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Abstract
This paper deals with the positive solutions of a fourth-order boundary value problem
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1 Introduction
In this paper, we consider the existence of multiple positive solutions for the fourth-order
ordinary differential equation boundary value problem in a Banach space E

⎧⎨
⎩x()(t) = f (t,x(t), –x′′(t)), t ∈ (, ),

x() = x() = x′′() = x′′() = θ ,
(.)

where f : I × E × E → E is continuous, I = [, ], θ is the zero element of E. This problem
models deformations of an elastic beam in equilibrium state, whose two ends are simply
supported. Owing to its importance in physics, the existence of this problem in a scalar
space has been studied by many authors using Schauder’s fixed-point theorem and the
Leray-Schauder degree theory (see [–] and references therein). On the other hand, the
theory of ordinary differential equations (ODE) in abstract spaces has become an impor-
tant branch of mathematics in last thirty years because of its application in partial differ-
ential equations and ODEs in appropriately infinite dimensional spaces (see, for example,
[–]). For an abstract space, it is here worth mentioning that Guo and Lakshmikantham
[] discussed the multiple solutions of two-point boundary value problems of ordinary
differential equations in a Banach space. Recently, Liu [] obtained the sufficient condi-
tion for multiple positive solutions to fourth-order singular boundary value problems in
an abstract space. In [], by using the fixed-point index theory in a cone for a strict-set-
contraction operator, the authors have studied the existence of multiple positive solutions
for the singular boundary value problems with an integral boundary condition.
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However, the above works in a Banach space were carried out under the assumption
that the second-order derivative x′′ is not involved explicitly in the nonlinear term f . This
is because the presence of second-order derivatives in the nonlinear function f will make
the study extremely difficult. As a result, the goal of this paper is to fill up the gap, that is,
to investigate the existence of solutions for fourth-order boundary value problems of (.)
in which the nonlinear function f contains second-order derivatives, i.e., f depends on x′′.
The main features of this paper are as follows. First, we discuss the existence results in

an abstract space E, not E = R. Secondly, we will consider the nonlinear term which is
more extensive than the nonlinear term of [, ]. Finally, the technique for dealing with
fourth-order BVP is completely different from [, ]. Hence, we improve and generalize
the results of [, ] to some degree, and so, it is interesting and important to study the
existence of positive solutions of BVP (.). The arguments are based upon the u-positive
operator and the fixed-point theorem in a cone for a strict-set-contraction operator.
The paper is organized as follows. In Section , we present some preliminaries and lem-

mas that will be used to prove our main results. In Section , various conditions on the
existence of positive solutions to BVP (.) are discussed. In Section , we give an example
to demonstrate our result.

2 Preliminaries
Let the real Banach space E with norm ‖ · ‖ be partially ordered by a cone P of E, i.e., x≤ y
if and only if y– x ∈ P. P is said to be normal if there exists a positive constant N such that
θ ≤ x ≤ y implies ‖x‖ ≤ N‖y‖. We consider problem (.) in C[I,E]. Evidently, C[I,E] is a
Banach space with norm ‖x‖C =maxt∈I ‖x(t)‖ and Q = {x ∈ C[I,E] : x(t) ≥ θ , for t ∈ I} is
a cone of the Banach space C[I,E]. In the following, x ∈ C[I,E] ∩ C[(, ),E] is called a
solution of problem (.) if it satisfies (.). x is a positive solution of (.) if, in addition, x
is nonnegative and nontrivial, i.e., x ∈ C[I,P] and x(t) 	≡ θ for t ∈ I .
For a bounded set V in a Banach space, we denote by α(V ) the Kuratowski measure of

noncompactness (see [–] for further understanding). In this paper, we denote by α(·)
the Kuratowski measure of noncompactness of a bounded set in E and in C[I,E].

Lemma. [] Let D⊂ E andD be a bounded set, f be uniformly continuous and bounded
from I ×D into E, then

α
(
f (I ×V )

)
=max

t∈I
α
(
f (t,V )

)
, ∀V ⊂D.

The key tool in our approach is the following fixed-point theorem of strict-set-
contractions:

Theorem . [] Let P be a cone of a real Banach space E and Pr,R = {u ∈ P|r ≤ ‖u‖ ≤ R}
with  < r < R. Suppose that A : Pr,R → P is a strict set contraction such that one of the
following two conditions is satisfied:

(i) Au 	≤ u for u ∈ P, ‖u‖ = r and Au 	≥ u for u ∈ P, ‖u‖ = R;
(ii) Au 	≥ u for u ∈ P, ‖u‖ = r and Au 	≤ u for u ∈ P, ‖u‖ = R;

then the operator A has at least one fixed point u ∈ Pr,R such that r < ‖u‖ < R.

The following concept is due to Krasnosel’skii [, ], with a slightly more general def-
inition in [].

http://www.boundaryvalueproblems.com/content/2012/1/107


Cui and Sun Boundary Value Problems 2012, 2012:107 Page 3 of 13
http://www.boundaryvalueproblems.com/content/2012/1/107

Definition . We say that a bounded linear operator T : C[I,R]→ C[I,R] is u-positive
on a cone K = {v ∈ C[I,R] : v(t) ≥ ,∀t ∈ [, ]} if there exists u ∈ K\{θ} such that for
every u ∈ K\{θ}, there are positive constants k(u), k(u) such that

k(u)u ≤ Tu≤ k(u)u.

Lemma . Let T be u-positive on a cone K . If T is completely continuous, then r(L),
the spectral radius of T , is the unique positive eigenvalue of T with its eigenfunction in K .
Moreover, if λTu = u holds with λ = (r(T))–, then for an arbitrary non-zero u ∈ K (u 	=
ku) the elements u and λTu are incomparable

λTu 	≤ u, λTu 	≥ u.

In the following, the closed balls in spaces E and C[I,E] are denoted, respectively, by
�l = {x ∈ E : ‖x‖ ≤ l} (l > ) and Bl = {x ∈ C[I,E] : ‖x‖C ≤ l} (l > ).
For convenience, let us list the following assumptions:

(H) f ∈ C[I × P × P,P], f is bounded and uniformly continuous in t on I × (P ∩ �r) for
any r > , and there exist two nonnegative constants l, l with l + l <  such that

α
(
f (t ×D ×D)

) ≤ lα(D) + lα(D), t ∈ I,D,D ⊂ P ∩ �r .

(H) There are three positive constants a, b, c such that

∥∥f (t,x, y)∥∥ ≤ a‖x‖ + b‖y‖ + c
N

for all (t,x, y) ∈ I × P and a
π + b

π < .
(H) There is a ϕ ∈ P* (P* denotes the dual cone of P) with ϕ(x) >  for any x > θ , two

nonnegative constants a, b and a real number r >  such that

ϕ
(
f (t,x, y)

) ≥ aϕ(x) + bϕ(y)

for all (t,x, y) ∈ I × (P ∩ �r ) and
a
π + b

π > .
(H) There is a ϕ ∈ P* with ϕ(x) >  for any x > θ and two nonnegative constants a, b and

a real number R >  such that

ϕ
(
f (t,x, y)

) ≥ aϕ(x) + bϕ(y), t ∈ I,x, y ∈ P,‖x‖,‖y‖ ≥ R

and a
π + b

π > .
(H) There are three positive constants a, b, r such that

∥∥f (t,x, y)∥∥ ≤ a‖x‖ + b‖y‖
N

for all (t,x, y) ∈ I × (P ∩ �r ) and
a
π + b

π < .

http://www.boundaryvalueproblems.com/content/2012/1/107
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(H) There exists η >  such that

sup
t∈I,x,y∈P∩�η

∥∥f (t,x, y)∥∥ <
η

N
.

(H) There is a ϕ ∈ P* with ‖ϕ‖ =  and ϕ(x) >  for any x > θ and a real number η >  such
that

ϕ
(
f (t,x, y)

) ≥ αη, t ∈ [τ ,  – τ ],x, y ∈ P,
τ ( – τ )η
N

≤ ‖x‖,‖y‖ ≤ η,

where τ ∈ (,  ), α = (τ ( – τ )
∫ –τ

τ
s( – s)ds)–.

Now, let G(t, s) be the Green’s function of the linear problem v′′ = , t ∈ (, ) together
with v() = v() = , which can be explicitly given by

G(t, s) =

⎧⎨
⎩t( – s),  ≤ t ≤ s ≤ ,

s( – t),  ≤ s ≤ t ≤ .

Obviously, G(t, s) have the following properties:

t( – t)s( – s) ≤ G(t, s)≤ t( – t), ∀t, s ∈ [, ];

G(t, s) ≥ t( – t)G(τ , s), ∀τ , t, s ∈ [, ].
(.)

Set

(Su)(t) =
∫ 


G(t, s)u(s)ds, t ∈ I,u ∈ C[I,E].

Obviously, S : C[I,E] → C[I,E] is continuous.
Let u = –x′′. Since x() = x() = θ , we have

x(t) = (Su)(t) =
∫ 


G(t, s)u(s)ds. (.)

Using the above transformation and (.), BVP (.) becomes

–u′′(t) = f
(
t, (Su)(t),u(t)

)
(.)

with

u() = u() = θ . (.)

From (.) and (.), we have

u(t) =
∫ 


G(t, s)f

(
s, (Su)(s),u(s)

)
ds.

http://www.boundaryvalueproblems.com/content/2012/1/107
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Now, define an operator A on Q by

(Au)(t) =
∫ 


G(t, s)f

(
s,

∫ 


G(s, τ )u(τ )dτ ,u(s)

)
ds. (.)

The following Lemma . can be easily obtained.

Lemma . Assume that (H) holds. Then A :Q→ C[I,P] and
(i) A :Q →Q is continuous and bounded;
(ii) BVP (.) has a solution in C[I,P]∩C[(, ),P] if and only if A has a fixed point

in Q.

Let

(Tψ)(t) =
∫ 


G(t, s)ψ(s)ds, ∀ψ ∈ C[I,R].

It is easy to see that T : C[I,R] → C[I,R] is a u-positive operator with u(t) = sinπ t and
r(T) = 

π .

Lemma . Suppose that (H) holds. Then for any l > , A : Q ∩ Bl → Q is a strict set
contraction.

Proof For any u ∈Q∩ Bl and t ∈ [, ], by the expression of S, we have

∥∥(Su)(t)∥∥ ≤
∫ 


G(t, s)

∥∥u(s)∥∥ds≤ l,

and thus S(Q ∩ Bl) ⊂ Q ∩ Bl is continuous and bounded. By the uniformly continuous f
and (H), and Lemma ., we have

α
(
f
(
I × S(D)×D

))
=max

t∈I
α
(
f
(
t × S(D)×D

)) ≤ lα
(
S(D)

)
+ lα(D).

Since f is uniformly continuous and bounded on I × (Q∩ �l), we see from (.) that A is
continuous and bounded on Q ∩ Bl . Let D ⊂ Q ∩ Bl , according to (.), it is easy to show
that the functions {Au : u ∈ D} are uniformly bounded and equicontinuous, and so in []
we have

α
(
A(D)

)
=max

t∈I
α
(
A

(
D(t)

))
,

where

A
(
D(t)

)
=

{
Au(t) : u ∈ D, t is fixed

} ⊂ P ∩ �l.

Using the obvious formula

∫ 


u(t)dt ∈ co

{
u(t) : t ∈ I

}
, ∀u ∈ C[I,E]

http://www.boundaryvalueproblems.com/content/2012/1/107
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and observing  ≤ G(t, s)≤ , we find

α
(
A

(
D(t)

)) ≤ α
(
co

{
G(t, s)f

(
s,Su(s),u(s)

)
: u ∈D, s ∈ I

})
≤ α

(
co

{
f
(
s,Su(s),u(s)

) ∪ θ : u ∈D, s ∈ I
})

= α
({
f
(
s,Su(s),u(s)

) ∪ θ : u ∈ D, s ∈ I
})

≤ α
({
f
(
s,Su(s),u(s)

)
: u ∈D, s ∈ I

})
≤ α

(
f
(
I × S(B)× B

)) ≤ lα
(
S(B)

)
+ lα(B)

≤ lα(B) + lα(B), (.)

where B = {u(s)|s ∈ I,u ∈ D} ⊂ Pl , S(B) = {∫ 
 G(t, s)u(s)ds|t ∈ I,u ∈D}.

From the fact of [], we know

α(B)≤ α(D). (.)

It follows from (.) and (.) that

α
(
A

(
D(t)

)) ≤ (l + l)α(D),

and consequently, A is a strict set contraction on Q∩ Bl because (l + l) < . �

3 Main results
Theorem . Let a cone P be normal and condition (H) be satisfied. If (H) and (H) or
(H) and (H) are satisfied, then BVP (.) has at least one positive solution.

Proof Set

Q =
{
u ∈Q : u(t) ≥ t( – t)u(s),∀t, s ∈ [, ]

}
.

It is clear thatQ is a cone of the Banach space C[I,E] andQ ⊂Q. For any u ∈Q, by (.),
we can obtain A(Q) ⊂Q, then

A(Q) ⊂Q.

We first assume that (H) and (H) are satisfied. Let

W = {u ∈ Q|Au ≥ u}.

In the following, we prove thatW is bounded.
For any u ∈ W , we have θ ≤ u ≤ Au, that is, θ ≤ u(t) ≤ Au(t), t ∈ I . And so ‖u(t)‖ ≤

N‖Au(t)‖, set v(t) = ‖u(t)‖, by (H)

v(t) ≤ N
∥∥Au(t)∥∥

≤ N
∫ 


G(t, s)

∥∥∥∥f
(
s,

∫ 


G(s, τ )u(τ )dτ ,u(s)

)∥∥∥∥ds

http://www.boundaryvalueproblems.com/content/2012/1/107
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≤
∫ 


G(t, s)

(
a

∥∥∥∥
∫ 


G(s, τ )u(τ )dτ

∥∥∥∥ + b
∥∥u(s)∥∥ + c

)
ds

≤
∫ 


G(t, s)

(
a

∫ 


G(s, τ )

∥∥u(τ )∥∥dτ + b
∥∥u(s)∥∥)

ds + c. (.)

For ψ ∈ C[I,R], let Lψ = aTψ + bTψ , then L : C[I,R] → C[I,R] is a bounded linear
operator. From (.), one deduces that

(
(I – L)v

)
(t) ≤ c.

Since π is the first eigenvalue of T , by (H), the first eigenvalue of L, r(L) = a
π + b

π < .
Therefore, by [], the inverse operator (I – L)– exists and

(I – L)– = I + L + L + · · · + Ln + · · · .

It follows from L(K) ⊂ K that (I – L)–(K) ⊂ K . So, we know that v(t) ≤ (I – L)–c,
t ∈ [, ] andW is bounded.
Taking R >max{r, supW }, we have

Au 	≥ u, ∀u ∈ ∂BR ∩Q. (.)

Next, we are going to verify that for any r ∈ (, r),

Au 	≤ u, ∀u ∈ ∂Br ∩Q. (.)

If this is false, then there exists u ∈ ∂Br ∩Q such that Au ≤ u. This together with (H)
yields

ϕ
(
u(t)

) ≥ ϕ
(
(Au)(t)

)
= ϕ

(∫ 


G(t, s)f

(
s, (Su)(s),u(s)

)
ds

)

=
∫ 


G(t, s)ϕ

(
f
(
s, (Su)(s),u(s)

))
ds

≥
∫ 


G(t, s)

(
aϕ

(
(Su)(s)

)
+ bϕ

(
u(s)

))
ds

=
∫ 


G(t, s)

(
a

∫ 


G(s, τ )ϕ

(
u(τ )

)
dτ + bϕ

(
u(s)

))
ds

=
(
aT + bT

)
ϕ
(
u(t)

)
, t ∈ I.

For ψ ∈ C[I,R], let Lψ = aTψ + bTψ , then the above inequality can be written in the
form

ϕ
(
u(t)

) ≥ L
(
ϕ
(
u(t)

))
. (.)

It is easy to see that

ϕ
(
u(t)

) 	= , t ∈ I.

http://www.boundaryvalueproblems.com/content/2012/1/107
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In fact, ϕ(u(t)) =  implies u(t) = θ for t ∈ I , and consequently, ‖u‖C =  in contra-
diction to ‖u‖C = r. Now, notice that L is a u-positive operator with u(t) = sinπ t,
then by Lemma ., we have ϕ(u(t)) = μ sinπ t for some μ > . This together with
( a
π + b

π ) sinπ t = L(sinπ t) and (.) implies that

μ sinπ t = ϕ
(
u(t)

) ≥ L
(
ϕ
(
u(t)

))
= L(μ sinπ t) = μ

(
a
π +

b
π

)
sinπ t,

which is a contradiction to a
π + b

π > . So, (.) holds.
By Lemma ., A is a strict set contraction on Qr,R = {u ∈ Q : r ≤ ‖u‖C ≤ R}. Ob-

serving (.) and (.) and using Theorem ., we see that A has a fixed point on Qr,R .
Next, in the case that (H) and (H) are satisfied, by the method as in establishing (.),

we can assert from (H) that for any r ∈ (, r),

Au 	≥ u, ∀u ∈ ∂Br ∩Q. (.)

Let

(Lv)(t) =
∫ 


G(t, s)

(
a

∫ 


G(s, τ )v(τ )dτ + bv(s)

)
ds, v ∈ C[I,R].

It is clear that L : C[I,R] → C[I,R] is a completely continuous linear u-operator with
u(t) = sinπ t and L : K → K in which K = {v ∈ K ⊂ C[I,R] : v(t)≥ t( – t)v(s),∀t, s ∈ I}.
In addition, the spectral radius r(L) = a

π + b
π and sinπ t is the positive eigenfunction of

L corresponding to its first eigenvalue λ = (r(L))–.
Let

(Lδv)(t) =
∫ –δ

δ

G(t, s)
(
a

∫ 


G(s, τ )v(τ )dτ + bv(s)

)
ds, v ∈ C[I,R],

where δ ∈ (,  ). It is clear that Lδ : C[I,R] → C[I,R] is a completely continuous linear
u-operator with u(t) = t( – t) and Lδ(K) ⊂ K. Thus, the spectral radius r(Lδ) 	=  and
Lδ has a positive eigenfunction corresponding to its first eigenvalue λδ = (r(Lδ))–.
Take δn ∈ (, /) (n = , , . . .) satisfying δ ≥ δ ≥ · · · ≥ δn ≥ · · · and δn →  (n → ∞).

Form > n, v ∈ K, we have

(Lδnv)(t)≤ (Lδmv)(t)≤ (Lv)(t), ∀t ∈ I.

By [], we have r(Lδn )≤ r(Lδm ) ≤ r(L). Let λδn = (r(Tδn ))–, by Gelfand’s formula, we have
λδn ≥ λδm ≥ λ. Let λδn → λ̃ as n→ ∞.
In the following, we prove that λ̃ = λ.
Let vδn be the positive eigenfunction of Tδn corresponding to λδn , i.e.,

vδn (t) = λδn (Lδvδn )(t)

= λδn

∫ –δn

δn

G(t, s)
(
a

∫ 


G(s, τ )vδn (τ )dτ + bvδn (s)

)
ds, (.)

http://www.boundaryvalueproblems.com/content/2012/1/107


Cui and Sun Boundary Value Problems 2012, 2012:107 Page 9 of 13
http://www.boundaryvalueproblems.com/content/2012/1/107

satisfying ‖vδn‖ = . Without loss of generality, by standard argument, we may suppose by
the Arzela-Ascoli theorem and λδn → λ̃ that vδn → ṽ as n → ∞. Thus, ‖̃v‖ =  and by
(.), we have

ṽ(t) = λ̃

∫ 


G(t, s)

(
a

∫ 


G(s, τ )̃v(τ )dτ + b̃v(s)

)
ds,

that is, ṽ(t) = λ̃(L̃v)(t). This together with Lemma . guarantees that λ̃ = λ.
By the above argument, it is easy to see that there exists a δ ∈ (,  ) such that

 < r(Lδ) <
a
π +

b
π .

Choose

R >max

{
R, r,

NR

δ( – δ)

}
. (.)

Now, we assert that

Au 	≤ u, ∀u ∈ Q,‖u‖C = R. (.)

If this is not true, then there exists u ∈ Q with ‖u‖C = R such that Au ≤ u, then
Au(t) ≤ u(t). Moreover, by the definition of Q, we know

u(t) ≥ t( – t)u(s), ∀t, s ∈ I,

(Su)(t) =
∫ 


G(t, s)u(s)ds≥ t( – t)

∫ 


s( – s) ds · u(τ ), ∀t, τ ∈ I.

Thus, N‖u(t)‖ ≥ t( – t)‖u‖C , N‖(Su)(t)‖ ≥ t(–t)
 ‖u‖C , which implies by (.) we have

min
t∈[δ,–δ]

∥∥u(t)∥∥ ≥ δ( – δ)
N

‖u‖C ≥ R,

and

min
t∈[δ,–δ]

∥∥(Su)(t)∥∥ ≥ δ( – δ)
N

‖u‖C ≥ R.

So, by (H), we get

ϕ
(
u(t)

) ≥ ϕ
(
(Au)(t)

)
= ϕ

(∫ 


G(t, s)f

(
s, (Su)(s),u(s)

)
ds

)

≥
∫ –δ

δ

G(t, s)ϕ
(
f
(
s, (Su)(s),u(s)

))
ds

≥
∫ –δ

δ

G(t, s)
(
aϕ

(
(Su)(s)

)
+ bϕ

(
u(s)

))
ds

http://www.boundaryvalueproblems.com/content/2012/1/107
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≥
∫ –δ

δ

G(t, s)
(
a

∫ 


G(s, τ )ϕ

(
u(τ )

)
dτ + bϕ

(
u(s)

))
ds

= Lδ

(
ϕ
(
u(t)

))
.

It is easy to see that

ϕ
(
u(t)

) 	= , t ∈ I.

In fact, ϕ(u(t)) =  implies u(t) = θ for t ∈ I , and consequently, ‖u‖C =  in contra-
diction to ‖u‖C = R. Now, notice that Lδ is a u-positive operator with u(t) = t( – t).
Then by Lemma ., we have ϕ(u(t)) = μvδ(t) for some μ > , where vδ is the positive
eigenfunction of Lδ corresponding to λδ . This together with r(Lδ)vδ(t) = Lδ(vδ(t)) implies
that

μvδ(t) = ϕ
(
u(t)

) ≥ Lδ

(
ϕ
(
u(t)

))
= L

(
μvδ(t)

)
= μr(Lδ)vδ(t),

which is a contradiction to r(Lδ) > . So, (.) holds.
By Lemma ., A is a strict set contraction on Qr,R = {u ∈ Q : r ≤ ‖u‖C ≤ R}. Ob-

serving (.) and (.) and using Theorem ., we see that A has a fixed point on Qr,R .
This together with Lemma . implies that BVP (.) has at least one positive solution.

�

Theorem . Let a cone P be normal. Suppose that conditions (H), (H), (H) and (H)
are satisfied. Then BVP (.) has at least two positive solutions.

Proof We can take the same Q ⊂ C[I,E] as in Theorem .. As in the proof of Theo-
rem ., we can also obtain that A(Q) ⊂ Q. And we choose r, R with R > η > r > 
such that

Au 	≤ u, ∀u ∈ ∂Br ∩Q, (.)

Au 	≤ u, ∀u ∈ ∂BR ∩Q. (.)

On the other hand, it is easy to see that

Au 	≥ u, ∀u ∈ ∂Bη ∩Q. (.)

In fact, if there exists u ∈ Q with ‖u‖C = η such that Au ≥ u, then observing
maxt,s∈I G(t, s) = 

 and ‖Su‖C ≤ η, we get

θ ≤ u(t)≤
∫ 


G(t, s)f

(
s, (Su)(s),u(s)

)
ds

≤ 


∫ 


f
(
s, (Su)(s),u(s)

)
ds, ∀t ∈ I,

and so

∥∥u(t)∥∥ ≤ N


∫ 



∥∥f (s, (Su)(s),u(s))∥∥ds≤ 

NM, t ∈ I, (.)
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where, by virtue of (H),

M = sup
t∈I,x,y∈P∩�η

∥∥f (t,x, y)∥∥ <
η

N
. (.)

It follows from (.) and (.) that

η = ‖u‖C ≤ η

N
M < η,

a contradiction. Thus (.) is true.
By Lemma .,A is a strict set contraction onQr,η = {u ∈Q|r ≤ ‖u‖C ≤ η}, and also on

Qη,R = {u ∈ Q|η ≤ ‖u‖C ≤ R}. Observing (.), (.), (.) and applying, respectively,
Theorem . to A, Qr,η and Qη,R , we assert that there exist u ∈ Qr,η and u ∈Qη,R such
that Au = u and Au = u and, by Lemma . and (.), Su, Su are positive solutions
of BVP (.). �

Theorem . Let a cone P be normal. Suppose that conditions (H), (H) and (H) and
(H) are satisfied. Then BVP (.) has at least two positive solutions.

Proof We can take the same Q ⊂ C[I,E] as in Theorem .. As in the proof of Theo-
rem ., we can also obtain that A(Q) ⊂ Q. And we choose r, R with R > η > r > 
such that

Au 	≥ u, ∀u ∈ ∂Br ∩Q, (.)

Au 	≥ u, ∀u ∈ ∂BR ∩Q. (.)

On the other hand, it is easy to see that

Au 	≤ u, ∀u ∈ ∂Bη ∩Q. (.)

In fact, if there exists u ∈Q with ‖u‖C = η such that Au ≥ u, then

θ ≤ (Au)(t) ≤ u(t), t ∈ I.

Observing u(t) ∈ Q and t(–t)
 u(s)≤ (Su)(t) ≤ u(s), we get

η = ‖ϕ‖‖u‖C ≥ ϕ
(
u(t)

) ≥ ϕ
(
(Au)(t)

)
=

∫ 


G(t, s)ϕ

(
f
(
s, (Su)(s),u(s)

))
ds

≥
∫ –τ

τ

G(t, s)ϕ
(
f
(
s, (Su)(s),u(s)

))
ds

> αητ ( – τ )
∫ –τ

τ

s( – s)ds = η,

which is a contradiction. Hence, (.) holds.
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By Lemma .,A is a strict set contraction onQr,η = {u ∈ Q|r ≤ ‖u‖C ≤ η} and also on
Qη,R = {u ∈Q|η ≤ ‖u‖C ≤ R}. Observing (.), (.), (.) and applying, respectively,
Theorem . to A, Qr,η and Qη,R , we assert that there exist u ∈ Qr,η and u ∈Qη,R such
that Au = u and Au = u and, by Lemma . and (.), Su, Su are positive solutions
of BVP (.). �

4 One example
Now, we consider an example to illustrate our results.

Example . Consider the following boundary value problemof the finite systemof scalar
differential equations:

⎧⎨
⎩x()n (t) = fn(t,x(t), –x′′(t)), t ∈ (, ),

x() = x() = x′′() = x′′() = ,
(.)

where

fn(t,x, y) = g(yn) + ( + sinπ t)
xn

( + xn + yn+)
, n = , , . . . , , (.)

f(t,x, y) = g(y) + ( + sinπ t)
x

( + x + y)
,

x = (x,x, . . . ,x), y = (y, y, . . . , y),

g(u) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u,  ≤ u ≤ .,

, . ≤ u ≤ .,

u – , . ≤ u≤ ,

u, u ≥ .

(.)

Claim (.) has at least two positive solutions x*(t) = (x*(t),x*(t), . . . ,x*(t)) and x**(t) =
(x** (t),x** (t), . . . ,x**(t)) such that

 < max
≤i≤,t∈[,]

∣∣x*i (t)∣∣ < . < max
≤i≤,t∈[,]

∣∣x**i (t)∣∣.
Proof Let E = R

 = {x = (x,x, . . . ,x) : xn ∈ R,n = , , . . . , } with the norm ‖x‖ =
max≤n≤ |xn|, and P = {x = (x,x, . . . ,x) : xn ≥ ,n = , , . . . , }. Then P is a normal
cone in E, and the normal constant is N = . System (.) can be regarded as a boundary
value problem of (.) in E, where x = (x,x, . . . ,x), y = (y, y, . . . , y),

f (t,x, y) =
(
f(t,x, y), f(t,x, y), . . . , f(t,x, y)

)
.

Evidently, f : I × P → P is continuous. In this case, condition (H) is automatically sat-
isfied. Since α(f (t,D,D)) is identical zero for any t ∈ I and D,D ⊂ P ∩ �l . Obviously,
P* = P, so we may choose ϕ = (, , . . . , ), then for any x, y ∈ P, we have

ϕ
(
f (t,x, y)

)
=

∑
n=

fn(t,x, y).
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Noticing ‖x‖ ≤ ϕ(x)≤ ‖x‖, we have

ϕ
(
f (t,x, y)

)
=

∑
n=

fn(t,x, y)≥ ‖y‖ ≥ ϕ(y)

for all (t,x, y) ∈ I × P with ‖x‖ ≤ . and ‖y‖ ≤ ., and

ϕ
(
f (t,x, y)

)
=

∑
n=

fn(t,x, y)≥ ‖y‖ ≥ ϕ(y),

for all (t,x, y) ∈ I × P with ‖x‖ ≥  and ‖y‖ ≥ . So, the conditions (H) and (H) are
satisfied with a = a =  and b = b = .
Choosing η = . for t ∈ I and x, y ∈ P with ‖x‖,‖y‖ ≤ ., we have

∥∥f (t,x, y)∥∥ ≤ . < . = η.

So, condition (H) is satisfied. Thus, our conclusion follows from Theorem .. �
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