q + 2)k)χ
E(0)

for every t Î [0, T). The proof of Lemma 2.4 is complete.

Ma et al. Boundary Value Problems 2011, 2011:6
http://www.boundaryvalueproblems.com/content/2011/1/6

Page 6 of 10



3 The proof of Theorem 1.2
To prove our main result, we adopt the concavity method introduced by Levine, and

define the following auxiliary function:

G(t) =α||u(t, ·)||22 + ||v(t, ·)||22 +
∫ t

0
(α||u(τ , ·)||22 + ||v(τ , ·)||22)dτ

+ (t2 − t)(α||u0||22 + ||v0||22) + a(t3 + t)2,

(3:1)

where t2, t3 and a are certain positive constants determined later.

Proof of Theorem 1.2. By direct computation, we obtain

G′(t) = 2(α(u, ut) + (v, vt)) + 2
∫ t

0
(α(u, uτ ) + (v, vτ ))dτ + 2a(t3 + t), (3:2)

and

1
2
G′′ =

∫
�

(αu2t + v2t )dx + a3(p + q + 2)
∫

�

|u|p+1|v|q+1dx −
∫

�

(α|∇u|p+1 + |∇v|q+1)dx

+
∫ t

0
g(t − τ )

∫
�

(α∇u(τ , x)∇u(t, x) + ∇v(τ , x)∇v(t, x))dxdτ + a

=
∫

�

(αu2t + v2t )dx + a3(p + q + 2)
∫

�

|u|p+1|v|q+1dx −
∫

�

(α|∇u|p+1 + |∇v|q+1)dx + a

+ α

∫ t

0
g(t − τ )

∫
�

∇u(t, x)(∇u(τ , x) − ∇u(t, x))dxdτ + α

∫ t

0
g(t − τ )

∫
�

|∇u(t, x)dx|2dxdτ

+
∫ t

0
g(t − τ )

∫
�

∇v(t, x)(∇v(τ , x) − ∇v(t, x))dxdτ +
∫ t

0
g(t − τ )

∫
�

|∇v(t, x)dx|2dxdτ .

(3:3)

By the Young’s inequality, for any ε > 0, we have
∫ t

0
g(t − τ )

∫
�

∇u(t, x)|∇u(τ , x) − ∇u(t, x)|dxdτ ≤ 1
2ε

∫ t

0
g(τ )dτ ||∇u(t, ·)||22 +

ε

2
(g ◦ ∇u)(t),∫ t

0
g(t − τ )

∫
�

∇v(t, x)|∇v(τ , x) − ∇v(t, x)|dxdτ ≤ 1
2ε

∫ t

0
g(τ )dτ ||∇v(t, ·)||22 +

ε

2
(g ◦ ∇v)(t).

Taking ε = 1
2, by (1.6), (2.2), (3.3), (3.4), Lemma 2.3 and the Poincaré’s in-equality, we

obtain

G′′ ≥ (p + q + 4)
∫

�

(αu2t + v2t )dx + ((p + q) − (p + q +
1
ε
)
∫ t

0
g(τ )dτ )(α||∇u||22 + ||∇v||22)

+ (p + q + 2 − ε)(α(g ◦ ∇v)(t) + (g ◦ ∇v)(t)) − 2(p + q + 2)E(t) + 2a

≥ (p + q + 4)
∫

�

(αu2t + v2t )dx + ((p + q) − (p + q +
1
ε
)k)(α||∇u||22 + ||∇v||22)

+ (p + q + 2 − ε) (α(g ◦ ∇v)(t) + (g ◦ ∇v)(t)) − 2(p + q + 2)E(0)

+ 2(p + q + 2)
∫ t

0
(α||uτ ||22 + ||vτ ||22)dx + 2a

≥ (p + q + 4)
∫

�

(αu2t + v2t )dx + 2(p + q + 2)
∫ t

0
(α||uτ ||22 + ||vτ ||22)dx + 2a

+ ((p + q) − (p + q + 2)k)χ(α||u0||22 + ||v0||22) − 2(p + q + 2)E(0),

(3:5)

which means that G“(t) > 0 for every t Î (0, T).

Since G’(0) ≥ 0 and G(0) ≥ 0, thus we obtain that G’ (t) and G(t) are strictly increas-

ing on [0, T).

It follows from (1.6) and k <
p+q

p+q+2 that

((p + q) − (p + q + 2)k)χ(α||u0||22 + ||v0||22) − 2(p + q + 2)E(0) > 0.
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Thus, we can choose a to satisfy

(p + q + 2)a < ((p + q) − (p + q + 2)k)χ(α||u0||22 + ||v0||22) − 2(p + q + 2)E(0).

Set

A := α||u(t, ·)||22 + ||v(t, ·)||22 +
∫ t

0
(α||u(τ , ·)||22 + ||v(τ , ·)||22)dτ + a(t3 + t)2,

B :=
1
2
G′(t),

C := α||ut(t, ·)||22 + ||vt(t, ·)||22 +
∫ t

0
(α||uτ (τ , ·)||22 + ||vτ (τ , ·)||22)dτ + a.

By (3.2) and a simple computation, for all s Î R, we have

As2 − 2Bs + C = α

∫
�

(su(t, x) − ut(t, x))
2dx +

∫
�

(sv(t, x) − vt(t, x))
2dx

+ α

∫ t

0
||su(τ , ·) − uτ (τ , ·)||22dτ +

∫ t

0
||sv(τ , ·) − vτ (τ , ·)||22dτ + a(s(t3 + t) − 1)2

≥ 0,

which implies that B2 - AC ≤ 0.

Since we assume that the solution (u(t, x), v(t, x)) to the problem (1.2) exists for

every t Î [0, T), then for t Î [0, T), one has

G(t) ≥ A, G′′(t) ≥ (p + q + 4)C

and

G′′(t)G(t) − p + q + 4
4

(G′(t))2 ≥ (p + q + 4)(AC − B2),

which yields

G′′(t)G(t) − p + q + 4
4

(G′(t))2 ≥ 0.

Let β = p+q
4 > 0. As p+q+4

4 > 1, we see that

d
dt

(G−β(t)) = −βG−β−1G′ < 0,

d2

dt2
(G−β(t)) = −β(−β − 1)G−β−2G′2 − βG−β−1G′′

= −βG−β−2[G′′G − (1 + β)G′2]
≤ 0

(3:6)

for every t Î [0, T), which means that the function G -b is concave.

Let t2 and t3 satisfy

t3 ≥ max
{

4
a(p + q)

(α||u0||22 + ||v0||22) − 1
a

∫
�

(αu0u1 + v0v1)dx, 0
}
,

t2 ≥ 1 +
4

p + q
t3,

from which, we deduce that

t2 ≥ 4G(0)
(p + q)G′(0)

.
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Since G -b is a concave function and G(0) > 0, we obtain that

G−β ≤ G(0) − βG′(0)t
G1+β(0)

, (3:7)

thus

G ≥
[

G1+β(0)
G(0) − βG′(0)t

]1/β

. (3:8)

Therefore, there exists a finite time T ≤ 4G(0)
(p+q)G′(0) ≤ t2 such that

lim
t→T−

α||u||22 + ||v||22 +
∫ t

0
(α||uτ (τ , x)||22 + ||vτ (τ , x)|22)dτ = ∞,

i.e. lim
t→T−

α||u||22 + ||v||22 = ∞.

The proof of Theorem 1.2 is complete.
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