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1 Introduction
In this article, we study the existence and multiplicity of solutions for the differential

inclusion problem with singular coefficients involving the p(x)-Laplacian of the form{−div(|∇u|p(x)−2∇u) ∈ λa1(x)∂G1(x, u) + μa2(x)∂G2(x, u) in �,
u = 0 on ∂�,

(1:1)

where the following conditions are satisfied:

(P) Ω is a bounded open domain in ℝN, N ≥ 2, p ∈ C(�̄) , 1 < p- := infΩ p(x) ≤ p+ :=

supΩ p(x) <+∞, l, μ Î ℝ.

(A) For i = 1, 2, ai ∈ Lri(x)(�), ai(x) > 0 for x Î Ω, Gi(x, u) is measurable with

respect to x (for every u Î ℝ) and locally Lipschitz with respect to u (for a.e. x Î Ω),

∂Gi : Ω × ℝ ® ℝ is the Clarke sub-differential of Gi and |ξi| ≤ c1 + c2|t|qi(x)−1 for x Î

Ω, t Î ℝ and ξi Î ∂Gi, where ci is a positive constant, ri, qi ∈ C
(
�̄

)
, r−i > 1, q−

i > 1 , ri

(x) >qi(x) for all x Î Ω, and

qi(x) <
ri(x) − qi(x)

ri(x)
p∗(x), ∀x ∈ �, (1:2)

here

p∗(x) =

{
Np(x)
N−p(x) if p(x) < N,

∞ if p(x) ≥ N.
(1:3)

(A1)q+1 < p−.
(A2)q

−
2 > p+.
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A typical example of (1.1) is the following problem involving subcritical Sobolev-

Hardy exponents of the form⎧⎨⎩ −div(|∇u|p(x)−2∇u) ∈ λ
1

|x|s1(x) ∂G1(x, u) + μ
1

|x|s2(x) ∂G2(x, u) in �,

u = 0 on ∂�,
(1:4)

and in this case the assumption corresponding to (A) is the following

(A)∗0 ∈ �̄ , for i = 1, 2, ∂Gi : Ω × ℝ ® ℝ is the Clarke sub-differential of Gi and

|ξi| ≤ c1 + c2|t|qi(x)−1 for x Î Ω, t Î ℝ and ξi Î ∂Gi, where ci is a positive constant,

si, qi ∈ C
(
�̄

)
, 0 ≤ s−i ≤ s+i < N, q−

i > 1 , and

qi(x) <
N − si(x)qi(x)

N
p∗(x),∀x ∈ �̄. (1:5)

The operator -div(|∇u|p(x)-2 ∇u) is said to be the p(x)-Laplacian, and becomes

p-Laplacian when p(x) ≡ p (a constant). The p(x)-Laplacian possesses more compli-

cated nonlinearities than the p-Laplacian; for example, it is inhomogeneous. The study

of various mathematical problems with variable exponent growth condition has been

received considerable attention in recent years. These problems are interesting in

applications and raise many difficult mathematical problems. One of the most studied

models leading to problem of this type is the model of motion of electro-rheological

fluids, which are characterized by their ability to drastically change the mechanical

properties under the influence of an exterior electro-magnetic field [1,2]. Problems

with variable exponent growth conditions also appear in the mathematical modeling of

stationary thermo-rheological viscous flows of non-Newtonian fluids and in the mathe-

matical description of the processes filtration of an ideal baro-tropic gas through a por-

ous medium [3,4]. Another field of application of equations with variable exponent

growth conditions is image processing [5]. The variable nonlinearity is used to outline

the borders of the true image and to eliminate possible noise. We refer the reader to

[6-11] for an overview of and references on this subject, and to [12-21] for the study

of the p(x)-Laplacian equations and the corresponding variational problems.

Since many free boundary problems and obstacle problems may be reduced to partial

differential equations with discontinuous nonlinearities, the existence of multiple solu-

tions for Dirichlet boundary value problems with discontinuous nonlinearities has been

widely investigated in recent years. Chang [22] extended the variational methods to a

class of non-differentiable functionals, and directly applied the variational methods for

non-differentiable functionals to prove some existence theorems for PDE with discon-

tinuous nonlinearities. Later Kourogenis and Papageorgiou [23] obtained some non-

smooth critical point theories and applied these to nonlinear elliptic equations at

resonance, involving the p-Laplacian with discontinuous nonlinearities. In the cele-

brated work [24,25], Ricceri elaborated a Ricceri-type variational principle and a three

critical points theorem for the Gâteaux differentiable functional, respectively. Later,

Marano and Motreanu [26,27] extended Ricceri’s results to a large class of non-differ-

entiable functionals and gave some applications to differential inclusion problems

involving the p-Laplacian with discontinuous nonlinearities.
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In [21], by means of the critical point theory, Fan obtain the existence and multipli-

city of solutions for (1.1) under the condition of Gi(x, ·) ∈ C1(R) and gi = G′
i satisfying

the Carathéodory condition for i = 1, 2, x Î Ω. The aim of the present article is to

generalize the main results of [21] to the case of the functional of problem (1.1) is

nonsmooth.

This article is organized as follows: In Section 2, we present some necessary preli-

minary knowledge on variable exponent Sobolev spaces and the generalized gradient of

the locally Lipschitz function; In Section 3, we give the variational principle which is

needed in the sequel; In Section 4, using the critical point theory, we prove the exis-

tence and multiplicity results for problem (1.1).

2 Preliminaries
2.1 Variable exponent Sobolev spaces

Let Ω be a bounded open subset of ℝN, denote

L∞
+ (�) = {p ∈ L∞(�) : ess inf�p(x) ≥ 1} .
For p ∈ L∞

+ (�) , denote

p− = p−(�) = ess inf
x∈�

p(x), p+ = p+(�) = ess sup
x∈�

p(x).

On the basic properties of the space W1,p(x)(Ω) we refer to [7,28-30]. Here we display

some facts which will be used later.

Denote by S(Ω) the set of all measurable real functions defined on Ω. Two functions

in S(Ω) are considered as the same element of S(Ω) when they are equal almost every-

where. For p ∈ L∞
+ (�) , define the spaces Lp(x) (Ω) and W1,p(x) (Ω) by

Lp(x) (�) =

⎧⎨⎩u ∈ S(�) :
∫
�

|u(x)|p(x)dx < ∞
⎫⎬⎭

with the norm

|u|Lp(x)(�) = |u|p(x) = inf

⎧⎨⎩λ > 0 :
∫
�

∣∣∣∣u(x)λ

∣∣∣∣p(x)dx ≤ 1

⎫⎬⎭ ,

and

W1,p(x) (�) =
{
u ∈ Lp(x) (�) : |∇u| ∈ Lp(x) (�)

}
with the norm

||u||W1,p(x) (�) = |u|Lp(x)(�) + |∇u|Lp(x)(�).

Denote by W1,p(x)
0 (�) the closure of C∞

0 (�) in W1,p(x) (Ω) . Hereafter, we always

assume that p- >1.

Proposition 2.1. [7,31]The spaces Lp(x) (Ω) , W1,p(x) (Ω) and W1,p(x)
0 (�) are separ-

able and reflexive Banach spaces.

Proposition 2.2. [7,31]The conjugate space of Lp(x) (Ω) is Lp
0(x)(�) , where

1
p(x) +

1
p0(x) = 1 . For any u Î Lp(x) (Ω) and v Î Lp

0(x)(�) ,
∫
�

|uv|dx ≤ 2|u|p(x)|v|p0(x) .
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Proposition 2.3. [7,31]In W1,p(x)
0 (�) the Poincaré inequality holds, that is, there

exists a positive constant c such that

|u|Lp(x)(�) ≤ c|∇u|Lp(x)(�) , ∀u ∈ W1,p(x)
0 (�) .

So |∇u|Lp(x)(�) is an equivalent norm in W1,p(x)
0 (�).

Proposition 2.4. [7,28,29,31]Assume that the boundary of Ω possesses the cone prop-

erty and p ∈ C(�̄) . If q ∈ C(�̄) and 1 ≤ q(x) < p∗(x) for x ∈ �̄ , then there is a com-

pact embedding W1,p(x)(Ω) ® Lq(x) (Ω).

Let us now consider the weighted variable exponent Lebesgue space.

Let a Î S(Ω) and a(x) >0 for x Î Ω. Define

Lp(x)a(x) (�) =

⎧⎨⎩u ∈ S(�) :
∫
�

a(x)
∣∣u(x)∣∣p(x)dx < ∞

⎫⎬⎭
with the norm

|u|Lp(x)a(x)(�)
= |u|(p(x),a(x)) = inf

⎧⎨⎩λ > 0 :
∫
�

a(x)

∣∣∣∣u(x)λ

∣∣∣∣p(x)dx ≤ 1

⎫⎬⎭ ,

then Lp(x)a(x)(�) is a Banach space. The following proposition follows easily from the

definition of |u|Lp(x)a(x)(�) .

Proposition 2.5. (see [7,31]) Set r(u) = ∫Ω a(x)|u(x)|p(x) dx. For u, uk ∈ Lp(x)a(x)(�), we

have

(1) For u 
= 0, |u|(p(x),a(x)) = λ ⇔ ρ
( u

λ

)
= 1.

(2) |u|(p(x),a(x)) < 1 (= 1;> 1) ⇔ ρ(u) < 1 (= 1;> 1).

(3) If |u|(p(x),a(x)) > 1, then|u|p−

(p(x),a(x)) ≤ ρ (u) ≤ |u|p+(p(x),a(x)).

(4) If |u|(p(x),a(x)) < 1, then|u|p+(p(x),a(x) ≤ ρ (u) ≤ |u|p−

(p(x),a(x)).

(5) lim
k→∞

|uk|(p(x),a(x)) = 0 ⇔ lim
k→∞

ρ(uk) = 0.

(6) |uk|(p(x),a(x)) → ∞ ⇔ ρ(uk) → ∞.

Proposition 2.6. (see [21]) Assume that the boundary of Ω possesses the cone property

and p ∈ C(�̄) . Suppose that a Î Lr(x)(Ω), a(x) >0 for x Î Ω, r ∈ C(�̄) and r- > 1.

If q ∈ C(�̄) and

1 ≤ q(x) <
r(x) − 1
r(x)

p∗(x) := p∗
a(x)(x), ∀x ∈ �̄, (2:1)

then there is a compact embedding W1,p(x)(�) → Lq(x)a(x)(�) .

The following proposition plays an important role in the present article.
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Proposition 2.7. Assume that the boundary of Ω possesses the cone property and

p ∈ C(�̄) . Suppose that a Î Lr(x)(Ω), a(x) >0 for x Î Ω, r ∈ C(�̄) and r(x) > q(x) for

all x Î Ω. If q ∈ C(�̄) and

1 ≤ q(x) <
r(x) − q(x)

r(x)
p∗(x),∀x ∈ �̄, (2:2)

then there is a compact embedding W1,p(x)(�) → Lq(x)
(a(x))q(x)

(�) .

Proof. Set r1(x) =
r(x)
q(x) , then r−1 > 1 and (a(x))q(x) ∈ Lr1(x)(�) . Moreover, from (2.2)

we can get

1 ≤ q(x) <
r1(x) − 1
r1(x)

p∗(x), ∀x ∈ �̄.

Using Proposition 2.6, we see that the embedding W1,p(x)(�) → Lq(x)
(a(x))q(x)

(�) is

compact.

■

2.2 Generalized gradient of the locally Lipschitz function

Let (X, || · ||) be a real Banach space and X* be its topological dual. A function f : X ®
ℝ is called locally Lipschitz if each point u Î X possesses a neighborhood Ωu such that

|f(u1) - f(u2)| ≤ L||u1 - u2|| for all u1, u2 Î Ωu, for a constant L >0 depending on Ωu.

The generalized directional derivative of f at the point u Î X in the direction v Î X is

f 0(u, v) = lim sup
w→u,t→0

1
t
(f (w + tv) − f (w)).

The generalized gradient of f at u Î X is defined by

∂f (u) = {u∗ ∈ X∗ : 〈u∗,ϕ〉 ≤ f 0(u;ϕ) for all ϕ ∈ X},

which is a non-empty, convex and w*-compact subset of X, where 〈·,·〉 is the duality

pairing between X* and X. We say that u Î X is a critical point of f if 0 Î ∂f(u). For

further details, we refer the reader to Chang [22].

We list some fundamental properties of the generalized directional derivative and

gradient that will be used throughout the article.

Proposition 2.8. (see [22,32]) (1) Let j : X ® ℝ be a continuously differentiable func-

tion. Then ∂j(u) = {j’(u)}, j0(u; z) coincides with 〈j’ (u), z〉X and (f + j)0(u, z) = f0(u; z) +

〈j’ (u), z〉X for all u, z Î X.

(2) The set-valued mapping u ® ∂f(u) is upper semi-continuous in the sense that for

each u0 Î X, ε >0, v Î X, there is a δ >0, such that for each w Î ∂f (u) with ||w - u0||

< δ, there is w0 Î ∂f (u0)

|〈w − w0, v〉| < ε.

(3) (Lebourg’s mean value theorem) Let u and v be two points in X. Then there exists

a point w in the open segment joining u and v and x∗
w ∈ ∂f (w) such that
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f (u) − f (v) = 〈x∗
w, u − v〉X.

(4) The function

m(u) = min
w∈∂ f (u)

wX∗

exists, and is lower semi continuous; i.e., lim inf
u→u0

m(u) ≥ m(u0) .

In the following we need the nonsmooth version of Palais-Smale condition.

Definition 2.1. We say that � satisfies the (PS)c-condition if any sequence {un} ⊂ X

such that �(un) ® c and m(un) ® 0, as n ® +∞, has a strongly convergent subse-

quence, where m(un) = inf{||u*||X* : u* Î ∂� (un)}.

In what follows we write the (PS)c-condition as simply the PS-condition if it holds

for every level c Î ℝ for the Palais-Smale condition at level c.

3 Variational principle
In this section we assume that Ω and p(x) satisfy the assumption (P). For simplicity we

write X = W1,p(x)
0 (�) and ||u|| = |∇u|p(x) for u Î X. Denote by un ⇀ u and un ® u the

weak convergence and strong convergence of sequence {un} in X, respectively, denote by

c and ci the generic positive constants, Br = {u Î X : ||u|| < r}, Sr = {u Î X : ||u|| = r}.
Set

F(x, t) = λa1(x)G1(x, t) + μa2(x)G2(x, t), (3:1)

where ai and Gi (i = 1, 2) are as in (A).

Define the integral functional

ϕ(u) =
∫
�

1
p(x)

|∇u|p(x)dx −
∫
�

F(x, u)dx,∀u ∈ X. (3:2)

We write

J(u) =
∫
�

1
p(x)

|∇u|p(x)dx, 	(u) =
∫
�

F(x, u)dx,

then it is easy to see that J Î C1(X, ℝ) and � = J - Ψ.

Below we give several propositions that will be used later.

Proposition 3.1. (see [19]) The functional J : X ® ℝ is convex. The mapping J’ : X ®
X* is a strictly monotone, bounded homeomorphism, and is of (S+) type, namely

un ⇀ u and limn→∞J′(un)(un − u) ≤ 0 implies un → u.

Proposition 3.2. Ψ is weakly-strongly continuous, i.e., un ⇀ u implies Ψ(un) ® Ψ(u).

Proof. Define ϒ1 = ∫Ω G1(x, u) dx and ϒ2 = ∫Ω G2(x, u) dx. In order to prove Ψ is

weakly-strongly continuous, we only need to prove ϒ1 and ϒ2 are weakly-strongly con-

tinuous. Since the proofs of ϒ1 and ϒ2 are identical, we will just prove ϒ1.

We assume un ⇀ u in X. Then by Proposition 2.8.3, we have

ϒ1(un) − ϒ1(u) =
∫
�

(G1(x, un) − G1(x, u))dx

=
∫
�

ξn(x)(un − u)dx,
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where ξn Î ∂G1(,τn(x)) for some τn(x) in the open segment joining u and un. From

Chang [22] we know that ξn ∈ Lq
0
1(x)(�) . So using Proposition 2.5, we have

ϒ1(un) − ϒ1(u) → 0.

■
Proposition 3.3. Assume (A) holds and F satisfies the following condition:

(B) F(x, u) ≤ θλa1(x)〈ξ1, u〉 + θμa2(x)〈ξ2, u〉 + b(x) +
∑m

i=1 di(x)|u|ki(x) for a.e.x Î Ω,

all u Î X and ξ1 Î ∂G1, ξ2 Î ∂G2, where θ is a constant,

hi, ki ∈ C(�̄), ki(x) <
hi(x)−1
hi(x)

p∗(x) for x ∈ �, k+i < p− ,

hi, ki ∈ C(�̄), ki(x) <
hi(x)−1
hi(x)

p∗(x) for x ∈ �, k+i < p− .

Then � satisfies the nonsmooth (PS) condition on X.

Proof. Let {un} be a nonsmooth (PS) sequence, then by (B) we have

c + 1 + ‖un‖ ≥ ϕ(un) − θ〈ω, un〉

=
∫
�

(
1

p(x)
− θ

)
|∇un|p(x)dx

−
∫
�

(F(x, un) − θλa1(x)〈ξ1, un〉 − θμa2(x)〈ξ2, un〉)dx

≥
(
1
p+

− θ

)
||un||p− − c1 −

∫
�

(
b(x) +

m∑
i=1

di(x)|un|ki(x)
)
dx

≥
(
1
p+

− θ

)
||un||p− − c2 −

m∑
i=1

|un|k
+
i
(ki(x),di(x))

≥
(
1
p+

− θ

)
||un||p− − c2 − c3

m∑
i=1

||un||k+i ,

and consequently {un} is bounded.

Thus by passing to a subsequence if necessary, we may assume that un ⇀ u in X as

n ® ∞. We have

〈J′(un), un − u〉 −
∫
�

λξ1n(x)a1(x)(un − u)−
∫
�

μξ2n(x)a2(x)(un − u)dx ≤ εn||un − u||

with εn ↓ 0, where ξin(x) Î ∂Gi(x, un) for a.e. x Î Ω, i = 1, 2. From Chang [22] or

Theorem 1.3.10 of [33], we know that ξin(x) ∈ Lq
0
1(x), i = 1, 2 . Since X is embedded

compactly in Lqi(x)
(ai(x))

qi(x)
(�) , we have that un ® u as n ® ∞ in Lqi(x)

(ai(x))
qi(x)

(�), i = 1, 2 .

So using Proposition 2.2, we have∫
�

ξin(x)ai(x)(un − u)dx → 0 as n → ∞ , i = 1, 2.

Therefore we obtain lim sup
n→∞

〈J′(un), un − u〉 ≤ 0. But we know that J’ is a mapping of

type (S+). Thus we have
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un → u inX.

Remark 3.1. Note that our condition (1.2) is stronger than (1.2) of [21]. Because Ψ’

is weakly-strongly continuous in [21], to verify that � satisfies (PS) condition on X, it is

enough to verify that any (PS) sequence is bounded. However, in this paper we do not

know whether ξ(u) is weakly-strongly continuous, where ξ(u) Î ⇀Ψ. Therefore, it will

be very useful to consider this problem.

Below we denote

F1(x, t) = λa1(x)G1(x, t), F2(x, t) = μa2(x)G2(x, t).

We shall use the following conditions.

(B1) ∃ c0 >0 such that G2(x, t) ≥ - c0 for x Î Ω and t Î ℝ.

(B2) ∃ θ ∈
(
0, 1

p+

)
and M >0 such that 0 < G2(x, u) ≤ θ 〈u, ξ2〉 for xÎ Ω, u Î X and

|u| ≥ M, ξ2 Î ⇀G2.

Corollary 3.1. Assume (P), (A) and (A1) hold. Then � satisfies nonsmooth (PS) condi-

tion on X provided either one of the following conditions is satisfied.

(1). l Î ℝ and μ = 0.

(2). l Î ℝ, μ = 0 and (B1) holds.

(3). l Î ℝ, μ Î ℝ and (B2) holds.

Proof. In case (1) or (2), we have, for x Î Ω and t Î ℝ,

F(x, t) ≤ F1(x, t) + |μ|c0a2(x) ≤ (c1a1(x) + |μ|c0a2(x)) + c2a1(x)|t|q1(x),

which shows that the condition (B) with θ = 0 is satisfied.

In case (3), noting that (B2) and (A) imply (B1), by the conclusion (1) and (2) we

know � satisfies (PS) condition if μ ≤ 0. Below assume μ > 0. The conditions (B2) and

(A) imply that, for x Î Ω and u Î X,

G2(x, u) ≤ θ〈u, ξ2〉 + c3, andF2(x, u) ≤ θμa2(x)〈u, ξ2〉 + c3μa2(x),

so we have

F(x, u) − θλa1(x)〈ξ1, u〉 − θμa2(x)〈ξ2, u〉 = (F1(x, u) − θλa1(x)〈ξ1, u〉)
+ (F2(x, u) − θμa2(x)〈ξ2, u〉)
≤ c1a1(x) + c2a1(x)|u|q1(x) + c3μa2(x),

which shows (B) holds. The proof is complete. ■
As X is a separable and reflexive Banach space, there exist (see [[34], Section 17])

{en}∞n=1 ⊂ X and
{
fn

}∞
n=1 ⊂ X∗ such that

fn (em) = δn,m =
{
1 if n = m
0 if n 
= m,

X = span{en : n = 1, 2, . . . , }, X∗ = spanW∗{fn : n = 1, 2, . . . , }.
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For k = 1, 2, . . . , denote

Xk = span{ ek} , Yk = ⊕k
j=1Xj, Zk = ⊕∞

j=kXj. (3:3)

Proposition 3.5. [35]Assume that Ψ : X ® ℝ is weakly-strongly continuous and Ψ (0)

= 0. Let g >0 be given. Set

βk = βk(γ ) = sup
u∈Zk,‖u‖≤γ

|	(u)|.

Then bk ® 0 as k ® ∞.

Proposition 3.6. (Nonsmooth Mountain pass theorem, see [23,33]) If X is a reflexive

Banach space, � : X ® ℝ is a locally Lipschitz function which satisfies the nonsmooth

(PS)c-condition, and for some r >0 and e1 Î X with ||e1|| > r, max{�(0), �(e1)} ≤·inf

{�(u) : ||u|| = r}. Then � has a nontrivial critical u Î X such that the critical value c =

�(u) is characterized by the following minimax principle

c = inf
γ∈�

max
t∈[0,1]

ϕ(γ (t)

where Γ = {g Î C([0, 1], X) : g(0) = 0, g(1) = e1}.

Proposition 3.7. (Nonsmooth Fountain theorem, see [36]) Assume (F1) X is a

Banach space, � : X ® ℝ be an invariant locally Lipschitz functional, the subspaces Xk,

Yk and Zk are defined by (3.3).

If, for every k Î N, there exist rk > rk >0 such that

(F2)
ak := inf

u∈Zk

||u||=rk

ϕ(u) → ∞, k → ∞,

(F3)
bk := max

u∈Yk
||u||=ρk

ϕ(u) ≤ 0,

(F4) � satisfies the nonsmooth (PS)c condition for every c >0, then � has an

unbounded sequence of critical values.

Proposition 3.8. (Nonsmooth dual Fountain theorem, see [37]) Assume (F1) is satis-

fied and there is a k0 >0 such that, for each k ≥ k0, there exists rk > gk >0 such that

(D1)
ak := inf

u∈Zk

||u||=ρk

ϕ(u) ≥ 0,

(D2)
bk := max

u∈Yk
||u||=rk

ϕ(u) < 0,

(D3)
dk := inf

u∈Zk

||u||≤ρk

ϕ(u) → 0, k → ∞,

(D4) � satisfies the nonsmooth (PS)∗c condition for every c ∈ [dk0 , 0) , then � has a

sequence of negative critical values converging to 0.

Remark 3.2. We say � that satisfies the nonsmooth (PS)∗c condition at level c Î ℝ

(with respect to (Yn)) if any sequence {un} ⊂ X such that

nj → ∞, unj ∈ Ynj ,ϕ(unj ) → c,m|Ynj (un) → 0

contains a subsequence converging to a critical point of �.
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4 Existence and multiplicity of solutions
In this section, using the critical point theory, we give the existence and multiplicity

results for problem (1.1). We shall use the following assumptions:

(O1) ∃δ1 > 0, c3 > 0 and q3 ∈ C(�̄)with q3(x) < p∗
a1(x)

(x) for x ∈ �̄ and q+3 <

p−,
such

that

G1(x, t) ≥ c3t
q3(x), ∀x ∈ �, ∀t ∈ (0, δ1] .

(O2) ∃δ2 > 0, c4 > 0 and q4 ∈ C(�̄)with q4(x) < p∗
a2(x)

(x) for x ∈ �̄ and q−
4 >

p+,
such

that

|G2(x, t)| ≤ c4|t|q4(x), ∀x ∈ �, ∀|t| ≤ δ2.

(S) For i = 1, 2, Gi(x, -t) = Gi(x, t), ∀x Î Ω, ∀t Î ℝ.

Remark 4.1.

(1) It follows from (A), (A2) and (O2) that∣∣G2(x, t)
∣∣ ≤ c4|t|q4(x) + c5|t|q2(x) ,∀x ∈ �, ∀t ∈ R.

(2)It follows from (A) and (B2) that (see [33, p. 298])

G(x, t) ≥ c6|t|1/θ − c7,∀x ∈ �,∀t ∈ R.

The following is the main result of this article.

Theorem 4.1. Assume (P), (A), (A1) hold.

(1) If (B1) holds, then for every l Î ℝ and μ ≤ 0, problem (1.1) has a solution which

is a minimizer of the corresponding functional �.

(2) If (B1), (A2), (O1), (O2) hold, then for every l >0 and μ ≤ 0, problem (1.1) has a

nontrivial solution v1 such that v1 is a minimizer of � and �(v1) <0.

(3) If (A2), (B2), (O2) hold, then for every μ >0, there exists l0(μ) >0 such that when |

l| ≤ l0(μ), problem (1.1) has a nontrivial solution u1 such that �(u1) >0.

(4) If (A2), (B2), (O1), (O2) holds, then for every μ >0, there exists l0(μ) >0 such that

when 0 < l ≤ l0(μ), problem (1.1) has two nontrivial solutions u1 and v1 such that

�(u1) >0 and �(v1) <0.

(5) If (A2), (B2), (O1), (O2) and (S) holds, then for every μ >0 and l Î ℝ, problem

(1.1) has a sequence of solutions {±uk} such that �(±uk) ® ∞ as k ® ∞.

(6) If (A2), (B2), (O1), (O2) and (S) holds, then for every l >0 and μ Î ℝ, problem

(1.1) has a sequence of solutions {±vk} such that �(±vk) <0 and �(±vk) ® 0 as k ® ∞.

Proof. We will use c, c’ and ci as a generic positive constant. By Corollary 3.1, under

the assumptions of Theorem 4.1, � satisfies nonsmooth (PS) condition. We write

	1(u) = λ

∫
�

a1(x)G1(x, u)dx, 	2(u) = μ

∫
�

a2(x)G2(x, u) dx,

then Ψ = Ψ1 + Ψ2, �(u) = J(u) - Ψ (u) = J(u) - Ψ1(u) - Ψ2(u). Firstly, we use 	̂i to

denote its extension to Lqi(x)(�) , where i = 1, 2. From (A) and Theorem 1.3.10 of [33]

(or Chang [22]), we see that 	̂i (u) is locally Lipschitz on Lqi(x)(�) and
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∂	̂i(u) ⊆ {ξi(x) ∈ Lq
0
i (�) : ξi(u) ∈ ∂Gi(x, u)} for a.e. x Î Ω and i = 1, 2. In view of

Proposition 2.4 and Theorem 2.2 of [22], we have that 	i = 	̂i|X is also locally

Lipschitz, and ∂Ψ1(u) ⊆ l ∫Ω a1(x) ∂G1(x, u) dx, ∂Ψ2(u) ⊆ μ ∫Ω a2(x) ∂G1(x, u) dx, (see

[38]), where 	̂i|X stands for the restriction of 	̂i to X for i = 1, 2. Therefore, � is a

locally Lipschitz functional on X.

(1) Let l Î ℝ and μ ≤ 0. By (A),

|	1(u)| ≤ c1

∫
�

a1(x)|u|q1(x)dx + c2 ≤ c1(|u|
(
q1(x),a1(x)

)q+1 + c3 ≤ c4||u||q+1 + c3.

By (B1), Ψ2(u) ≤ - μc0 ∫Ω a2(x) dx = c5. Hence ϕ(u) ≥ 1
p+ ||u||p

− − c4||u||q+1 − c6. By

(A1), q+1 < p− , so � is coercive, that is, �(u) ® ∞ as ||u|| ® ∞. Thus � has a minimize

which is a solution of (1.1).

(2) Let l >0, μ ≤ 0 and the assumptions of (2) hold. By the above conclusion (1), �

has a minimize v1. Take v0 ∈ C∞
0 (�) such that 0 ≤ v0(x) ≤ min{δ1, δ2},∫

�
a1(x)v0(x)q3(x)dx = d1 > 0 and

∫
�
a2(x)v0(x)q4(x)dx = d2 > 0 . By (O1) and (O2) we

have, for t Î (0, 1) small enough,

ϕ(tv0) =
∫
�

1
p(x)

|t∇v0|p(x)dx − λ

∫
�

a1(x)G1(x, tv0(x))dx − μ

∫
�

a2(x)G2(x, tv0(x))dx

≤ tp
−

∫
�

1
p(x)

|∇v0|p(x)dx − λ

∫
�

a1(x)c3(tv0(x))q3(x)dx

− μ

∫
�

a2(x)c4(tv0(x))q4(x)dx

≤ tp
−

∫
�

1
p(x)

|∇v0|p(x)dx − tq
+
3λc3d1 − tq

−
4 μc4d2.

Since q+3 < p− < q−
4 , we can find t0 Î (0, 1) such that �(t0v0) <0, and this shows

�(v1) = infuÎX �(u) <0. So v1 ≠ 0 because �(0) = 0. The conclusion (2) is proved.

(3) Let μ >0 and the assumptions of (3) hold. By Remark 4.1.(1), for sufficiently small

||u||

	2(u) ≤ μ

∫
�

a2(x)
(
c4|u|q4(x) + c5|u|q2(x)

)
dx

≤ μc4
(|u|(q4(x),a2(x)))q−

4 + μc5
(|u|(q2(x),a2(x)))q−

2

≤ μc8
(
||u||q−

4 + ||u||q−
2

)
.

Since p+ < q−
2 and p+ < q−

4 , there exists g >0 and a >0 such that J(u) - Ψ2(u) ≥ a

for u Î Sg. We can find l0(μ) >0 such that when |l| ≤ l0(μ), Ψ1(u) ≤ a/2 for u Î Sg.

So when |l| ≤ l0(μ), �(u) ≥ a/2 > 0 for u Î Sg. By Remark 4.1.(2), noting that

1
/
θ > p+ > q+1 , we can find a u0 Î X such that ||u0|| > g and �(u0) < 0. By Proposi-

tion 3.6 problem (1.1) has a nontrivial solution u1 such that �(u1) >0.

(4) Let μ >0 and the assumptions of (4) hold. By the conclusion (3), we know that,

there exists l0(μ) >0 such that when 0 < l ≤ l0(μ), problem (1.1) has a nontrivial
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solution u1 such that �(u1) >0. Let g and a be as in the proof of (3), that is, �(u) ≥ a/2
> 0 for u Î Sg. By (O1), (O2) and the proof of (2), there exists w Î X such that ||w|| <

g and �(w) < 0. It is clear that there is v1 Î Bg, a minimizer of � on Bg. Thus v1 is a

nontrivial solution of (1.1) and �(v1) < 0.

(5) Let μ >0, l Î ℝ and the assumptions of (5) hold. By (S), we can use the non-

smooth version Fountain theorem with the antipodal action of ℤ2 to prove (5) (see

Proposition 3.7). Denote

	(u) =
∫
�

F(x, u)dx = λ

∫
�

a 1(x)G1(x, u)dx + μ

∫
�

a 2(x)G2(x, u)dx.

Let bk(g) be as in Proposition 3.5. By Proposition 3.5, for each positive integer n,

there exists a positive integer k0(n) such that bk(n) ≤ 1 for all k ≥ k0(n). We may

assume k0(n) < k0(n + 1) for each n. We define {gk : k = 1, 2, . . . , } by

γk =
{
n if k0(n) ≤ k < k0(n + 1)
1 if 1 ≤ k < k0(1).

Note that gk ® ∞ as k ® ∞. Then for u Î Zk with ||u|| = gk we have

ϕ(u) =
∫
�

1
p(x)

|∇u|p(x)dx − 	(u) ≥ 1
p+

(γk)p
− − 1

and consequently

inf
u∈Zk, ‖u‖=γk

ϕ (u) → ∞ as k → ∞,

i.e., the condition (F2) of Proposition 3.7 is satisfied.

By (A), (A1), (B2) and Remark 4.1.(2), we have

ϕ(u) ≤ 1
p− ||u||p+ + c1|λ|(|u|(q1(x),a1(x)))q

+
1 − c6μ

(|u|(1/θ ,a2(x)))1/θ + c9.

Noting that 1
/
θ > p+ > q+1 and all norms on a finite dimensional vector space are

equivalent each other, we can see that, for each Yk, �(u) ® - ∞ as u Î Yk and ||u|| ®
∞. Thus for each k there exists rk > gk such that �(u) <0 for u Î Yk ∩ Srk, so the con-

dition (F3) of Proposition 3.7 is satisfied. As was noted earlier, � satisfies nonsmooth

(PS) condition. By Proposition 3.7 the conclusion (5) is true.

(6) Let l >0, μ Î ℝ and the assumptions of (5) hold. Let us verify the conditions of

the Nonsmooth dual Fountain theorem (see Proposition 3.8). By (S), � is invariant on

the antipodal action of ℤ2. For Ψ(u) = ∫Ω F(x, u)dx = Ψ1(u)+ Ψ2(u) let bk(1) be as in

Proposition 3.5, that is

βk(1) = sup
u∈Zk,||u||≤1

|	(u)|.

By Proposition 3.5, there exists a positive integer k0 such that βk(1) ≤ 1
2p+ for all k ≥

k0. Setting rk = 1, then for k ≥ k0 and u Î Zk ∩ S1, we have

ϕ(u) ≥ 1
p+

− 1
2p+

=
1
2p+

> 0,
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which shows that the condition (D1) of Proposition 3.8 is satisfied.

Since X = W1,p(x)
0 is the closure of C∞

0 (�) in W1,p(x)(�) , we may choose {Yk : k = 1, 2, .

. . , }, a sequence of finite dimensional vector subspaces of X defined by (3.5), such that

Yk ⊂ C∞
0 (�) for all k. For each Yk, because all norms on Yk are equivalent each other,

there is ε Î (0, 1) such that for every u ∈ Yk ∩ Bε, |u|∞ ≤ min{δ1, δ2}, |u|(q3(x),a1(x)) ≤ 1

and |u|(q4(x),a2(x)) ≤ 1 By (O1) and (O2), for u Î Yk ∩ Bε we have

ϕ(u) ≤ 1
p− ||u||p− − λc3

∫
�

a1(x)|u|q3(x)dx + |μ|c4
∫
�

a2(x)|u|q4(x)dx

≤ 1
p− ||u||p− − λc3

(|u|(q3(x),a1(x)))q+3 + |μ|c4
(|u|(q4(x),a2(x)))q−

4 .

Because q+3 < p− < q−
4 there exists gk Î (0, ε) such that

bk := max
u∈Yk,||u||=γk

ϕ (u) < 0,

thus the condition (D2) of Proposition 3.8 is satisfied.

Because Yk ∩ Zk ≠ ∅ and gk < rk, we have

dk := inf
u∈Zk,||u||≤ρk

ϕ (u) ≤ bk := max
u∈Yk ,||u||=rk

ϕ (u) < 0.

On the other hand, for any u Î Zk with ||u|| ≤ 1 = rk, we have �(u) = J(u) - Ψ(u) ≥

-Ψ(u) ≥ -bk(1). Noting that bk ® 0 as k ® ∞, we obtain dk ® 0, i.e., (D3) of Proposi-

tion 3.8 is satisfied.

Finally let us prove that � satisfies nonsmooth (PS)∗c condition for every c Î R. Sup-

pose {unj } ⊂ X, nj → ∞, unj ∈ Ynj ,ϕ
(
unj

) → c andm|Ynj
(
unj

) → 0 . Similar to the pro-

cess of verifying the (PS) condition in the proof of Proposition 3.3, we can get
unj → u in X. Let us prove 0 Î ∂�(u) below. Notice that

0 ≤ m(u) = m(u) − m(unj) +m(unj) = m(u) − m(unj) +m|Ynj (unj).

Using Proposition 2.8.4, Going to limit in the right side of above equation, we have

m(u) ≤ 0,

so m(u) ≡ 0, i.e., 0 Î ∂�(u), this shows that � satisfies the nonsmooth (PS)∗c condi-

tion for every c Î ℝ. So all conditions of Proposition 3.8 are satisfied and the conclu-

sion (6) follows from Proposition 3.8. The proof of Theorem 4.1 is complete. ■

Remark 4.2

Theorem 4.1 includes several important special cases. In particular, in the case of the

problem (1.4), i.e., in the case that

a1(x) =
1

|x|s1(x) , a2(x) =
1

|x|s2(x) ,

all conditions of Theorem 4.1 are satisfied provided (P), (A*), (A1), and (A2) hold.
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