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Abstract
A strongly coupled self- and cross-diffusion predator-prey system with Holling type II
functional response is considered. Using the energy estimate, Sobolev embedding
theorem and bootstrap arguments, the global existence of non-negative classical
solutions to this system in which the space dimension is not more than five is
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1 Introduction
In this paper, we consider the global existence of non-negative classical solutions to the
following diffusion predator-prey system with Holling type II functional response:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ut = �(du + αu) + αu( – u
K ) –

βmuv
+amu , x ∈ �, t > ,

vt = �(dv + αuv + αv) – rv + cβmuv
+amu , x ∈ �, t > ,

∂ηu(x, t) = ∂ηv(x, t) = , x ∈ ∂�, t > ,

u(x, ) = u(x) ≥ , v(x, ) = v(x) ≥ , x ∈ �,

(.)

where � is a bounded region in R
n (n ≥ ) with a smooth boundary ∂�; η is the outward

normal on ∂�, ∂η = ∂/∂η; u(x) and v(x) are non-negative smooth functions and are not
identically zero; u and v denote the population densities of predator and prey, respectively;
α, β , r, a, K , m and c are positive constants, and m ∈ (, ]; d and d are the diffusion
rates of the two species; αij (i, j = , ) are given non-negative constants, α and α are
self-diffusion rates; α is the cross-diffusion rate. It means that the diffusion is from one
species of high-density areas to the other species of low-density areas. See [, ] for more
details on the ecological backgrounds of this system.
Obviously, the non-negative equilibrium solutions of system (.) are (K , ) and (u*, v*) =

( r
m(cβ–ar) ,

αcKm(cβ–ar)–αcr
Km(cβ–ar) ). For the reaction-diffusion problem of system (.), i.e., αii =  (i =

, ), the global attraction, persistence and stability of non-negative equilibrium solutions
are studied in []. The main result can be summarized as follows:
() If m < r

K (cβ–ar) , a semi-trivial solution (K , ) is globally asymptotically stable;
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() If r
K (cβ–ar) <m ≤ r

K (cβ–ar) +

Ka and cβ > ar, a unique positive constant solution

(u*, v*) is globally asymptotically stable;
() If r

K (cβ–ar) <m < r
K (cβ–ar) +

cβ
Ka(cβ–ar) and cβ > ar, a positive constant solution(u*, v*) is

locally asymptotically stable.
In view of the study of dynamic behavior of a predator-prey reaction-diffusion system

with Holling type II functional response, a natural problem is what the global behavior for
a predator-prey cross-diffusion system (.) is. To the best of our knowledge, the existing
results are very few. In this paper, we consider the space dimension to be less than six, and
initial function u(x) and v(x) under some smooth conditions, using the energy estimate,
Sobolev embedding theorem and bootstrap arguments, we consider the global existence
of non-negative classical solutions for system (.).
We denote QT = � × (,T). u ∈ W ,

q (QT ) means that u, uxi , uxixj (i, j = , . . . ,n) and ut
are in Lq(QT ). ‖u‖Lp,q(QT ) = [

∫ T
 (

∫
�

|u(x, t)|p dx) qp dt] q . ‖u‖V(QT ) = sup≤t≤T ‖u(·, t)‖L(�) +
‖∇u‖L(QT ).

2 Auxiliary results
Lemma . Let (u, v) be the solution of (.). There exists a positive constant M(≥ ) such
that

 ≤ u≤ M,  ≤ v, ∀t ≥ . (.)

Proof Firstly, the existence of local solutions for system (.) is given in [–]. Roughly
speaking, if u, v ∈ W 

p(�), p > , there exists the maximum T ≤ +∞ such that system
(.) admits a unique non-negative solution

u, v ∈ C
(
[,T),W 

p(�)
) ∩C∞(

(,T),C∞(�)
)
. (.)

If

sup
{∥∥u(·, t)∥∥w

p(�),
∥∥v(·, t)∥∥w

p(�) :  < t < T
}
<∞,

then T = +∞.
Choose M = max{K ,‖u‖L∞(�)}. By use of the maximum principle, the non-negative

solution of system (.) can be derived from the maximum principle, i.e., u, v ≥  for all
t ≥ . This completes the proof of Lemma .. �

Lemma . Let X = (d + αu)u, u ∈ L∞(QT ) for the solution to the following equation:

ut = �
[
(d + αu)u

]
+ αu

(
 –

u
K

)
–

βmuv
 + amu

, (x, t) ∈ � × (,T),

∂ηu = , (x, t) ∈ ∂� × (,T),

u(x, ) = u(x)≥ , x ∈ �,

where d, α are positive constants and  ≤ u ∈ L(QT ). Then there exists a positive con-
stant C(T), depending on ‖u‖W 

 (�) and ‖u‖L∞(�), such that

‖X‖W,
 (QT )

≤ C(T). (.)

http://www.boundaryvalueproblems.com/content/2012/1/111
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Furthermore,

∇X ∈ V(QT ), ∇u ∈ L
(n+)

n (QT ). (.)

Proof From X = (d + αu)u, it is easy to find that

Xt = (d + αu)�X +C –Cv, (.)

where C = dαu + (αα – dα
K )u – αα

K u and C = βmu
+amu (d + αu). C and C are

bounded in QT from (.). Multiplying (.) by –�X and integrating by parts over Qt

yields




∫
�

∣∣∇X(x, t)
∣∣ dx – 



∫
�

∣∣∇X(x, )
∣∣ dx + d

∫
Qt

|�X| dxdt

≤
∫
QT

|C +Cv||�X|dxdt. (.)

Using the Hölder inequality and Young inequality to estimate the right-hand side of (.),
we have

‖C +Cv‖L(QT )‖�X‖L(QT ) ≤ m
(
 + ‖v‖L(QT )

)‖�X‖L(QT )

≤ m
 ( +M)

d
+
d


‖�X‖L(QT )
(.)

with somem > . Substituting (.) into (.), we obtain

sup
≤t≤T

∫
�

∣∣∇X(x, t)
∣∣ dx + d

∫
Qt

|�X| dxdt ≤ m,

where m depends on ‖u‖W 
 (�) and ‖u‖L∞(�). So, we know ∇X ∈ V(QT ). Since X ∈

L(QT ), it follows from the elliptic regularity estimate [, Lemma .] that

∫
QT

|Xxixj | dxdt ≤ m, i, j = , . . . ,n.

From (.), we have Xt ∈ L(QT ). Hence, ‖X‖W,
 (QT )

≤ C(T). Moreover, (.) can be ob-
tained by use of the Sobolev embedding theorem. �

Lemma . Assume that w ∈W ,
P (QT )∩C,(�̄× [,T)) is a bounded function satisfying

wt ≤ a(x, t,w)�w + f (x, t) in QT

with the boundary condition ∂w
∂v ≤  on ∂QT , where f ∈ LP(QT ). Then ∇W is in Lp(QT ).

The proof of the above lemma can be found in [, Proposition .].
The following result can be derived from Lemma . and Lemma . of [].
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Lemma . Let p > , p̃ =  + p
n(p+) . If

sup
≤t≤T

‖w‖
L

p
p+ (�)

+ ‖∇w‖L(QT ) < ∞,

and there exist positive constants β ∈ (, ) and CT such that
∫
�

|w(·, t)|β dx ≤ CT (∀t ≤ T ),
there exists a positive constant M′, independent of w but possibly depending on n, �, p, β
and CT , such that

‖w‖Lp̃(QT ) ≤ M′
{
 +

(
sup

≤t≤T

∥∥w(t)∥∥
L

p
p+ (�)

) p
n(p+)p̃ ‖∇w‖


p̃
L(QT )

}
.

Finally, one proposes some standard embedding results which are important to obtain
the L∞ and C+α,+ α

 (QT ) normal estimates of the solution for (.).

Lemma . There exists a constant C(T) such that ‖∇u‖L (QT ) ≤ C(T).

Proof Let δ = α/d, X = ( + δu)u. By Lemma ., u is bounded. Therefore, X is also
bounded. By Lemma ., we have X ∈W ,

 (QT ). Moreover, X satisfies

Xt ≤ d( + δu)�X + αu( + δu)

=
√
d
 + δdX�X + αu( + δu).

By Lemma . with p = , a(x, t, ξ ) =
√
d
 + δdξ , f (x, t) = αu(x, t)( +δu(x, t)), we obtain

the desired result. �

Lemma . Let � ⊂ Rn be a fixed bounded domain and ∂� ⊂ C. Then for all u ∈
W ,

q (QT ) with q ≥ , one has
() ‖∇u‖Lp(QT ) ≤ C‖u‖W,

q (QT )
, ∀ ≤ p≤ (n+)q

n+–q , q < n + ;
() ‖∇u‖Lp(QT ) ≤ C‖u‖W,

q (QT )
, ∀ ≤ p≤ ∞, q = n + ;

() ‖∇u‖
Cα, α (QT )

≤ C‖u‖W,
q (QT )

, ∀ – n+
q ≤ α ≤ , q > n + ,

where C is a positive constant dependent on q, n, �, T .

3 The existence of classical solutions
Themain result about the global existence of non-negative classical solutions for the cross-
diffusion system (.) is given as follows.

Theorem . Assume that u >  and v >  satisfy homogeneous Neumann boundary
conditions and belong to C+α(�̄) for some α ∈ (, ). Then system (.) has a unique non-
negative solution (u, v) ∈ C+α,+ α

 (�̄ × [,∞)) if the space dimension is n ≤ .

Proof When n = , the proof is similar to themethods of [–]. So, we just give the proof
of Theorem . for n = , , , . The proof is divided into three parts.
(i) L-, L-estimate and Lq-estimate for v.

http://www.boundaryvalueproblems.com/content/2012/1/111
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Firstly, integrating the first equation of (.) over �, we have

d
dt

∫
�

udx =
∫

�

u
(

α –
αu
K

–
βmv

 + amu

)
dx ≤

∫
�

αudx –
α

K

∫
�

u dx

≤ α

∫
�

udx –
α

K |�|
(∫

�

udx
)

.

Thus, for all t ≥ , we can obtain
∫

�

udx ≤ M′
,

whereM′
 =max{K |�|, ∫

�
u dx}.

Furthermore,

‖u‖L(QT ) ≤
∫ T


M′

 dt �M. (.)

Secondly, linear combination of the second and first equations of (.) and integrating
over � yields

d
dt

∫
�

(cu + v) dx = c
∫

�

αudx –
cα
K

∫
�

u dx – r
∫

�

vdx

≤ c(r + α)
∫

�

udx –
cα

K |�|
(∫

�

udx
)

– r
∫

�

(cu + v) dx

≤ c(r + α)M′
 – r

∫
�

(cu + v) dx.

So, we get
∫

�

(cu + v) dx≤ max

{
c(r + α)M

r
,
∫

�

(
cu(x) + v(x)

)
dx

}
�M′

, ∀t ≥ . (.)

Further,

‖v‖L(QT ) ≤
∫ T


M′

 dt �M. (.)

Then multiplying both sides of the second equation of system (.) by v and integrating
over �, we obtain



d
dt

∫
�

v dx = –
∫

�

∇v∇[
dv + αuv + αv

]
dx – r

∫
�

v dx + cmβ

∫
�

uv

 + amu
dx

≤ –d
∫

�

|∇v| dx – α

∫
�

v∇v∇udx – α

∫
�

v|∇v| dx + cβ
a

∫
�

v dx.

Integrating the above expression in [, ] yields
∫

�

v(x, t) dx –
∫

�

v(x) dx + 
∫
Qt

(d + αu + αv)|∇v| dxdt + r
∫
Qt

v dxdt

≤ –α

∫
Qt

∇u · v · ∇vdxdt +
cβ
a

∫
Qt

v dxdt. (.)
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Estimating the first term on the right-hand side of (.),

∣∣∣∣
∫
Qt

∇u · v · ∇vdxdt
∣∣∣∣ = ∣∣∫

Qt

∇u · v 
 · ∇v · v 

 dxdt
∣∣

≤ ε

∫
Qt

v|∇u| dxdt + 
ε

∫
Qt

v · |∇v| dxdt

≤ ε

∫
Qt

v dxdt +

ε

∫
Qt

|∇u| dxdt

+

ε

∫
Qt

v · |∇v| dxdt. (.)

Substituting (.) into (.) yields

∫
�

v(x, t) dx –
∫

�

v(x) dx + 
∫

�

(d + αu + αv)|∇v| dxdt + r
∫
Qt

v dxdt

≤
(
αε +

cβ
a

)∫
Qt

v dxdt +
α

ε

∫
Qt

|∇u| dxdt + α

ε

∫
Qt

v|∇v| dxdt. (.)

Select ε > α
α

and denote C = α – α
ε

. Notice the positive equilibrium point of (.)
exists under condition cβ > ar, then

∫
�

v(x, t) dx + d
∫
Qt

|∇v| dxdt + α‖u‖∞
∫
Qt

|∇v| dxdt +C

∫
Qt

v|∇v| dxdt

≤
∫

�

v(x) dx +
(
αε – r +

cβ
a

)∫
Qt

v dxdt +
α

ε

∫
Qt

|∇u| dxdt. (.)

By Lemma ., ‖∇u‖L (QT ) ≤ C(T). Integrating the above inequality and using the
Gronwall inequality, we get

sup
<t<T

∫
�

v dx ≤ C(T).

Hence, there exists a positive constant M′
 such that

∫
�
v dx ≤ M′

. Furthermore, we
have

‖v‖L(QT ) ≤
∫ T


M′

 dt �M. (.)

Secondly, multiplying both sides of the second equation of system (.) by qvq– (q > )
and integrating over �, we have

d
dt

∫
�

vq dx ≤ –
(q – )d

q

∫
�

∣∣∇(
v
q

)∣∣ dx – q(q – )α

(q + )

∫
�

∣∣∇(
v
q+


)∣∣ dx

– q(q – )α

∫
�

vq–∇u · ∇vdx + q
∫

�

vq
(
–r +

cβmu
 + amu

)
dx.

http://www.boundaryvalueproblems.com/content/2012/1/111
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Integrating the above equation over [, t] (t ≤ T ), it is clear that

∫
�

vq(x, t) dx +
(q – )d

q

∫
Qt

∣∣∇(
v
q

)∣∣ dxdt + q(q – )α

(q + )

∫
Qt

∣∣∇(
v
q+


)∣∣ dxdt

≤
∫

�

vq(x) dx – q(q – )α

∫
Qt

vq–∇u · ∇vdxdt +
cβq
a

∫
Qt

vq dxdt. (.)

By Lemma ., it can be found that∇u ∈ L
(n+)

n (QT ). According to the Hölder inequality
and Young inequality, we get

–q(q – )α

∫
Qt

vq–∇u · ∇vdxdt

≤ q(q – )α

q + 

∣∣∣∣
∫
Qt

v
q–
 ∇(

v
q+


) · ∇udxdt
∣∣∣∣

≤ q(q – )α

q + 
‖∇u‖

L
(n+)

n (QT )

∥∥v q–


∥∥
Ln+(QT )

∥∥∇(
v
q+


)∥∥
L(QT )

≤ C
∥∥∇(

v
q+


)∥∥
L(QT )

∥∥v q–


∥∥
Ln+(QT )

≤ Cε


∥∥∇(

v
q+


)∥∥
L(QT )

+
C

ε
∥∥v q–


∥∥
Ln+(QT )

. (.)

Choose an appropriate number ε satisfying Cε
 ≤ q(q–)α

(q+) . Substituting (.) into (.)

and taking v̄ = v
q+
 , we have

∫
�

v̄
q
q+ (x, t) dx +

∫
Qt

|∇ v̄| dxdt

≤
∫

�

vq dx +
C

ε
‖v̄‖

(q–)
q+

L
(q–)(n+)

q+ (QT )
+
cβq
a

‖v̄‖
q
q+

L
q
q+ (QT )

≤ C

(
 + ‖v̄‖

(q–)
q+

L
(q–)(n+)

q+ (QT )
+ ‖v̄‖

q
q+

L
q
q+ (QT )

)
. (.)

Let

E ≡ sup
<t<T

∫
�

v̄
q
q+ (x, t) dx +

∫
QT

|∇ v̄| dxdt.

From (.), we know

E ≤ C

(
 + ‖v̄‖

(q–)
q+

L
(q–)(n+)

q+ (QT )
+ ‖v̄‖

q
q+

L
q
q+ (QT )

)
.

When q < n(n+)
n– , it is easy to find that q

q+ <  < q̃ and (q–)(n+)
q+ < q̃ =  + q

n(q+) . So,

E ≤ C
(
 + ‖v̄‖

(q–)
q+

Lq̃(QT )
+ ‖v̄‖

q
q+
Lq̃(QT )

)
. (.)
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Set β = 
q+ ∈ (, ). It follows from the L(�)-estimate for v that

‖v̄‖Lβ (�) =
(∫

�

∣∣v̄(·, t)∣∣β dx
) 

β

= ‖v‖

β

L(�) ≤ M
′ 
β

 , ∀t ≤ T .

By Lemma . and (.), we know

E ≤ C

[
 +

(
M′ +M′ sup

<t<T

∥∥v̄(·, t)∥∥ q
n(q+)q̃

L
q
q+ (�)

‖∇ v̄‖

q̃
L(QT )

) (q–)
q+

+
(
M′ +M′ sup

<t<T

∥∥v̄(·, t)∥∥ q
n(q+)q̃

L
q
q+ (�)

‖∇ v̄‖

q̃
L(QT )

) q
q+

]

≤ C

[
 +

(
sup
<t<T

∥∥v̄(·, t)∥∥ q
q+

L
q
q+ (�)

) (q–)
n(q+)q̃ (‖∇ v̄‖L(QT )

) (q–)
(q+)q̃

+
(
sup
<t<T

∥∥v̄(·, t)∥∥ q
q+

L
q
q+ (�)

) (q–)
n(q+)q̃ (‖∇ v̄‖L(QT )

) q
(q+)q̃

]

≤ C
(
 + E

(q–)
n(q+)q̃ E

(q–)
(q+)q̃ + E

q
n(q+)q̃ E

q
(q+)q̃

)
. (.)

Obviously, (q–)
n(q+)q̃ +

(q–)
(q+)q̃ ∈ (, ) and q

n(q+)q̃ +
q

(q+)q̃ ∈ (, ). It is easy to know that E is
bounded by use of reduction to absurdity. Since q < n(n+)

n– , (q+)q̃
 ∈ (, (n+)n– ). So, ‖v̄‖Lq̃(QT )

is bounded, i.e., v ∈ L
(q+)q̃

 (QT ). Denote (q+)q̃
 still as q. So,

v ∈ Lq(QT ), ∀q ∈
(
,
(n + )
n – 

)
. (.)

Finally, when n = , , , , (n – )q < n + n with q = . For n≤ , taking q =  in (.), it
follows from (.) that there exists a positive constantM such that

‖v‖V(QT ) ≤ M. (.)

By embedding theorem, we get

‖v‖
L
(n+)

n (QT )
≤ M.

(ii) L∞-estimate for v.
The second equation of system (.) can be written as the following divergence form:

∂v
∂t

=
n∑

i,j=

∂

∂xi

(
aij(x, t)

∂v
∂xj

)
+

n∑
i=

∂

∂xi

(
ai(x, t)v

)
+ v

(
–r +

cβmu
 + amu

)
, (.)

where aij(x, t) = (d + αu + αv)δij, ai(x, t) = αuxj and δij is the Kronecker sign.
In order to apply the maximum principle [] to (.), we need to prove the following

conditions:
() ‖v‖V(QT ) is bounded;
()

∑n
i,j= aij(x, t)ξiξj ≥ ν

∑n
i= ξ


i ;

http://www.boundaryvalueproblems.com/content/2012/1/111
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() ‖∑n
i= ai (x, t), v(–r +

cβmu
+amu )‖Lp,r (QT ) ≤ μ,

where ν , μ are positive constants and


r
+

n
p

=  – χ ,  < χ < ,p ∈
[

n
( – χ )

, +∞
)
, r ∈

[


 – χ
, +∞

)
,n≥ . (.)

Next, wewill show that the above conditions () to () are satisfied for (.).When n≤ ,
it is easy to find that the condition () is satisfied by use of (.). Since

∑n
i,j= aij(x, t)ξiξj ≥

d|ξ | for all ξ ∈ R
n, the condition () is verified. In view of the condition (), we take

appropriate q and r. Rewrite the first equation of system (.) as

ut = ∇ · [(d + αu)∇u
]
+ αu

(
 –

u
K

)
–

βmuv
 + amu

. (.)

When n = , , , , n+
 < (n+)

n– , it is clear that d + αu has an upper bound over QT by
Lemma .. Set

q ∈
(
n + 


,
(n + )
n – 

)
.

From (.), we have αu( – u
K ) –

βmuv
+amu ∈ Lq(QT ). Therefore, all conditions of the Hölder

continuity theorem [, Theorem .] hold for (.). Hence,

u ∈ Cβ , β (QT ), β ∈ (, ). (.)

We will discuss (.) which is the corresponding form of (.). It follows from (.)
and (.) that C – Cv ∈ Lq(QT ), ∀q ∈ ( n+ , (n+)n– ). From (.), we obtain d + αu ∈
Cβ , β (QT ). Thus, according to the parabolic regularity result of [, pp.-, Theo-
rem .], we can conclude that

X ∈W ,
q (QT ), ∀q ∈

(
n + 


,
(n + )
n – 

)
, (.)

which implies that ∇X ∈ L
(n+)q
n+–q (QT ) by Lemma ..

Since X = (d + αu)u, we have ∇u = (d + αu)–∇X, i.e., ∇u ∈ L
(n+)q
n+–q (QT ). It means

that |∇u|, |∇v| ∈ L
(n+)q

(n+–q) (QT ). So,
∑n

i= ai (x, t) ∈ L
(n+)q

(n+–q) (QT ). From (.) and (.),
v(–r + cβmu

+amu ) ∈ Lq(QT ).
Then the condition () and (.) are satisfied by choosing p = r = (n+)p

(n+–p) . According to
the maximum principle [, p., Theorem .], we can conclude that v ∈ L∞(QT ). From
(.), there exists a positive constantM such that

‖u‖L∞(QT ),‖v‖L∞(QT ) ≤ M, ∀T > . (.)

Therefore, the global solution to the problem (.) exists.
(iii) The existence of classical solutions.
Under the conditions of Theorem ., we consider above global solutions (u, v) to be

classical. By (.) and Lemma ., we know ∇X ∈ Cα, α (QT ), ∀α ∈ (, ). It follows from

Lemma . in [] that X ∈ C+α, +α
 (QT ). Since X = (d +αu)u, we have u = –d

√
d +αX
α

.
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So,

u ∈ C+α, +α
 (QT ), ∀α ∈ (, ). (.)

Rewrite the second equation of system (.) as

vt = ∇ · [(d + αu + αv)∇v + α∇uv
]
+ v

(
–r +

cβmu
 + amu

)
.

Therefore, we can conclude that v(–r + cβmu
+amu ) ∈ L∞(QT ), u, v, ∇u and ∇v are all

bounded. By the Schauder estimate [], there exists α* ∈ (, ) such that

v ∈ Cα*, α
*
 (QT ). (.)

Furthermore, by the Schauder estimate, we obtain

u ∈ C+σ ,+ σ
 (QT ), σ =min

{
α,α*}. (.)

Next, the regularity of v will be discussed. Set v̄ = (d + αu + αv)v. So, v̄ satisfies

v̄t = (d + αu + αv)�v̄ + f (x, t), (.)

where f (x, t) = (d + αu + αv)v(–r + cβmu
+amu ) + αutv. According to (.) to (.), we

have d + αu + αv, f (x, t) ∈ Cσ , σ (QT ). Applying the Schauder estimate to (.), we
know

v̄ ∈ C+σ ,+ σ
 (QT ).

From v = –(d+αu)+
√

(d+αu)+α v̄
α

, we can see

v ∈ C+σ ,+ σ
 (QT ), σ =min

{
α,α*}. (.)

Combining (.) and (.), we get

u, v ∈ C+σ ,+ σ
 (QT ).

Therefore, the result of Theorem . can be obtained for α < α*, namely σ = α. When
α > α*, namely σ < α, we have C+σ ,+ σ

 (QT ) ↪→ Cα, α (QT ). (.) and (.) are obtained
by repeating the above bootstrap argument and the Schauder estimate. This completes
the proof of Theorem .. �
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