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Abstract
The paper investigates the radiation effect on the magnetohydrodynamic Newtonian
fluid flow over an exponentially stretching sheet. The effects of frictional heating and
viscous dissipation on the heat transport are taken into account. The governing
partial differential equations are transformed into ordinary differential equations using
a suitable similarity transformation. Zero-order analytical solutions of the momentum
equation and confluent hypergeometric solutions of heat and mass transport
equations are obtained. The accuracy of analytical solutions is verified by numerical
solutions obtained using a shooting technique that uses a Runge-Kutta-Felhberg
integration scheme and a Newton-Raphson correction scheme. The effects of the
radiation parameter, the magnetic parameter, Gebhart and Schmidt numbers on the
momentum, heat and mass transports are discussed. The skin friction and heat and
mass transfer coefficients for various physical parameters are discussed.

1 Introduction
The study of laminar boundary layer flow over a stretching sheet has received consider-
able attention in the recent past due to its immense application in industry, for example,
in extrusion processes such as the polymer extrusion from a dye and wire drawing. Other
engineering applications of the stretching sheet problem include polymer sheet extrusion
from a dye, drawing, tinning and annealing of copper wires, glass fiber and paper produc-
tion, the cooling of ametallic plate in a cooling bath and so on. There has been tremendous
amount of work on the stretching sheet problem in the past several decades (see Crane
[], Gupta and Gupta [], Grubka and Bobba [], Dutta and Gupta [], Siddappa and Abel
[], Chen and Char [], Laha et al. [], Chakrabarti and Gupta [], Anderson et al. [],
Siddheshwar and Mahabaleswar [], Abel and Mahesha [], Abel et al. [] and the ref-
erences therein).
The above studies concern the linear stretching sheet problem but most of the practical

situations involve a non-linear stretching sheet such as an exponential one. With this in
mind, several authors have considered the velocity of the sheet to vary exponentially with
the distance from the slit. Elbashbeshy [] was among the first to study the exponentially
stretching sheet problem.He considered a perforated sheet and examined the effect of wall
mass suction on the flow and heat transfer over an exponentially stretching surface. Using
a suitable similarity transformation, he transformed the momentum equation into a non-
linear Riccati type equation and solved it iteratively. Ishak [] studied theMHDboundary
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layer flow due to an exponentially stretching sheet with radiation effect. He found that the
local heat transfer rate at the surface decreased with increasing values of themagnetic and
radiation parameters. The flow and heat transfer from an exponentially stretching surface
was considered by Magyari and Keller []. They examined the heat and mass transfer
characteristics and compared with the well-known results of the power-law models. San-
jayanand and Khan [] studied the heat andmass transfer in a viscoelastic boundary layer
flow over an exponentially stretching sheet. They found that the viscoelastic parameter
enhances the thermal boundary layer thickness. The effect of viscous dissipation on the
mixed convection heat transfer from an exponentially stretching surface was studied by
Partha et al. []. They observed a rapid growth in the non-dimensional skin friction co-
efficient with the mixed convection parameter. The influence of thermal radiation on the
boundary layer flow due to an exponentially stretching sheet is studied by Sajid and Hayat
[]. Khan [] presented an elegant solution of the viscoelastic boundary layer flow over
an exponentially stretching sheet in terms of Whittaker’s function.
The characteristics desired of the final product in an extrusion process depend on the

rate of stretching and cooling. Hence, it is very important to have a controlled cooling en-
vironment where the flow over the stretching sheet can be regulated by external agencies
like a magnetic field. An exponential variation of a magnetic field is used, among other
applications, to determine the diamagnetic susceptibility of plasma. Steenbeck [] de-
termined the diamagnetic susceptibility of a cylindrical plasma for axial magnetic fields
with various gas pressure and magnetic field strengths. Tonks [] studied the effects of a
magnetic field in the plasma of an arc. Pavlov [] considered the magnetohydrodynamic
flow of an incompressible viscous fluid over a linearly stretching surface. Sarpakaya []
extended Pavlov’s work to non-Newtonian fluids. Subsequent studies by Andersson [],
Lawrence andRao [], Abel et al. [], Cortell [] concerned themagnetohydrodynamic
flow of viscoelastic liquids over a stretching sheet. Radiation effects on MHD flow past
an exponentially accelerated isothermal vertical plate with uniform mass diffusion in the
presence of a heat source was studied by Reddy et al. []. They observed that the velocity
decreases with an increase in the magnetic parameter due to a resistive drag force which
tends to resist the fluid flow and thus reduces the velocity. The boundary layer thickness
was also found to decrease with an increase in the magnetic parameter.
Most of the earlier work neglected radiation effects. If the polymer extrusion process is

placed in a thermally controlled environment, radiation could become important. As with
magnetohydrodynamics, careful control of thermal radiative heat transfer has an effect
on the characteristics of the final product. Many researchers have considered the effect
of thermal radiation on flows over stretching sheets. Studies by Raptis [], Raptis and
Perdikis [] address the effect of radiation in various situations. Siddheshwar andMaha-
baleswar [] studied the effects of radiation and heat source onMHDflowof a viscoelastic
liquid and heat transfer over a stretching sheet. Bidin and Nazar [] studied the effects of
numerical solution of the boundary layer flow over an exponentially stretching sheet with
thermal radiation. They observed that the temperature profiles and the thermal boundary
layer thickness increase slightly with an increase in the Eckert number. They also showed
that an increase in Pr causes a decrease in temperature profiles and the thermal bound-
ary layer thickness. Physically, if Pr increases, the thermal diffusivity decreases, and these
phenomena lead to the decreasing of energy ability that reduces the thermal boundary
layer. Elbashbeshy and Dimian [] analyzed boundary layer flow in the presence of radi-
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ation effect and heat transfer over the wedge with a viscous coefficient. Thermal radiation
effects on hydro-magnetic flow due to an exponentially stretching sheet were studied by
Reddy and Reddy []. They found that as radiation increases, the temperature profiles
and thermal boundary layer thickness also increase. They also observed that the temper-
ature profiles and thermal boundary layer thickness increase slightly with an increase in
the Eckert number. Raptis et al. [] studied the effect of thermal radiation on the mag-
netohydrodynamic flow of a viscous fluid past semi-infinite stationary plate and Hayat et
al. [] extended the analysis for the second grade fluid.
In addition to a magnetic field and thermal radiation, one has to consider the viscous

dissipation effects due to frictional heating between fluid layers. The effect of viscous dis-
sipation in natural convection processes has been studied by Gebhart [] and Gebhart
and Mollendorf []. They observed that the effect of viscous dissipation is predominant
in vigorous natural convection andmixed convection processes. They also showed the ex-
istence of a similarity solution for the external flow over an infinite vertical surface with
an exponential variation of surface temperature. Vajravelu and Hadjinicalaou [] studied
the heat transfer characteristics over a stretching surface with viscous dissipation in the
presence of internal heat generation or absorption.
In this paper, we investigate the effects of various physical and fluid parameters such

as the magnetic parameter, radiation parameter and viscous dissipation parameter on the
flow and heat transfer characteristics of an exponentially stretching sheet. The momen-
tum, energy and concentration equations are coupled and nonlinear. By using suitable
similarity variables, these equations are converted into coupled ordinary differential equa-
tions and are solved analytically and numerically by using the Runge-Kutta-Fehlberg and
Newton-Raphson schemes.

2 Mathematical formulation
Consider the two-dimensional magnetohydrodynamic flow of a Newtonian fluid over a
stretching sheet. The origin of the system is located at the slit from which the sheet is
drawn. The x-axis is taken along the continuous stretching surface and points in the di-
rection of motion. The y-axis is perpendicular to the plate. The sheet velocity is assumed
to vary as an exponential function of the distance x from the slit. The temperature and con-
centration far away from the fluid are assumed to be T∞ and C∞ respectively as shown in
Figure . The sheet-ambient temperature and concentration differences are also assumed
to be exponential functions of the distance x from the slit. A variable magnetic field of
strength B(x) is applied normally to the sheet. Under the usual boundary layer approxi-
mation, subject to radiation and viscous dissipation effects, the equations governing the
momentum, heat and mass transports can be written as

∂u
∂x

+
∂v
∂y

= , ()

u
∂u
∂x

+ v
∂u
∂y

= ν
∂u
∂y

–
σB

ρ
u, ()

u
∂T
∂x

+ v
∂T
∂y

= α
∂T
∂y

–


ρCp

∂qr
∂y

+
σB

ρCp
u +

ν

Cp

(
∂u
∂y

)

, ()

u
∂C
∂x

+ v
∂C
∂y

=D
∂C
∂y

, ()
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Figure 1 Schematics of the problem.

where u, v are the velocity components in the x, y directions respectively, ν is the kinematic
viscosity, ρ is the density, σ is the electrical conductivity of the fluid, T is the temperature,
C is the concentration, α = k/ρCp is the thermal diffusivity, k is the thermal conductivity,
Cp is the specific heat at constant pressure, qr is the radiative heat flux, andD is the species
diffusivity.
The boundary conditions for Equations ()-() have the form

u =Uw =Ue
x
L , v = , T = Tw = T∞ + Te

x
L ,

C = Cw = C∞ +Ce
x
L at y = , ()

u→ , T → T∞, C → C∞ as y→ ∞.

Here the subscripts w, ∞ refer to the surface and ambient conditions respectively, T, C

are positive constants, U is the characteristic velocity, and L is the characteristic length.
To facilitate a similarity solution, the magnetic field B(x) is assumed to be of the form

B(x) = Be
x
L , ()

where B is a constant. It is also assumed that the fluid is weakly electrically conducting
so that the induced magnetic field is negligible. Following Rosseland’s approximation, the
radiative heat flux qr is modeled as

qr = –
σ ∗

k∗
∂T

∂y
, ()

where σ ∗ is the Stefan-Boltzman constant, k∗ is the mean absorption coefficient. Assum-
ing that the temperature differences within the flow are sufficiently small such thatT may
be expressed as a linear function of temperature T ≡ T∞T – T∞, we have

∂qr
∂y

= –
σ ∗T∞
k∗

∂T
∂y

. ()

Continuity Equation () is satisfied by introducing a stream function ψ such that

u =
∂ψ

∂y
, v = –

∂ψ

∂x
. ()
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The following similarity variables are used:

u =Ue
x
L fη(η), v = –

(
νU

L

) 

e

x
L

[
f (η) + ηfη(η)

]
,

T = T∞ + Te
x
L θ (η), C = C∞ +Ce

x
L φ(η),

η =
(

U

νL

) 

ye

x
L ,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

()

where η is the similarity variable, f (η) is the dimensionless stream function, θ (η) is the
dimensionless temperature, and φ(η) is the dimensionless concentration.
On using Equations (), () and (), Equations ()-() transform into the following two-

point boundary value problem:

fηηη + f fηη – f η –Mfη = , ()(
 +



K

)
θηη + Pr(f θη – fηθ ) +GbPr

(
Mf η + f ηη

)
= , ()

φηη + Sc(f φη – fηφ) = , ()

f () = , fη() = , fη(∞)→ , ()

θ () = , θ (∞) → , ()

φ() = , φ(∞) → . ()

The non-dimensional constants appearing in Equations ()-() are the magnetic param-
eter M, the radiation parameter K , the Prandtl number Pr, the Gebhart number Gb, and
the Schmidt number Sc respectively defined as

M =
σB

L
ρU

, K =
σ ∗T∞
k∗k

, Pr =
ρνCp

k
,

Gb =
U


CpT

, Sc =
ν

D
.

3 Skin friction, heat andmass transfer coefficients
The parameters of engineering interest in heat and mass transport problems are the skin
friction coefficientCf , the local Nusselt numberNux, and the local Sherwood number Shx.
These parameters respectively characterize the surface drag, wall heat and mass transfer
rates.
The shearing stress at the surface of the wall τw is given by

τw = –μ

[
∂u
∂y

]
y=

= –
μU

L

√
Re

e
x
L f ′′(), ()

where μ is the coefficient of viscosity and Re = LU
ν

is the Reynolds number. The skin
friction coefficient is defined as

Cf =
τw
ρuw

, ()
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and using Equation () in Equation (), we obtain

Cf
√
Rex/√
x/L

= –f ′′(). ()

The heat transfer rate at the surface flux at the wall is given by

qw = –k
[

∂T
∂y

]
y=

=
–k(Tw – T∞)

L

√
Re

e

x
L θ ′(), ()

where k is thermal conductivity of the fluid. The Nusselt number is defined as

Nux =
x
k

qw
Tw – T∞

. ()

Using Equation () in Equation (), the dimensionless wall heat transfer rate is obtained
as follows:

Nux√
x/L

√
Rex/

= –θ ′(). ()

The mass flux at the surface of the wall is given by

Jw = –D
[

∂C
∂y

]
y=

=
–D(Cw –C∞)

L

√
Re

e

x
L φ′(), ()

and the Sherwood is defined as

Shx =
x
D

Jw
Cw –C∞

. ()

Using () in (), the dimensionless wall mass transfer rate is obtained as

Shx√
x/L

√
Rex/

= –φ′(). ()

In Equations (), () and (), Rex represents the local Reynolds number and it is defined
as Rex = xUw

ν
.

4 Analytical solution
4.1 Solution of momentum equation
The momentum boundary layer equation is partially decoupled from the energy and
species equations. Integrating Equation () with η once over to the interval [,η], we
obtain

fηη + f fη = –s +
∫ η



[
f η +Mfη

]
dη, ()

where s = –fηη(). Letting η → ∞, we obtain

s =
∫ ∞



[
f η +Mfη

]
dη. ()
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Integrating Equation () once again, we obtain

fη +


f η =  – sη +

∫ η



[∫ η



[
f η +Mfη

]
dη

]
dη. ()

The solution procedure of Equation () can be reduced to the sequential solutions of the
Riccati type equation of the form

f (n)η +


f (n) = RHS

[
f (n–)η

]
. ()

This iteration algorithm has to be solved by substituting suitable zero-order approxima-
tions f ()η (η) for fη(η) into the right-hand side of Equation (). We assume a zero-order
approximation as

f ()η (η) = e–sη, ()

which satisfies the condition at infinity. Integrating Equation () with respect to η and
using the condition f ()η () = , we get

f ()η (η) =
 – e–sη

s
. ()

Using the above solution in Equation (), the approximate value of s can be obtained as

s =
√


+M, f ()ηη () = –s. ()

Now substituting all the derivatives of zero-order approximation f ()η (η) into the right-
hand side of Equation (), we obtain the equation for first-order iteration f ()η as follows:

f ()η +


f () =  +


s

[
e–sη – 

]
+
M
s

[
e–sη – 

]
. ()

Further, we assume that the first-order iterate of f satisfies the boundary conditions on
f as given in (). The above non-linear Riccati type equation can be solved in terms of
a confluent hypergeometric Whittaker function as discussed by Khan []. However, we
restrict ourselves to the zero-order solution, and similarly, to heat and mass transport
equations.

4.2 Solution of heat transfer equation
Using the zero-order approximations of f and fη and further introducing a new variable

ξ = –
Pr
s

e–sη, ()

Equation () and the thermal boundary conditions () take the form

(
 +



K

)
ξθξξ +

(
 +



K – Pr∗ – ξ

)
θξ + θ = –

Gb
Pr

s
(
M + s

)
ξ , ()
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θ
(
–Pr∗

)
= , θ

(
–

) → , ()

where Pr∗ = Pr/s is the modified Prandtl number. The solution of Equation () is as-
sumed in the form of

θ (ξ ) = θc(ξ ) + θp(ξ ),

where θc(ξ ) is the complementary solution and θp(ξ ) is the particular solution. The com-
plementary solution of Equation () is obtained in terms of confluent hypergeometric
function in the following form:

θc(ξ ) = Cξ
αM

[
α – ,α + ,

–ξ

 + 
K

]
, ()

where

M[a,b, z] =
∞∑
r=

a(a + ) · · · (a + r – )
b(b + ) · · · (b + r – )

z
r!

is Kummer’s function (see Abramowitz and Stegun []) and

α =
Pr∗

 + 
K

.

The particular solution is obtained as

θp(ξ ) = aξ  + aξ  + aξ, ()

where

a = –
(
Gb
Pr∗

)
M + s

( + 
K) – Pr∗

,

a =
–a

( + 
K) – Pr∗

,

a =
–a

( + 
K) – Pr∗

.

Now, the complete solution can be written as

θ (ξ ) = θc(ξ ) + θp(ξ ). ()

Making use of the boundary conditions () and rewriting the solution in terms of the
variable η, we get

θ (η) = C
e–sηαM[α – ,α + ,–αe–sη]

M[α – ,α + ,–α]
+ aPr∗e–sη

– aPr∗e–sη + aPr∗e–sη, ()
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where

C =  – aPr∗ + aPr∗ – aPr∗.

4.3 Solution of mass transfer equation
Using the zero-order approximation of f and fη and further introducing a new variable

ζ = –
Sc
s
e–sη, ()

Equation () and the thermal boundary conditions in () take the form

ζφζζ +
(
 – Sc∗ – ζ

)
φζ + φ = , ()

φ
(
–Sc∗

)
= , φ

(
–

) → , ()

where Sc∗ = Sc/s is the modified Schmidt number. Following the solution procedure dis-
cussed in the case of the energy equation, the solution of Equation () is obtained in
terms of confluent hypergeometric function as

φ(η) =
e–sSc∗ηM[Sc∗ – ,Sc∗ + ,–Sc∗e–sη]

M[Sc∗ – ,Sc∗ + ,–Sc∗]
. ()

5 Solution procedure
The set of non-linear differential Equations ()-() subject to the boundary conditions
()-() were solved numerically using an efficient Runge-Kutta-Fehlberg method with a
shooting technique, which is described in Pal and Shivakumara []. The most important
step in this method is to choose an appropriate finite value of η → ∞. In order to deter-
mine η → ∞ for the boundary value problem described by Equations ()-(), we start
with initial guess values for a particular set of physical parameters to obtain f ′′(), θ ′()
and φ′(). The solution procedure is repeated with another large value of η → ∞ until
two successive values of f ′′(), θ ′() and φ′() differ only by a specified significant digit.
The value of η may change for a different set of physical parameters. Once the appropriate
value of η is determined, the coupled boundary value problem given by Equations ()-
() is solved numerically using the method of superposition. In this method, third-order
non-linear Equation (), second-order Equations () and () have been reduced to five
ordinary differential equations as follows:

f ′
 = f, f ′

 = f,

f ′
 = f  +Mf – ff,

f ′
 = f,

f ′
 = –

Pr
( + 

K)
[
ff – ff +Gb

(
Mf  + f 

)]
,

f ′
 = f,

f ′
 = Sc(ff – ff),

()
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where

f = f , f = f ′, f = f ′′, f = θ , f = θ ′, f = φ, f = φ′, ()

and a prime denotes differentiation with respect to η. The boundary conditions now be-
come

f = , f = , f = s, f = ,

f = s, f = , f = s at η → ,
()

f = , f = , f =  as η → ∞, ()

where s, s and s are determined such that f(∞) = , f(∞) =  and f(∞) = . Thus,
to solve this system, we require six initial conditions. However, since we have only three
initial conditions for f and two initial conditions for θ and φ, the conditions f ′′(), θ ′(),
φ′() are to be determined by the shooting method using the initial guess values s, s
and s until the conditions f(∞) = , f(∞) =  and f(∞) =  are satisfied. In this paper,
we employed the shooting technique with the Runge-Kutta-Fehlberg scheme to deter-
mine two more unknowns in order to convert the boundary value problem to an initial
value problem. Once all the six initial conditions were determined, the resulting differen-
tial equations were integrated using an initial value solver. For this purpose, the fifth-order
Runge-Kutta-Fehlberg integration scheme was used.

6 Results and discussion
Analytical and numerical solutions were obtained for the effects of radiation and viscous
dissipation for the MHD flow over an exponentially stretching sheet. Similarity transfor-
mations were used to transform the governing partial differential equations of flow, heat
and mass transfer into a system of non-linear ordinary differential equations. The zero-
order approximate solution for the dimensionless stream function f has been obtained
analytically. Solutions of the energy and species equations were obtained in terms of con-
fluent hypergeometric functions. The accuracy of the method was established by com-
paring the analytical solution with the numerical solution obtained by a shooting method
together with Runge-Kutta-Fehlberg and Newton-Raphson schemes. The skin friction,
heat and mass transfer coefficients are tabulated in Tables -. The effects of magnetic,
radiation and viscous dissipation parameters on the velocity f ′(η), temperature θ (η) and
concentration φ(η) profiles are shown in Figures -.
Table  provides values of the skin friction coefficient for different values of themagnetic

parameter M. Increasing values of M result in considerable opposition to the flow in the

Table 1 A comparison of –f ′′(0) obtained by the analytical method with the shooting
technique for different values ofM

M
–f ′′(0)
Analytical Numerical

0 1.22474 1.281809
1 1.58114 1.629178
2 1.87083 1.912620
3 2.12132 2.158736
5 2.54951 2.581130
10 3.39116 3.41529
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Table 2 A comparison of –θ ′(0) obtained by the analytical method with the shooting
technique for different values ofM, Gb and K for fixed values of Pr = 7

M K Gb –θ ′(0)
Analytical Numerical

0 0.5 0.2 3.82684 3.822508
1 3.48576 3.483155
2 3.19181 3.191131
3 2.92781 2.928577

1 0 0.2 4.56379 4.556219
0.5 3.48576 3.483155
1 2.90556 2.905805
2 2.25649 2.260503
3 1.88314 1.889815

1 0.5 0 3.94905 3.946604
0.1 3.71740 3.714879
0.2 3.48576 3.483155
0.5 2.79082 2.787982
1 1.63260 1.629360

Table 3 A comparison of –φ′(0) obtained by the analytical method with the shooting
technique for different values ofM, Sc

M Sc –φ′(0)
Analytical Numerical

0 1 1.79791 1.805684
1 1.69115 1.699309
2 1.60312 1.611410
3 1.52781 1.535984

1 1 1.69115 1.699309
2 2.58672 2.589044
5 4.34813 4.344825
10 6.32456 6.318568

form of a Lorenz drag which enhances the values of the skin friction coefficient. Table 
highlights the effect of the magnetic field, radiation and dissipation on the dimensionless
wall temperature gradient. It is evident that all the three parameters reduce the values of
the wall temperature gradient. Table  shows that the increase in Schmidt numbers leads
to the increase in the dimensionless wall concentration gradient, while the opposite trend
is observed in the case of the magnetic parameter. The results confirm a good agreement
between analytical and numerical results.
The skin friction coefficients are shown in Table  for different values of the magnetic

parameter in the absence of the physical parameters (i.e., Pr = Sc = K = Gb = ). We ob-
serve that skin friction coefficient increases with an increase in the magnetic parameter. It
is interesting to note that the value of thewall skin-friction coefficient in the non-magnetic
(M = ) and magnetic (M = ) cases are in good agreement with the results presented by
Reddy and Reddy [].
Figure  shows the variation of the velocity profile against the magnetic parameter. We

notice that the effect of the magnetic parameter is to reduce the velocity of the fluid in the
boundary layer region. This is due to an increase in the Lorentz force, similar to Darcy’s
drag observed in the case of flow through a porous medium. This adverse force is respon-
sible for slowing down the motion of the fluid in the boundary layer region. These results
are similar to the results obtained by Reddy and Reddy [].
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Kameswaran et al. Boundary Value Problems 2012, 2012:105 Page 12 of 16
http://www.boundaryvalueproblems.com/content/2012/1/105

Figure 2 Effect of the magnetic parameter (M) on velocity profile for Pr = 7, Gb = 0.2, K = 0.5, Sc = 1.

Figure 3 Effect ofM on temperature profile for Pr = 7, Gb = 0.2, K = 0.5, Sc = 1.

The variation of the temperature distribution with the magnetic parameter is shown in
Figure . The thermal boundary layer thickness increases with increasing values of the
magnetic parameter. The opposing force introduced in the form of the Lorentz drag con-
tributes in increasing the frictional heating between the fluid layers, and hence energy is
released in the form of heat. This results in thickening of the thermal boundary layer.
The effect of the magnetic parameter on the concentration profile is shown in Figure .

It is observed that increases in the values inM result in thickening of the species boundary
layer.

http://www.boundaryvalueproblems.com/content/2012/1/105


Kameswaran et al. Boundary Value Problems 2012, 2012:105 Page 13 of 16
http://www.boundaryvalueproblems.com/content/2012/1/105

Figure 4 Effect ofM on concentration profile for Pr = 7, Gb = 0.2, K = 0.5, Sc = 1.

Figure 5 Effect of the radiation parameter on temperature profile for Gb = 0.2,M = 1, Pr = 7, Sc = 1.

The influence of the thermal radiation parameter K on temperature is shown in Fig-
ure . It is clear that thermal radiation enhances the temperature in the boundary layer
region. Thus radiation should be kept at its minimum in order to facilitate better cooling
environment. The radiation parameter K defines the relative contribution of conduction
heat transfer to thermal radiation transfer.
The effect of the Gebhart numberGb on the heat transfer is shown in Figure . It is clear

that the temperature in the boundary layer region increases with an increase in the viscous
dissipation parameter. We also note that since the energy equation is partially decoupled
from the momentum and species conservation equations, the parameters affecting the
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Figure 6 Effect of viscous dissipation on temperature profile for Pr = 7,M = 1, K = 0.5, Sc = 1.

Table 4 A comparison of –f ′′(0) for different values ofM for fixed values of Pr = Sc = K = Gb = 0

M
–f ′′(0)
Reddy and Reddy [33] Present

0 1.28213 1.28181
1 1.62918 1.62918
2 - 1.91262
3 - 2.15874
4 - 2.37937

energy equation, namely, the Prandtl number, the radiation parameter and the Gebhart
number, do not alter velocity and concentration profiles. We also observe a good agree-
ment between the analytical and numerical solutions through Figures -.

7 Conclusions
The problem of hydromagnetic Newtonian liquid flow due to an exponentially stretching
sheet in the presence of radiation and viscous dissipation effects has been analyzed. Exact
solutionswere found in terms of hypergeometric functions, and a comparison of analytical
and numerical results was shown. We found that the effect of the magnetic parameter
is to reduce the velocity of the fluid in the boundary layer region. It was also observed
that the increase in values of M results in thickening of the species boundary layer. The
combined and individual effects of the magnetic parameter M, the radiation parameter
K , and the viscous dissipation parameter Gb are to increase the heat transfer rates. Under
some limiting conditions when the parameters Pr, Sc, K , Gb are zero, the current results
agree well with available results in the literature.
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