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Abstract
In this paper, we investigate the existence of positive solutions for a class of
third-order nonlocal boundary value problems at resonance. Our results are based on
the Leggett-Williams norm-type theorem, which is due to O’Regan and Zima. An
example is also included to illustrate the main results.
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1 Introduction
This paper is devoted to the existence of positive solutions for the following third-order
nonlocal boundary value problem (BVP for short):

⎧⎨
⎩x′′′(t) + f (t,x(t)) = ,  < t < ,

x() =
∑m–

i= αix(ξi), x′() = x′() = ,
(.)

where  < ξ < ξ < · · · < ξm– < , αi ∈ R+ (i = , , . . . ,m– ) and
∑m–

i= αi = . The problem
(.) happens to be at resonance in the sense that the associated linear homogeneous BVP

⎧⎨
⎩–x′′′(t) = ,  < t < ,

x() =
∑m–

i= αix(ξi), x′() = x′() = ,
(.)

has nontrivial solutions. Clearly, the resonant condition is
∑m–

i= αi = . Third-order dif-
ferential equations arise in a variety of different areas of applied mathematics and physics,
e.g., in the deflection of a curved beam having a constant or varying cross section, a three-
layer beam, electromagnetic waves or gravity-driven flows and so on [].
Recently, the existence of positive solutions for third-order two-point or multi-point

BVPs has received considerable attention; we mention a few works: [–] and the refer-
ences therein. However, all of the papers on third-order BVPs focused their attention on
the positive solutions with non-resonance cases. It is well known that the problem of the
existence of positive solutions to BVPs is very difficult when the resonant case is consid-
ered. Only few papers deal with the existence of positive solutions to BVPs at resonance,
and just to second-order BVPs [–]. It is worth mentioning that Infante and Zima []
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studied the existence of positive solutions for the second-orderm-point BVP

⎧⎨
⎩–x′′(t) + f (t,x(t)) = ,  < t < ,

x′() = , x() =
∑m–

i= αix(ηi)
(.)

by means of the Leggett-Williams norm-type theorem due to O’Regan and Zima [],
where  < η < η < · · · < ηm– < , αi ∈ R+ (i = , , . . . ,m – ) and

∑m–
i= αi = .

However, third-order or higher-order derivatives do not have the convexity; to the best
of our knowledge, no results are available for the existence of positive solutions for third-
order or higher- order BVPs at resonance. The main purpose of this paper is to fill the
gap in this area. Motivated greatly by the above-mentioned excellent works, in this paper
we will investigate the third-order nonlocal BVP (.) at resonance, where  < ξ < ξ <
· · · < ξm– < , αi ∈ R+ (i = , , . . . ,m – ) and

∑m–
i= αi = . Some new existence results of

at least one positive solution are established by applying the Leggett-Williams norm-type
theorem due to O’Regan and Zima []. An example is also included to illustrate the main
results.

2 Some definitions and a fixed point theorem
For the convenience of the reader, we present here the necessary definitions and a new
fixed point theorem due to O’Regan and Zima.

Definition . Let X and Z be real Banach spaces. A linear operator L : domL ⊂ X → Z
is called a Fredholm operator if the following two conditions hold:

(i) KerL has a finite dimension, and
(ii) ImL is closed and has a finite codimension.

Throughout the paper, we will assume that
◦ L is a Fredholm operator of index zero, that is, ImL is closed and dimKerL =

codim ImL < ∞.
From Definition ., it follows that there exist continuous projectors P : X → X and

Q : Z → Z such that

ImP =KerL; KerQ = ImL; X =KerL⊕KerP; Z = ImL⊕ ImQ

and that the isomorphism

L|domL∩KerP : domL∩KerP → ImL

is invertible. We denote the inverse of L|domL∩KerP by KP : ImL → domL∩KerP. The gen-
eralized inverse of L denoted by KP,Q : Z → domL ∩ KerP is defined by KP,Q = KP(I –Q).
Moreover, since dim ImQ = codim ImL, there exists an isomorphism J : ImQ → KerL.
Consider a nonlinear operator N : X → Z. It is known (see [, ]) that the coincidence
equation Lx =Nx is equivalent to

x = (P + JQN)x +KP,QNx.

http://www.boundaryvalueproblems.com/content/2012/1/102
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Definition . Let X be a real Banach space. A nonempty closed convex set P is said to
be a cone provided that
() λx ∈ P for all x ∈ P and λ ≥ , and
() x, –x ∈ P implies x = θ .

Note that every cone P ⊂ X induces a partial order ≤ in X by defining x ≤ y if and only
if y – x ∈ P. The following property is valid for every cone in a Banach space.

Lemma . ([]) Let P be a cone in X. Then for every u ∈ P\{θ}, there exists a positive
number σ (u) such that ‖x + u‖ ≥ σ (u)‖x‖ for all x ∈ P.

Let γ : X → P be a retraction, that is, a continuous mapping such that γ (x) = x for all
x ∈ P. Set

	 = P + JQN +KP,QN

and

	γ = 	 ◦ γ .

Our main results are based on the following theorem due to O’Regan and Zima.

Theorem . ([]) Let C be a cone in X and let 
, 
 be open bounded subsets of X with

 ⊂ 
 and C ∩ (
\
) = θ . Assume that ◦ is satisfied and if the following assumptions
hold:
(H) QN : X → Z is continuous and bounded, and KP,Q : X → X is compact on every

bounded subset of X ;
(H) Lx = λNx for all x ∈ C ∩ ∂
 ∩ domL and λ ∈ (, );
(H) γ maps subsets of 
 into bounded subsets of C;
(H) dB([I – (P + JQN)γ ]|KerL,KerL∩ 
, θ ) = , where dB stands for the Brouwer

degree;
(H) there exists u ∈ C\{θ} such that ‖x‖ ≤ σ (u)‖	(x)‖ for x ∈ C(u)∩ ∂
, where

C(u) = {x ∈ C : μu ≤ x for some μ > } and σ (u) is such that
‖x + u‖ ≥ σ (u)‖x‖ for all x ∈ C;

(H) (P + JQN)γ (∂
) ⊂ C;
(H) 	γ (
\
) ⊂ C,

then the equation Lx =Nx has a solution in the set C ∩ (
\
).

3 Main results
For simplicity of notation, we set

hi(s) =

⎧⎨
⎩

ξis–ξi s–s


 ,  ≤ s ≤ ξi,
ξi (–s)

 , ξi ≤ s ≤ ,

where i = , , . . . ,m – , and

G(t, s) =

⎧⎨
⎩

(–s)(s–s+t)
 – (t–s)

 + t–t+

∑m–

i= αi(ξi –ξ

i )

∑m–
i= αihi(s),  ≤ s≤ t ≤ ,

(–s)(s–s+t)
 + t–t+


∑m–

i= αi(ξi –ξ

i )

∑m–
i= αihi(s),  ≤ t ≤ s ≤ .
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It is easy to check that G(t, s)≥ , t, s ∈ [, ], and since  ≤ hi(s) ≤ 
 s( – s), we get

 –
δ∑m–

i= αi(ξ 
i – ξ 

i )

m–∑
i=

αihi(s)≥ , s ∈ [, ]

for every δ ∈ (, ξ

 (–ξ)

 ]. We also let δ :=min{ ξ (–ξ) , 
maxt,s∈[,]G(t,s) , }.

We can now state our result on the existence of a positive solution for the BVP (.).

Theorem . Assume that f : [, ]× [, +∞) → R is continuous and
() there exists a constantM ∈ (,∞) such that f (t,x) > –δx for all (t,x) ∈ [, ]× [,M];
() there exist r ∈ (,M), t ∈ [, ], a ∈ (, ], b ∈ (, ) and continuous functions

g : [, ] → [,∞), h : (, r] → [,∞) such that f (t,x)≥ g(t)h(x) for
(t,x) ∈ [, ]× (, r], h(x)

xa is non-increasing on (, r] with

h(r)
(r)a

∫ 


G(t, s)g(s)ds≥  – b

ba
.

() f∞ = lim infx→+∞ mint∈[,] f (t,x)
x < .

Then the resonant BVP (.) has at least one positive solution on [, ].

Proof Consider the Banach spaces X = Z = C[, ] with ‖x‖ =maxt∈[,] |x(t)|.
Let L : domL ⊂ X → Z and N : X → Z with

domL =

{
x ∈ X : x′′′ ∈ C[, ],x() =

m–∑
i=

αix(ξi),x′() = x′() = 

}

be given by (Lx)(t) = –x′′′(t) and (Nx)(t) = f (t,x(t)) for t ∈ [, ]. Then

KerL =
{
x ∈ domL : x(t)≡ c on [, ]

}
and

ImL =

{
y ∈ Z :

m–∑
i=

αi

∫ 


hi(s)y(s)ds = 

}
.

Clearly, dimKerL =  and ImL is closed. It follows from Z = Z\ ImL that

Z =

{
y ∈ Z : y =



∑m–

i= αi(ξ 
i – ξ 

i )

m–∑
i=

αi

∫ 


hi(s)y(s)ds, y ∈ Z

}
.

In fact, for each y ∈ Z, we have

m–∑
i=

αi

∫ 


hi(s)

(
y(s) – y(s)

)
ds

=

(
 –

∑m–
i= αi(ξ 

i – ξ 
i )

m–∑
i=

αi

∫ 


hi(s)ds

)m–∑
i=

αi

∫ 


hi(s)y(s)ds = ,
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which shows that y – y ∈ ImL, which together with Z ∩ ImL = {θ} implies that Z = Z ⊕
ImL. Note that dimZ =  and thus codim ImL = . Therefore, L is a Fredholm operator of
index zero.
Next, define the projections P : X → X by

Px =
∫ 


x(s)ds

and Q : Z → Z by

Qy =
∑m–

i= αi(ξ 
i – ξ 

i )

m–∑
i=

αi

∫ 


hi(s)y(s)ds.

Clearly, ImP = KerL, KerQ = ImL and KerL = {x ∈ X :
∫ 
 x(s)ds = }. Note that for y ∈

ImL, the inverse KP of LP is given by

(KPy)(t) =
∫ 


k(t, s)y(s)ds,

where

k(t, s) =

⎧⎨
⎩

(–s)(s–s+t)
 – (t–s)

 ,  ≤ s ≤ t ≤ ,
(–s)(s–s+t)

 ,  ≤ t ≤ s ≤ .

Considering that f can be extended continuously to [, ] × R, it is easy to check that
QN : X → Z is continuous and bounded, andKP,QN : X → X is compact on every bounded
subset of X, which ensures that (H) of Theorem . is fulfilled.
Define the cone of nonnegative functions

C =
{
x ∈ X : x(t)≥ , on [, ]

}
.

Let


 =
{
x ∈ X : b‖x‖ < ∣∣x(t)∣∣ < r, t ∈ [, ]

}
and


 =
{
x ∈ X : ‖x‖ <M

}
.

Clearly, 
 and 
 are bounded and open sets and


 =
{
x ∈ X : b‖x‖ ≤ ∣∣x(t)∣∣ ≤ r, t ∈ [, ]

} ⊂ 
.

Moreover, C ∩ (
\
) = θ . Let J = I and (γ x)(t) = |x(t)| for x ∈ X. Then γ is a retraction
andmaps subsets of
 into bounded subsets ofC, whichmeans that (H) of Theorem .
holds.
Let  < r′ =min{r, r}, where r and r will be defined in the following proof.

http://www.boundaryvalueproblems.com/content/2012/1/102
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Suppose that there exist x ∈ C ∩ ∂
 ∩ domL and λ ∈ (, ) such that Lx = λNx.
Then

x′′′
 (t) + λf

(
t,x(t)

)
= .

Let x(t) = ‖x‖ =maxt∈[,] |x(t)| =M. Now, we verify that t =  and t = .
First, we show t = . Suppose, on the contrary, that x(t) achieves maximum value M

only at t = . Then x() =
∑m–

i= αix(ξi) in combination with
∑m–

i= αi =  yields that
max≤i≤m–{x(ξi)} ≥ M, which is a contradiction.
Next, we show t = . It follows from x′

() = x′
() =  that there is a constant η ∈ (, )

such that x′′
(η) = , and thus x′′

(t) = –λ
∫ t
η
f (s,x(s))ds. By the condition () we have, for

x ≥ r′ (M ≥ r′ > r > ), there exists σ ∈ (, δ) such that

f (t,x)≤ –σx, ∀t ∈ [, ]. (.)

Suppose, on the contrary, that x() =M. The step is divided into two cases:
Case . Assume that x(t) >  on [η, ]. Let r =mint∈[η,] x(t). Then (.) yields

x′′
() = –λ

∫ 

η

f
(
s,x(s)

)
ds≥ λσ

∫ 

η

x(s)ds > ,

which implies x′
(t) is increasing close to . This together with x′

() =  induces x′
(t) < 

(t close to ), that is, x(t) is decreasing close to , which contradicts x() =M.
Case . Assume that x(t) has zero points on [η, ]; we may choose η′ nearest to  with

x(η′) = . Then there is a constant η ∈ (η′, ) such that x′′
(η) = . Similar to the above

arguments, we easily get a contradiction too.
Hence, we can choose t ∈ (, ) so that x(t) =M. This gives x′

(t) =  and x′′
(t) ≤ .

By x ∈ domL, we know x(t) ≥  and x′
() = . Similarly, we also divide the part of the

proof into two cases.
Case . If x(t) >  on [, t], then there is a constant η ∈ (, t) such that x′′

(η) = . Thus
we have

x′′
(t) = –λ

∫ t

η

f
(
s,x(s)

)
ds.

Let r =mint∈[η,t] x(t). Then it follows from (.) that

 ≥ x′′
(t) = –λ

∫ t

η

f
(
s,x(s)

)
ds ≥ λσ

∫ t

η

x(s)ds > ,

which is a contradiction.
Case . If x(t) has zero points on [, t], we may choose η′ nearest to t with x(η′) = .

Then there is a constant η ∈ (η′, t) such that x′′
(η) = . Thus we have

x′′
(t) = –λ

∫ t

η

f
(
s,x(s)

)
ds.

http://www.boundaryvalueproblems.com/content/2012/1/102


Zhang and Sun Boundary Value Problems 2012, 2012:102 Page 7 of 10
http://www.boundaryvalueproblems.com/content/2012/1/102

Let r =mint∈[η,t] x(t). Then it follows from (.) that

 ≥ x′′
(t) = –λ

∫ t

η

f
(
s,x(s)

)
ds ≥ λσ

∫ t

η

x(s)ds > ,

which is a contradiction. Therefore, (H) of Theorem . holds.
Consider x ∈KerL∩ 
. Then x(t)≡ c on [, ]. Similar to [], we define

H(x,λ) = x – λ|x| – λ∑m–
i= αi(ξ 

i – ξ 
i )

m–∑
i=

αi

∫ 


hi(s)f

(
s, |x|)ds,

x ∈KerL∩ 
 and λ ∈ [, ].

Suppose H(x,λ) = . Then in view of (), we obtain

c = λc +
λ∑m–

i= αi(ξ 
i – ξ 

i )

m–∑
i=

αi

∫ 


hi(s)f

(
s, |c|)ds

≥ λc –
λ∑m–

i= αi(ξ 
i – ξ 

i )

m–∑
i=

αi

∫ 


hi(s)δ|c|ds≥ λ|c|( – δ) ≥ .

Hence, H(x,λ) =  implies c≥ . Furthermore, if H(M,λ) = , then we have

 ≤ M( – λ) =
λ∑m–

i= αi(ξ 
i – ξ 

i )

m–∑
i=

αi

∫ 


hi(s)f (s,M)ds,

contradicting (.). Thus H(x,λ) =  for x ∈ ∂
 and λ ∈ [, ]. Therefore,

dB
(
H(x, ),KerL∩ 
, θ

)
= dB

(
H(x, ),KerL∩ 
, θ

)
.

However,

dB
(
H(x, ),KerL∩ 
, θ

)
= dB(I,KerL∩ 
, θ ).

This gives

dB
([
I – (P + JQN)γ

]|KerL,KerL∩ 
, θ
)
= dB

(
H(x, ),KerL∩ 
, θ

) = ,

which shows that (H) of Theorem . holds.
Let x ∈ 
\
 and t ∈ [, ]. Then

(	γ x)(t)

=
∫ 



∣∣x(s)∣∣ds + ∑m–
i= αi(ξ 

i – ξ 
i )

m–∑
i=

αi

∫ 


hi(s)f

(
s,

∣∣x(s)∣∣)ds

+
∫ 


k(t, s)

[
f
(
s,

∣∣x(s)∣∣) – ∑m–
i= αi(ξ 

i – ξ 
i )

m–∑
i=

αi

∫ 


hi(τ )f

(
τ ,

∣∣x(τ )∣∣)dτ

]
ds

=
∫ 



∣∣x(s)∣∣ds + ∫ 


G(t, s)f

(
s,

∣∣x(s)∣∣)ds.

http://www.boundaryvalueproblems.com/content/2012/1/102
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From (), we know that

(	γ )(t) ≥
∫ 



∣∣x(s)∣∣ds – δ

∫ 


G(t, s)

∣∣x(s)∣∣ds
=

∫ 



(
 – δG(t, s)

)∣∣x(s)∣∣ds≥ .

Hence 	γ (
\
) ⊂ C. Moreover, for x ∈ ∂
, we have

(P + JQN)γ x =
∫ 



∣∣x(s)∣∣ds + ∑m–
i= αi(ξ 

i – ξ 
i )

m–∑
i=

αi

∫ 


hi(s)f

(
s,

∣∣x(s)∣∣)ds

≥
∫ 



[
 –

δ

∑m–

i= αi(ξ 
i – ξ 

i )

m–∑
i=

αihi(s)

]∣∣x(s)∣∣ds≥ ,

which shows that (P + JQN)γ (∂
) ⊂ P. These ensure that (H), (H) of Theorem .
hold. It remains to show that (H) is satisfied.
Taking u(t)≡  on [, ] and σ (u) = , we confirm that

u ∈ C\{θ}, C(u) =
{
x ∈ C : x(t) >  on [, ]

}
.

Let x ∈ C(u)∩ ∂
. Then we have x(t) > , t ∈ [, ],  < ‖x‖ < r and x(t)≥ b‖x‖, t ∈ [, ].
Therefore, in view of (), for all x ∈ C(u)∩ ∂
, we obtain

(	x)(t) =
∫ 


x(s)ds +

∫ 


G(t, s)f

(
s,x(s)

)
ds

≥ b‖x‖ +
∫ 


G(t, s)g(s)h

(
x(s)

)
ds

= b‖x‖ +
∫ 


G(t, s)g(s)

h(x(s))
xa(s)

xa(s)ds

≥ b‖x‖ + h(r)
(r)a

∫ 


G(t, s)g(s)xa(s)ds

≥ b‖x‖ + h(r)
(r)a

∫ 


G(t, s)g(s)ba‖x‖a ds

≥ b‖x‖ + ( – b)‖x‖ = ‖x‖.

That is, ‖x‖ ≤ σ (u)‖	x‖ for all x ∈ C(u)∩ ∂
, which shows that (H) of Theorem .
holds.
Summing up, all the hypotheses of Theorem . are satisfied. Therefore, the equation

Lx = Nx has a solution x ∈ C ∩ (
\
). And so, the resonant BVP (.) has at least one
positive solution on [, ]. �

4 An example
Consider the BVP⎧⎨

⎩x′′′(t) + f (t,x(t)) = ,  < t < ,

x() = x(  ), x′() = x′() = .
(.)

http://www.boundaryvalueproblems.com/content/2012/1/102
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Here α = , ξ = 
 , g(t) = – 

 (t
 – t – ), h(x) =

√
x +  and

f (t,x) =

⎧⎨
⎩– 

 (t
 – t – )(x – x + )

√
x + , t ∈ [, ],x ∈ [, ],

– 
 (t

 – t – )( – 


√
x – )

√
x + , t ∈ [, ],x ∈ (, +∞).

By a simple computation, we get

δ =


,




≤ g(t) ≤ 


, t ∈ [, ], x – x + ≥ –x, x ∈ [, ].

We may chooseM = , r = 
 , t = , a = , b = 

 . It is easy to check
() f (t,x) > – 

x for all (t,x) ∈ [, ]× [, ];
() f (t,x)≥ g(t)h(x) for (t,x) ∈ [, ]× (,  ],

√
x+
x is non-increasing on (,  ] with

h(r)
(r)a

∫ 


G(, s)g(s)ds≥ 

√



≥ 


=
 – b
ba

;

() f∞ = lim infx→+∞ mint∈[,] f (t,x)
x = – 

 .
Thus, all the conditions of Theorem . are satisfied. Then the resonant problem (.)

has at least one positive solution on [, ].
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