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1 Introduction
We are concerned with the existence and uniqueness of anti-periodic solutions of the fol-
lowing prescribed mean curvature Rayleigh equation:(

x′
√
 + x′

)′
+ f

(
t,x′(t)

)
+ g

(
t,x(t)

)
= e(t), (.)

where e ∈ C(R,R) is T-periodic, and f , g ∈ C(R × R,R) are T-periodic in the first argu-
ment, T >  is a constant.
In recent years, the existence of periodic solutions and anti-periodic solutions for some

types of second-order differential equations, especially for the Rayleigh ones, were widely
studied (see [–]) and the references cited therein). For example, Liu [] discussed the
Rayleigh equation

x′′ + f
(
t,x′(t)

)
+ g

(
t,x(t)

)
= e(t),

and established the existence and uniqueness of anti-periodic solutions. At the same
time, a kind of prescribed mean curvature equations attracted many people’s attention
(see [–] and the references cited therein). Feng [] investigated the prescribed mean
curvature Liénard equation(

x′
√
 + x′

)′
+ f

(
x(t)

)
x′(t) + g

(
t,x

(
t – τ (t)

))
= e(t)

and obtained some existence results on periodic solutions. However, to the best of our
knowledge, the existence and uniqueness of anti-periodic solution for Eq. (.) have not
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been investigated till now. Motivated by [, ], we establish some sufficient conditions
for the existence and uniqueness of anti-periodic solutions via the Leray-Schauder degree
theory.
The rest of the paper is organized as follows. In Section , we shall state and prove some

basic lemmas. In Section , we shall prove the main result. An example will be given to
show the applications of our main result in the final section.

2 Preliminaries
Wefirst give the definition of an anti-periodic function.Assume thatN is a positive integer.
Let u :R →R

N be a continuous function. We call u(t) an anti-periodic function on R if u
satisfies the following condition:

u
(
t +

T


)
= –u(t), for all t ∈ R.

Obviously, a T
 -anti-periodic function u is a T-periodic function.

Throughout this paper, we will adopt the following notations:

Ck
T
(
R,RN)

:=
{
x(t) =

(
x(t), . . . ,xN (t)

)T ∈ Ck(
R,RN)

,x is T-periodic
}
, k = , , ,

|xi| =
(∫ T



∣∣xi(t)∣∣dt)/

, |xi|∞ = max
t∈[,T]

∣∣xi(t)∣∣, i = , , . . . ,N ,

|x|∞ =max
{|x|∞, |x|∞, . . . , |xN |∞

}
,

Ck, 
T

(
R,RN)

:=
{
x(t) ∈ Ck

T
(
R,RN)

,x
(
t +

T


)
= –x(t), for all t ∈R

}
,

which is a linear normal space endowed with the norm ‖ · ‖ defined by

‖x‖ =max
{|x|∞,

∣∣x′∣∣∞, . . . ,
∣∣x(k)∣∣∞}

, for all x ∈ Ck, 
T

(
R,RN)

.

The following lemmas will be useful to prove our main results.

Lemma . [] If x ∈ C
T (R,R) and

∫ T
 x(t)dt = , then

∫ T



∣∣x(t)∣∣ dt ≤ (
T/π)∫ T



∣∣x′(t)
∣∣ dt

(Wirtinger inequality) and

|x|∞ ≤ (T/)
∫ T



∣∣x′(t)
∣∣ dt

(Sobolev inequality).

Lemma . Suppose that the following condition holds:

(H) (g(t,x) – g(t,x))(x – x) < , for all t,x,x ∈R and x 	= x.

Then Eq. (.) has at most one T-periodic solution.
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Proof Assume that x(t) and x(t) are twoT-periodic solutions of Eq. (.). Thenwe obtain

(
x′
i(t)√

 + x′
i (t)

)′
+ f

(
t,x′

i(t)
)
+ g

(
t,xi(t)

)
= e(t), i = , . (.)

It is easy to see that xi(t) ∈ C[,T] (i = , ). From (.), we know

x′′
 (t)

(
√
 + x′

 (t))
–

x′′
(t)

(
√
 + x′

 (t))

+
(
f
(
t,x′

(t)
)
– f

(
t,x′

(t)
))
+

(
g
(
t,x(t)

)
– g

(
t,x(t)

))
= . (.)

Set z(t) = x(t) – x(t). Now, we prove

z(t) ≤ , for all t ∈R.

Otherwise, we have

max
t∈R

z(t) = max
t∈[,T]

z(t) > .

Then there exists a t* ∈ [,T] such that

x
(
t*

)
– x

(
t*

)
= z

(
t*

)
=max

t∈R
z(t) = max

t∈[,T]
z(t) > , (.)

which implies that

z′(t*) = x′

(
t*

)
– x′


(
t*

)
= , (.)

and

z′′(t*) = x′′

(
t*

)
– x′′


(
t*

) ≤ . (.)

It follows from (.), (.) and (.) that

g
(
t*,x

(
t*

))
– g

(
t*,x

(
t*

))
= –

(
x′′
 (t*)

(
√
 + x′

 (t*))
–

x′′
(t*)

(
√
 + x′

 (t*))

)
–

(
f
(
t*,x′


(
t*

))
– f

(
t*,x′


(
t*

)))
= –


(
√
 + x′

 (t*))
(
x′′

(
t*

)
– x′′


(
t*

))
= –


(
√
 + x′

 (t*))
z′′(t*) ≥ .

From (H), we get

x
(
t*

)
– x

(
t*

) ≤ ,
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which contradicts (.). Thus,

z(t) ≤ , for all t ∈R.

By using a similar argument, we can also show

z(t) ≥ , for all t ∈R.

Hence,

x(t) – x(t) = z(t) = , for all t ∈R.

Therefore, Eq. (.) has at most one T-periodic solution. The proof is completed. �

To prove the main result of this paper, we shall use a continuation theorem [, ] as
follows.

Lemma . Let � be open bounded in a linear normal space X. Suppose that f̃ is a com-
plete continuous field on �.Moreover, assume that the Leray-Schauder degree

deg{̃f ,�,p} 	= , for p ∈ X \ f̃ (∂�).

Then the equation f̃ (x) = p has at least one solution in �.

3 Main result
In this section, we present and prove ourmain result concerning the existence and unique-
ness of anti-periodic solutions of Eq. (.).

Theorem . Let (H) hold.Moreover, assume that the following conditions hold:

(H) there exists l >  such that

∣∣g(t,x) – g(t,x)
∣∣ ≤ l|x – x|, for all t,x,x ∈R;

(H) there exists β ,γ >  such that

γ ≤ lim inf|x|→∞
f (t,x)
x

≤ lim sup
|x|→∞

f (t,x)
x

≤ β , uniformly in t ∈R;

(H) for all t,x ∈R,

f
(
t +

T

,–x

)
= –f (t,x), g

(
t +

T

,–x

)
= –g(t,x), e

(
t +

T


)
= –e(t).

Then Eq. (.) has a unique anti-periodic solution for l · T
π < γ .

Proof Rewrite Eq. (.) in the equivalent form:⎧⎨⎩x′
(t) = ψ(x(t)) = x(t)√

–x(t)
,

x′
(t) = –f (t,ψ(x(t))) – g(t,x(t)) + e(t),

(.)
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where ψ(x) = x√
–x

. Now, we consider the auxiliary equation of (.),

⎧⎨⎩x′
(t) = λ

x(t)√
–x(t)

= λψ(x(t)),

x′
(t) = –λf (t,ψ(x(t))) – λg(t,x(t)) + λe(t),

(.)

where λ ∈ (, ] is a parameter. Set

x(t) =

(
x(t)
x(t)

)
, Q

(
t,x(t),x(t)

)
=

(
ψ(x(t))

–f (t,ψ(x(t))) – g(t,x(t)) + e(t)

)
.

Then Eq. (.) can be reduced to the equation as follows:

x′(t) = λQ
(
t,x(t),x(t)

)
.

By Lemma . and condition (H), it is easy to see that Eq. (.) has at most one anti-
periodic solution. Thus, to prove Theorem ., it suffices to show that Eq. (.) has at least
one anti-periodic solution. To do this, we shall apply Lemma .. Firstly, we will prove that
the set of all possible anti-periodic solutions of Eq. (.) is bounded.
Let x(t) = (x(t),x(t))T ∈ C, 

T (R,R) be an arbitrary possible anti-periodic solution of

Eq. (.). Then x(t) ∈ C, 
T (R,R). Thus, we have

∫ T


x(t)dt =

∫ T



x(t)dt +

∫ T

T


x(t)dt

=
∫ T




x(t)dt +

∫ T



x

(
t +

T


)
dt = .

It follows from Lemma . that

|x|∞ ≤
√

T


∣∣x′

∣∣
.

Obviously, Eq. (.) is equivalent to the following equation:

( 
λ
x′
(t)√

 + 
λ
x′
 (t)

)′
+ λf

(
t,

λ
x′
(t)

)
+ λg

(
t,x(t)

)
= λe(t). (.)

Multiplying (.) by x′
 and integrating from  to T , we have

λ

∫ T


f
(
t,

λ
x′
(t)

)
x′
(t)dt + λ

∫ T


g
(
t,x(t)

)
x′
(t)dt = λ

∫ T


e(t)x′

(t)dt. (.)

Since l · T
π < γ , there exists a constant ε >  such that

l · T
π

< γ – ε. (.)
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For such a ε > , in view of (H), there exists M ≥  such that for all t,x ∈ R, xf (t,x) ≥
(γ – ε)x –M. Hence,∣∣∣∣λ∫ T


f
(
t,

λ
x′
(t)

)
x′
(t)dt

∣∣∣∣ ≥ λ
∫ T


f
(
t,

λ
x′
(t)

)
x′
(t)
λ

dt

≥ (γ – ε)
∫ T



∣∣x′
(t)

∣∣ dt – λM. (.)

It follows from (.) and (.) that

(γ – ε)
∫ T



∣∣x′
(t)

∣∣ dt ≤
∣∣∣∣λ∫ T


f
(
t,

λ
x′
(t)

)
x′
(t)dt

∣∣∣∣ + λM

≤
∣∣∣∣∫ T


g
(
t,x(t)

)
x′
(t)dt

∣∣∣∣ + ∣∣∣∣∫ T


e(t)x′

(t)dt
∣∣∣∣ +M

≤
∫ T



∣∣g(t,x(t)) – g(t, )
∣∣∣∣x′

(t)
∣∣dt

+
∫ T



(∣∣g(t, )∣∣ + ∣∣e(t)∣∣)∣∣x′
(t)

∣∣dt +M

≤ l
∫ T



∣∣x(t)∣∣∣∣x′
(t)

∣∣dt
+ max

t∈[,T]
{∣∣g(t, )∣∣ + ∣∣e(t)∣∣} ∫ T



∣∣x′
(t)

∣∣dt +M.

For u, v ∈ C([a,b],R), we have the Schwarz inequality

∫ b

a

∣∣u(x)∣∣∣∣v(x)∣∣dx≤
(∫ b

a

∣∣u(x)∣∣ dx) 

(∫ b

a

∣∣v(x)∣∣ dx) 

.

Hence,

(γ – ε)
∫ T



∣∣x′
(t)

∣∣ dt ≤ l
(∫ T



∣∣x(t)∣∣ dt) 
 ·

(∫ T



∣∣x′
(t)

∣∣ dt) 


+ max
t∈[,T]

{∣∣g(t, )∣∣ + ∣∣e(t)∣∣}√T
(∫ T



∣∣x′
(t)

∣∣ dt) 

+M

= l|x|
∣∣x′


∣∣
 +

√
T

∣∣x′

∣∣
 max
t∈[,T]

{∣∣g(t, )∣∣ + ∣∣e(t)∣∣} +M

≤ l · T
π

∣∣x′

∣∣
 +

√
T

∣∣x′

∣∣
 max
t∈[,T]

{∣∣g(t, )∣∣ + ∣∣e(t)∣∣} +M. (.)

From (.) and (.), we know that there exists a constant D >  such that

∣∣x′

∣∣
 ≤ D, and |x|∞ ≤ D. (.)

By the first equation of (.), we have

∫ T



x(t)√
 – x(t)

dt = .
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Then there exists η ∈ [,T] such that x(η) = . It follows that x(t) = x(η) +
∫ t
η
x′
(s)ds,

and so

|x|∞ ≤
∫ T



∣∣x′
(t)

∣∣dt.
According to (H), we know there existsM ≥  such that for all t,x ∈R,

∣∣f (t,x)∣∣ ≤ (β + )|x| +M.

From the second equation of (.), we get

∫ T



∣∣x′
(t)

∣∣dt ≤
∫ T


λ

∣∣∣∣f(t, λx′
(t)

)∣∣∣∣dt + ∫ T



∣∣g(t,x(t))∣∣dt + ∫ T



∣∣e(t)∣∣dt
≤ (β + )

∫ T



∣∣x′
(t)

∣∣dt + λMT +
∫ T



∣∣g(t,x(t))∣∣dt + ∫ T



∣∣e(t)∣∣dt
≤ (β + )

√
T

∣∣x′

∣∣
 +

∫ T



∣∣g(t,x(t))∣∣dt + ∫ T



∣∣e(t)∣∣dt +MT .

From (.), we know that there exists a constant k >  such that

∣∣g(t,x(t)∣∣ ≤ k, ∀t ∈ [,T].

Thus,

∫ T



∣∣x′
(t)

∣∣dt ≤ (β + )
√
TD + kT + T max

t∈[,T]
∣∣e(t)∣∣ +MT ,

which implies that there exists a constant D >  such that

|x|∞ ≤ D.

Let

M =max{D,D} + . (.)

Set

� =
{
x ∈ C, 

T
(
R,R) = X : ‖x‖ <M

}
.

Then Eq. (.) has no anti-periodic solution on ∂� for λ ∈ (, ].
Next, we consider the Fourier series expansions of two functions xj(t) ∈ Ck, 

T (R,R)
(j = , ). We have

xj(t) =
∞∑
i=

[
aji+ cos

π (i + )t
T

+ bji+ sin
π (i + )t

T

]
.

http://www.boundaryvalueproblems.com/content/2012/1/109
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Define an operator L : C
k, 
T (R,R)→ Ck+, 

T (R,R) by setting

(Lxj)(t) =
∫ t


xj(s)ds –

T
π

∞∑
i=

bji+
i + 

=
T
π

∞∑
i=

[
aji+
i + 

sin
π (i + )t

T
–

bji+
i + 

cos
π (i + )t

T

]
.

Then

d
dt

(Lxj)(t) = xj(t),

and

∣∣(Lxj)(t)∣∣ ≤
∫ T



∣∣xj(s)∣∣ds + T
π

∞∑
i=

|bji+|
i + 

≤ T |xj|∞ +
T
π

( ∞∑
i=

(
bji+

)) 

( ∞∑

i=


(i + )

) 


.

Since

( ∞∑
i=


(i + )

) 


=
π


√

,

and

∫ T



∣∣xj(s)∣∣ ds = T


∞∑
i=

[(
aji+

) + (
bji+

)],
we obtain

∣∣(Lxj)(t)∣∣ ≤ T |xj|∞ +
T


√


( ∞∑
i=

[(
aji+

) + (
bji+

)]) 


≤ T |xj|∞ +
T


√


(

T

∫ T



∣∣xj(s)∣∣ ds) 


≤
(
T +

T


)
|xj|∞.

Define L : Ck, 
T (R,R) → Ck+, 

T (R,R) by setting

(Lx)(t) = L

(
x(t)
x(t)

)
=

(
(Lx)(t)
(Lx)(t)

)
.

Then |Lx|∞ ≤ (T + T
 )|x|∞, and thus L is continuous.

http://www.boundaryvalueproblems.com/content/2012/1/109
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For any x(t) ∈ C, 
T (R,R), we know from (H) that

Q

(
t +

T

,x

(
t +

T


)
,x

(
t +

T


))
= –Q

(
t,x(t),x(t)

)
.

Therefore, Q(t,x(t),x(t)) ∈ C, 
T (R,R). Define an operator Fμ : � → C, 

T (R,R) ⊂ X
by setting

Fμ(x) = μL
(
Q

(
t,x(t),x(t)

))
, μ ∈ [, ].

It is easy to see that Fμ is a compact homotopy, and the fixed point of F on � is the anti-
periodic of Eq. (.).
Define a homotopic field as follows:

Hμ(x) :� × [, ] → C, 
T

(
R,R), Hμ(x) = x – Fμ(x).

From (.), we have

Hμ(∂�) 	= , μ ∈ [, ].

Using the homotopy invariance property of degree, we obtain

deg
{
x – F(x),�, 

}
= deg{x,�, } 	= .

Till now, we have proved that� satisfies all the requirements in Lemma .. Consequently,
x – F(x) =  has at least one solution in �, i.e., F has a fixed point x(t) = (x(t),x(t))T

on �. Therefore, Eq. (.) has at least one anti-periodic solution x(t). This completes the
proof. �

4 An example
In this section, we shall construct an example to show the applications of Theorem ..

Example . Let f (t,x) = ( + 
 sin

 t) x√
+x

, g(t,x) = –( + sin t) · x
 . Then the prescribed

mean curvature Rayleigh equation

(
x′

√
 + x′

)′
+ f

(
t,x′(t)

)
+ g

(
t,x(t)

)
= cos t (.)

has a unique anti-periodic solution with period π .

Proof Let T = π . From the definitions of f (t,x) and g(t,x), we can easily check that con-
ditions (H) and (H) hold. Moreover, it is easy to see that (H) holds for l = 

 and (H)
holds for γ = , β = 

 . Since l · T
π < γ , we know from Theorem . that Eq. (.) has a

unique anti-periodic solution with period π . �
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