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1 Introduction
The differential equations involving fractional derivatives in time have recently been
proved to be valuable tools in the modeling of many phenomena in various fields of en-
gineering and science. Indeed, we can find numerous applications in electrochemistry,
control, porous media, electromagnetic processing etc. (see [–]). Hence, the research
on fractional differential equations has become an object of extensive study during recent
years; see [–] and references therein.
On the other hand, the nonlocal initial condition, in many cases, has much better effect

in applications than the traditional initial condition. As remarked by Byszewski and Lak-
shmikantham (see [, ]), the nonlocal initial value problems can be more useful than
the standard initial value problems to describe many physical phenomena.
Let X be a Banach space with norm ‖ · ‖, and let T >  be a constant. Consider the

existence and uniqueness of mild solutions of fractional evolution equation with nonlocal
condition in the form

⎧⎨
⎩
Dqu(t) +Au(t) = f (t,u(t)) +

∫ t
 K(t, s)h(s,u(s))ds, t ∈ J = [,T],

u() + g(u) = x,
()

where Dq is the Caputo fractional derivative of order q ∈ (, ), the linear operator –A
is the infinitesimal generator of an analytic semigroup {S(t)}t≥ in X, the functions f , h
and g will be specified later. K ∈ C(�,R+), where � = {(t, s)| ≤ s ≤ t ≤ T}, R+ = [,+∞).
Throughout this paper, we always assume that K * =max(t,s)∈� K(t, s).
In some existing articles, the fractional differential equations with nonlocal initial con-

ditions were treated under the hypothesis that the nonlocal term is completely continuous
or global Lipschitz continuous. It is obvious that these conditions are not easy to verify in
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many cases. To make the things more applicable, in [] the authors studied the existence
and uniqueness of mild solutions of Eq. () under the case K(t, s) ≡ . In their main re-
sults, they did not assume the complete continuity of the nonlocal term, but they needed
the following assumptions:
(F) there exist a constant q ∈ [,q) andm ∈ L


q (J ,R+) such that ‖f (t,x)‖ ≤m(t) for

all x ∈ X and almost all t ∈ J ;
(F) there exists a constant L >  such that ‖g(u) – g(v)‖ ≤ L‖u – v‖ for u, v ∈ C(J ,X);

and some other conditions.
In this paper, we will improve the conditions (F) and (F). We only assume that f

and h satisfy local growth conditions (see assumption (H)) and g is local Lipschitz con-
tinuous (see assumption (H)). We will carry out our investigation in the Banach space
Xα := (D(Aα),‖ · ‖α),  < α < , where D(Aα) is the domain of the fractional power of A.
Finally, an example is given to illustrate the applicability of our main results. We can see
that the main results in [] cannot be applied to our example.
The rest of this paper is organized as follows. In Section , some preliminaries are given

on the fractional power of the generator of an analytic semigroup and on themild solutions
of Eq. (). In Section , we study the existence and uniqueness of mild solutions of Eq. ().
In Section , we give an example to illustrate the applicability of our results.

2 Preliminaries
Let X be a Banach space with norm ‖ · ‖, and let –A : D(A) ⊂ X → X be the infinitesimal
generator of an analytic semigroup S(t) (t ≥ ) of a uniformly bounded linear operator in
X, that is, there existsM ≥  such that ‖S(t)‖ ≤ M for all t ≥ . Without loss of generality,
let  ∈ ρ(A). Then for any α > , we can define A–α by

A–α =


�(α)

∫ ∞


tα–S(t)dt.

A–α ∈ L(X) is injective, and Aα can be defined by Aα = (A–α)– with the domain D(Aα) =
A–α(X). For α = , let Aα = I .

Lemma  ([]) Aα has the following properties:
(i) D(Aα) is a Banach space with the norm ‖x‖α := ‖Aαx‖ for x ∈ D(Aα);
(ii) S(t) : X → Xα for each t > ;
(iii) AαS(t)x = S(t)Aαx for each x ∈D(Aα) and t ≥ ;
(iv) A–α is a bounded linear operator on X with D(Aα) = Im(A–α);
(v) If  < α ≤ β , then D(Aβ ) ↪→D(Aα).

Let Xα be the Banach space of D(Aα) endowed with the norm ‖ · ‖α . Denote by C(J ,Xα)
the Banach space of all continuous functions from J into Xα with the supnorm given by
‖u‖C = supt∈J ‖u(t)‖α for u ∈ C(J ,Xα). From Lemma (iv), since A–α is a bounded linear
operator for α > , we denote by Cα the operator norm of A–α in X, that is, Cα := ‖A–α‖.
For any t ≥ , denote by Sα(t) the restriction of S(t) to Xα . From Lemma (ii) and (iii), for
any x ∈ Xα , we have

∥∥S(t)x∥∥
α
=

∥∥Aα · S(t)x∥∥ =
∥∥S(t) ·Aαx

∥∥ ≤ ∥∥S(t)∥∥ · ∥∥Aαx
∥∥ =

∥∥S(t)∥∥ · ‖x‖α ,
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and

∥∥S(t)x – x
∥∥

α
=

∥∥Aα · S(t)x –Aαx
∥∥ =

∥∥S(t) ·Aαx –Aαx
∥∥ → 

as t → . Therefore, S(t) (t ≥ ) is a strongly continuous semigroup in Xα , and ‖Sα(t)‖α ≤
‖S(t)‖ for all t ≥ . To prove our main results, the following lemma is needed.

Lemma  ([]) If S(t) (t ≥ ) is a compact semigroup in X, then Sα(t) (t ≥ ) is an imme-
diately compact semigroup in Xα , and hence it is immediately norm-continuous.

For x ∈ X, define two families {U(t)}t≥ and {V (t)}t≥ of operators by

U(t)x =
∫ ∞


ηq(θ )S

(
tqθ

)
xdθ , V (t)x = q

∫ ∞


θηq(θ )S

(
tqθ

)
xdθ ,  < q < ,

where

ηq(θ ) =

q
θ
–– 

q ρq
(
θ
– 
q
)
,

ρq(θ ) =

π

∞∑
n=

(–)n–θ–qn– �(nq + )
n!

sin(nπq), θ ∈ (,∞),

where ηq is the probability density function defined on (,∞), which has properties
ηq(θ )≥  for all θ ∈ (,∞) and

∫ ∞


ηq(θ )dθ = ,

∫ ∞


θηq(θ )dθ =


�( + q)

. ()

The following lemma follows from the results in [–, ].

Lemma  The following properties are valid:
(i) For fixed t ≥  and any x ∈ Xα , we have

∥∥U(t)x
∥∥

α
≤ M‖x‖α ,

∥∥V (t)x
∥∥

α
≤ qM

�( + q)
‖x‖α =

M
�(q)

‖x‖α .

(ii) The operators U(t) and V (t) are strongly continuous for all t ≥ .
(iii) If S(t) (t ≥ ) is a compact semigroup in X , then U(t) and V (t) are norm-continuous

in X for t > .
(iv) If S(t) (t ≥ ) is a compact semigroup in X , then U(t) and V (t) are compact

operators in X for t > .

In this paper, we adopt the following definition of a mild solution of Eq. ().

Definition  By a mild solution of Eq. (), we mean a function u ∈ C(J ,Xα) satisfying

u(t) =U(t)
(
x – g(u)

)
+

∫ t


(t – s)q–V (t – s)

[
f
(
s,u(s)

)
+

∫ s


K(s, τ )h

(
τ ,u(τ )

)
dτ

]
ds

for all t ∈ J .
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To prove our main results, we also need the following two lemmas.

Lemma  A measurable function H : [,T] → X is Bochner integrable if |H| is Lebesgue
integrable.

Lemma  (Krasnoselskii’s fixed point theorem) Let X be a Banach space, let B be a
bounded closed and convex subset of X and let Q and Q be mappings from B into X
such that Qx +Qy ∈ B for every pair x, y ∈ B. If Q is a contraction and Q is completely
continuous, then the operator equation Qx +Qx = x has a solution on B.

Lemmas  and , which can be found in many books, are classical.
The following are the basic assumptions of this paper.

(H) S(t) (t ≥ ) is a compact operator semigroup in X .
(H) There exists a constant β ∈ [α, ] such that the functions f ,h : J ×Xα → Xβ satisfy the

following conditions:
(i) For each x ∈ Xα , the functions f (·,x), h(·,x) are measurable.
(ii) For each t ∈ J , the functions f (t, ·), h(t, ·) are continuous.

(H) For t ∈ J and r > , there exist positive functions ϕr satisfying ϕr (·)
(t–·)–q ∈ L([, t],R+)

and φr ∈ L(J ,R+) such that

sup
‖x‖α≤r

∥∥f (t,x)∥∥
β

≤ ϕr(t), sup
‖x‖α≤r

∥∥h(t,x)∥∥
β

≤ φr(t),

and there are positive constants σ and σ such that

lim inf
r→+∞


r

∫ t



ϕr(s)
(t – s)–q

ds ≤ σ < +∞, lim inf
r→+∞


r

∫ t



∫ s
 φr(τ )dτ

(t – s)–q
ds≤ σ < +∞,

(H) g : C(J ,Xα) → Xα and for r > , there exists a positive constant L such that

∥∥g(u) – g(v)
∥∥

α
≤ L‖u – v‖C

for all u, v ∈ Br := {u ∈ C(J ,Xα) : ‖u(t)‖α ≤ r, t ∈ J}.

3 Main results
In this section, we introduce the existence and uniqueness theorems of mild solutions of
Eq. (). The discussions are based on fractional calculus and Krasnoselskii’s fixed point
theorem. Our main results are as follows.

Theorem  Suppose that the assumptions (H)-(H) hold. If x ∈ Xα and the following
inequality holds:

ML +
MCβ–α

�(q)
(
σ +K *σ

)
< , ()

then Eq. () has at least one mild solution on J .
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Proof Define two operators Q and Q as follows:

(Qu)(t) =U(t)
(
x – g(u)

)
, t ∈ J ,

(Qu)(t) =
∫ t


(t – s)q–V (t – s)

[
f
(
s,u(s)

)
+

∫ s


K(s, τ )h

(
τ ,u(τ )

)
dτ

]
ds, t ∈ J .

Obviously, u is amild solution of Eq. () if and only if u is a solution of the operator equation
u =Qu +Qu on J . To prove the operator equation u =Qu +Qu has solutions, we first
show that there is a positive number r such that Qu +Qv ⊂ Br for every pair u, v ∈ Br . If
this were not the case, then for each r > , there would exist ur , vr ∈ Br and tr ∈ J such that
‖(Qur)(tr) + (Qvr)(tr)‖α > r. Thus, from Lemma , (H) and (H), we have

r <
∥∥(Qur)(tr) + (Qvr)(tr)

∥∥
α

≤ ∥∥U(tr)
(
x – g(ur)

)∥∥
α

+
∫ tr


(tr – s)q–

∥∥∥∥V (tr – s)
[
f
(
s, vr(s)

)
+

∫ s


K(s, τ )h

(
τ , vr(τ )

)
dτ

]∥∥∥∥
α

ds

≤ M
∥∥x – [

g(ur) – g()
]
– g()

∥∥
α

+
M

�(q)

∫ tr


(tr – s)q–

∥∥∥∥Aα–β ·Aβ

[
f
(
s, vr(s)

)
+

∫ s


K(s, τ )h

(
τ , vr(τ )

)
dτ

]∥∥∥∥ds
≤ M‖x‖α +MLr +M

∥∥g()∥∥
α

+
MCβ–α

�(q)

∫ tr


(tr – s)q–

[
ϕr(s) +K *

∫ s


φr(τ )dτ

]
ds.

Dividing on both sides by r and taking the lower limit as r → +∞, we have

ML +
MCβ–α

�(q)
(
σ +K *σ

) ≥ ,

which contradicts (). Hence, for some r > , Qu +Qv⊂ Br for every pair u, v ∈ Br .
The next proof will be given in two steps.
Step . Q is a contraction on Br .
For any u, v ∈ Br and t ∈ J , according to Lemma  and assumption (H), we have

∥∥(Qu)(t) – (Qv)(t)
∥∥

α
=

∥∥U(t)
[
g(v) – g(u)

]∥∥
α

≤ M
∥∥g(u) – g(v)

∥∥
α

≤ ML‖u – v‖C ,

which implies that ‖Qu–Qv‖C ≤ ML‖u– v‖C . It follows from () thatML < , hence Q

is a contraction on Br .
Step . Q is a completely continuous operator on Br .
We first prove that Q is continuous on Br . Let {un} ⊂ Br with un → u ∈ Br as n → ∞.

Then for any t ∈ J , s ∈ [, t], by assumption (H), we have

f
(
s,un(s)

) → f
(
s,u(s)

)
, h

(
s,un(s)

) → h
(
s,u(s)

)

as n→ ∞, and from assumption (H), we have

∥∥f (s,un(s)) – f
(
s,u(s)

)∥∥
β

≤ ϕr(s),
∥∥h(s,un(s)) – h

(
s,u(s)

)∥∥
β

≤ φr(s),∫ s


K(s, τ )

∥∥h(τ ,un(τ )) – h
(
τ ,u(τ )

)∥∥
β
dτ ≤ K *‖φr‖L .
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This together with the Lebesgue dominated convergence theorem gives that

∥∥(Qun)(t) – (Qu)(t)
∥∥

α

≤
∫ t


(t – s)q–

∥∥V (t – s) · [f (s,un(s)) – f
(
s,u(s)

)]∥∥
α
ds

+
∫ t


(t – s)q–

∥∥∥∥V (t – s) ·
∫ s


K(s, τ )

[
h
(
τ ,un(τ )

)
– h

(
τ ,u(τ )

)]
dτ

∥∥∥∥
α

ds

≤ M
�(q)

∫ t


(t – s)q–

∥∥Aα–β ·Aβ
[
f
(
s,un(s)

)
– f

(
s,u(s)

)]∥∥ds

+
M

�(q)

∫ t


(t – s)q–

∥∥∥∥Aα–β

∫ s


K(s, τ ) ·Aβ

[
h
(
τ ,un(τ )

)
– h

(
τ ,u(τ )

)]
dτ

∥∥∥∥ds

≤ MCβ–α

�(q)

∫ t


(t – s)q–

∥∥f (s,un(s)) – f
(
s,u(s)

)∥∥
β
ds

+
MCβ–α

�(q)

∫ t


(t – s)q–

∫ s


K(s, τ )

∥∥h(τ ,un(τ )) – h
(
τ ,u(τ )

)∥∥
β
dτ ds→ 

as n→ ∞. Hence, limn→∞ ‖Qun –Qu‖C = . This means that Q is continuous on Br .
Next, we will show that the set {Qu : u ∈ Br} is relatively compact. It suffices to show

that the family of functions {Qu : u ∈ Br} is uniformly bounded and equicontinuous, and
for any t ∈ J , the set {(Qu)(t) : u ∈ Br} is relatively compact.
For any u ∈ Br , we have ‖Qu‖C ≤ r for some r > , which means that {Qu : u ∈ Br} is

uniformly bounded. In what follows, we show that {Qu : u ∈ Br} is a family of equicon-
tinuous functions. For t ∈ [,T), we have

∥∥(Qu)(t) – (Qu)()
∥∥

α
≤ MCβ–α

�(q)

∫ t


(t – s)q–

[
ϕr(s) +K *

∫ s


φr(τ )dτ

]
ds.

Hence, it is only necessary to consider t > . For  < t < t ≤ T , from Lemma  and as-
sumption (H), we have

∥∥(Qu)(t) – (Qu)(t)
∥∥

α

≤
∥∥∥∥
∫ t


(t – s)q–

[
V (t – s) –V (t – s)

] ·
[
f
(
s,u(s)

)
+

∫ s


K(s, τ )h

(
τ ,u(τ )

)
dτ

]
ds

∥∥∥∥
α

+
∥∥∥∥
∫ t



[
(t – s)q– – (t – s)q–

]
V (t – s)

×
[
f
(
s,u(s)

)
+

∫ s


K(s, τ )h

(
τ ,u(τ )

)
dτ

]
ds

∥∥∥∥
α

+
∥∥∥∥
∫ t

t
(t – s)q–V (t – s) ·

[
f
(
s,u(s)

)
+

∫ s


K(s, τ )h

(
τ ,u(τ )

)
dτ

]
ds

∥∥∥∥
α

≤
∫ t


(t – s)q–

∥∥∥∥Aα–β
[
V (t – s) –V (t – s)

]

×Aβ

[
f
(
s,u(s)

)
+

∫ s


K(s, τ )h

(
τ ,u(τ )

)
dτ

]∥∥∥∥ds

+
M

�(q)

∫ t



∣∣(t – s)q– – (t – s)q–
∣∣
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×
∥∥∥∥Aα–β ·Aβ

[
f
(
s,u(s)

)
+

∫ s


K(s, τ )h

(
τ ,u(τ )

)
dτ

]∥∥∥∥ds

+
M

�(q)

∫ t

t
(t – s)q–

∥∥∥∥Aα–β ·Aβ

[
f
(
s,u(s)

)
+

∫ s


K(s, τ )h

(
τ ,u(τ )

)
dτ

]∥∥∥∥ds

≤ Cβ–α

∫ t


(t – s)q–

∥∥V (t – s) –V (t – s)
∥∥ ·

[
ϕr(s) +K *

∫ s


φr(τ )dτ

]
ds

+
MCβ–α

�(q)

∫ t



∣∣(t – s)q– – (t – s)q–
∣∣ ·

[
ϕr(s) +K *

∫ s


φr(τ )dτ

]
ds

+
MCβ–α

�(q)

∫ t

t
(t – s)q– ·

[
ϕr(s) +K *

∫ s


φr(τ )dτ

]
ds

� I + I + I,

where

I = Cβ–α

∫ t


(t – s)q–

∥∥V (t – s) –V (t – s)
∥∥ ·

[
ϕr(s) +K *

∫ s


φr(τ )dτ

]
ds,

I =
MCβ–α

�(q)

∫ t



∣∣(t – s)q– – (t – s)q–
∣∣ ·

[
ϕr(s) +K *

∫ s


φr(τ )dτ

]
ds,

I =
MCβ–α

�(q)

∫ t

t
(t – s)q– ·

[
ϕr(s) +K *

∫ s


φr(τ )dτ

]
ds.

For any ε ∈ (, t), we have

I ≤ Cβ–α

∫ t–ε


(t – s)q–

∥∥V (t – s) –V (t – s)
∥∥ ·

[
ϕr(s) +K *

∫ s


φr(τ )dτ

]
ds

+Cβ–α

∫ t

t–ε

(t – s)q–
∥∥V (t – s) –V (t – s)

∥∥ ·
[
ϕr(s) +K *

∫ s


φr(τ )dτ

]
ds

≤ Cβ–α

∫ t–ε


(t – s)q–

[
ϕr(s) +K *

∫ s


φr(τ )dτ

]
ds · sup

s∈[,t–ε]

∥∥V (t – s) –V (t – s)
∥∥

+
MCβ–α

�(q)

∫ t

t–ε

(t – s)q– ·
[
ϕr(s) +K *

∫ s


φr(τ )dτ

]
ds.

It follows from Lemma  that I →  as t → t and ε →  independently of u ∈ Br . From
the expressions of I and I, it is clear that I →  and I →  as t → t independently of
u ∈ Br . Therefore, we prove that {Qu : u ∈ Br} is a family of equicontinuous functions.
It remains to prove that for any t ∈ J , the set W (t) := {(Qu)(t) : u ∈ Br} is relatively

compact.
Obviously, W () is relatively compact in Xα . Let  < t ≤ T be fixed. For each δ ∈ (, t),

ε >  and u ∈ Br , we define an operator Qδ,ε
 by

(
Qδ,ε

 u
)
(t) =

∫ t–δ


(t – s)q–

∫ ∞

ε

qθηq(θ )S
(
(t – s)qθ

)
f
(
s,u(s)

)
dθ ds

+
∫ t–δ


(t – s)q–

∫ ∞

ε

qθηq(θ )S
(
(t – s)qθ

)∫ s


K(s, τ )h

(
τ ,u(τ )

)
dτ dθ ds

= S
(
δqε

)[∫ t–δ


(t – s)q–

∫ ∞

ε

qθηq(θ )S
(
(t – s)qθ – δqε

)
f
(
s,u(s)

)
dθ ds

http://www.boundaryvalueproblems.com/content/2012/1/113
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+
∫ t–δ


(t – s)q–

∫ ∞

ε

qθηq(θ )S
(
(t – s)qθ – δqε

)

×
∫ s


K(s, τ )h

(
τ ,u(τ )

)
dτ dθ ds

]
.

Then the setsWδ,ε(t) := {(Qδ,ε
 u)(t) : u ∈ Br} are relatively compact inXα since by Lemma ,

the operator Sα(t) is compact for t >  in Xα . Moreover, for every u ∈ Br , from Lemma 
and assumption (H), we have

∥∥(Qu)(t) –
(
Qδ,ε

 u
)
(t)

∥∥
α

≤
∥∥∥∥
∫ t


(t – s)q–

∫ ε


qθηq(θ )S

(
(t – s)qθ

)

×
[
f
(
s,u(s)

)
+

∫ s


K(s, τ )h

(
τ ,u(τ )

)
dτ

]
dθ ds

∥∥∥∥
α

+
∥∥∥∥
∫ t

t–δ

(t – s)q–
∫ ∞

ε

qθηq(θ )S
(
(t – s)qθ

)

×
[
f
(
s,u(s)

)
+

∫ s


K(s, τ )h

(
τ ,u(τ )

)
dτ

]
dθ ds

∥∥∥∥
α

≤
∫ t


(t – s)q–

∥∥∥∥Aα–β

∫ ε


qθηq(θ )S

(
(t – s)qθ

)
dθ ·

[
ϕr(s) +K *

∫ s


φr(τ )dτ

]∥∥∥∥ds

+
∫ t

t–δ

(t – s)q–
∥∥∥∥Aα–β

∫ ∞

ε

qθηq(θ )S
(
(t – s)qθ

)
dθ ·

[
ϕr(s) +K *

∫ s


φr(τ )dτ

]∥∥∥∥ds

≤ qMCβ–α

∫ t


(t – s)q–

[
ϕr(s) +K *

∫ s


φr(τ )dτ

]
ds ·

∫ ε


θηq(θ )dθ

+
MCβ–α

�(q)

∫ t

t–δ

(t – s)q–
[
ϕr(s) +K *

∫ s


φr(τ )dτ

]
ds.

Therefore, there are relatively compact sets arbitrarily close to the set W (t) for t ∈ (,T]
and since it is compact at t = , we have the relative compactness ofW (t) in Xα for all t ∈ J .
Therefore, the set {Qu : u ∈ Br} is relatively compact by the Ascoli-Arzela theorem.

Thus, the continuity of Q and relative compactness of the set {Qu : u ∈ Br} imply that
Q is a completely continuous operator. Hence, Krasnoselskii’s fixed point theorem shows
that the operator equation u = Qu + Qu has a solution on Br . Therefore, Eq. () has at
least one mild solution. The proof is completed. �

The following existence and uniqueness theorem for Eq. () is based on the Banach con-
traction principle. We will also need the following assumptions.

(H) There exists a constant β ∈ [α, ] such that the functions f ,h : J × Xα → Xβ are
strongly measurable.

(H) For r > , there exist functions ρ,ρ ∈ L(J ,R+) such that

∥∥f (t,x) – f (t, y)
∥∥

β
≤ ρ(t)‖x – y‖α ,

∥∥h(t,x) – h(t, y)
∥∥

β
≤ ρ(t)‖x – y‖α

for any x, y ∈ Br and t ∈ J .

http://www.boundaryvalueproblems.com/content/2012/1/113
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Theorem  Let the assumptions (H)-(H) be satisfied. If x ∈ Xα and the inequalities ()
and

μ�ML +
MTqCβ–α

�(q + )
(‖ρ‖L +K *‖ρ‖L

)
<  ()

hold, then Eq. () has a unique mild solution.

Proof FromLemma  and assumption (H), it is easy to see that (t– s)q–V (t– s)[f (s,u(s))+∫ s
 K(s, τ )h(τ ,u(τ ))dτ ] is Bochner integrable with respect to s ∈ [, t] for all t ∈ J . For any
u ∈ Br , we define an operator Q by

(Qu)(t) = U(t)
(
x – g(u)

)
+

∫ t


(t – s)q–V (t – s)

×
[
f
(
s,u(s)

)
+

∫ s


K(s, τ )h

(
τ ,u(τ )

)
dτ

]
ds, t ∈ J .

According to the proof of Theorem , we know that Q(Br) ⊂ Br for some r > . For any
u, v ∈ Br and t ∈ J , from Lemma , assumptions (H) and (H), we have

∥∥(Qu)(t) – (Qv)(t)
∥∥

α

≤ ∥∥U(t)
[
g(v) – g(u)

]∥∥
α

+
∫ t


(t – s)q–

∥∥V (t – s)
[
f
(
s,u(s)

)
– f

(
s, v(s)

)]∥∥
α
ds

+
∫ t


(t – s)q–

∥∥∥∥V (t – s)
∫ s


K(s, τ )

[
h
(
τ ,u(τ )

)
– h

(
τ , v(τ )

)]
dτ

∥∥∥∥
α

ds

≤ ML‖u – v‖C +
qMCβ–α

�(q + )

∫ t


(t – s)q–ρ(s)

∥∥u(s) – v(s)
∥∥

α
ds

+
qMCβ–αK *

�(q + )

∫ t


(t – s)q–

∫ s


ρ(τ )

∥∥u(τ ) – v(τ )
∥∥

α
dτ ds

≤ ML‖u – v‖C +
qMCβ–α

�(q + )

∫ t


(t – s)q– ds · ‖ρ‖L · ‖u – v‖C

+
qMCβ–αK *

�(q + )

∫ t


(t – s)q– ds · ‖ρ‖L · ‖u – v‖C

=
[
ML +

MTqCβ–α

�(q + )
(‖ρ‖L +K *‖ρ‖L

)] · ‖u – v‖C .

Thus,

‖Qu –Qv‖C ≤ μ‖u – v‖C ,

which means that Q is a contraction according to (). By applying the Banach contraction
principle, we know thatQ has a unique fixed point on Br , which is the uniquemild solution
of Eq. (). This completes the proof. �
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4 An example
Let X = L[,π ] equip with its natural norm ‖ · ‖ and inner product 〈·, ·〉. Consider the
following system:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂



∂t


u(t,x) – ∂

∂x u(t,x) = u(t,x) sin t 
 +

∫ t
 K(t, s)u(s,x) cos s ds,

t ∈ [,T],x ∈ [,π ],

u(t, ) = u(t,π ) = , t ∈ [,T],

u(,x) +
∑m

i=
∫ π

 K(x, y)u(ti, y)dy = u(x), x ∈ [,π ],

()

where T >  is a constant,  < t < · · · < tm < T , u ∈ X and K will be specified later.
Let the operator A :D(A) ⊂ X → X be defined by

D(A) :=
{
v ∈ X : v′, v′′ ∈ X, v() = v(π ) = 

}
, Au = –

∂u
∂x

.

Then –A generates a compact analytic semigroup S(·) of uniformly bounded linear oper-
ators and ‖S(t)‖L(X) ≤ e–t for all t ≥ . Hence, we take M = . Moreover, the eigenvalues
of A are n, n ∈N and the corresponding normalized eigenvectors are zn(x) =

√

π
sin(nx),

n = , , . . . . The operator A 
 is given by

A

 ξ =

∞∑
n=

n〈ξ , zn〉zn

for each ξ ∈D(A 
 ) := {v ∈ X :

∑∞
n= n〈v, zn〉zn ∈ X} and ‖A– 

 ‖L(X) = .

Lemma  ([]) If ξ ∈D(A 
 ), then ξ is absolutely continuous, ξ ′ ∈ X and ‖ξ ′‖ = ‖A 

 ξ‖.

Let X 

= (D(A 

 ),‖ · ‖ 

), where ‖ξ‖ 


:= ‖A 

 ξ‖X for all ξ ∈D(A 
 ). Assume that

(P) The function K ∈ L([,π ]× [,π ],R), K(, y) = K(π , y) = , and the partial deriva-
tive (x, y) → ∂

∂xK(x, y) belongs to L([,π ]× [,π ],R).

Define

f
(
t,u(t)

)
(x) = u(t,x) sin t


 ,

h
(
t,u(t)

)
(x) = u(t,x) cos t,

g(u)(x) =
m∑
i=

∫ π


K(x, y)u(ti, y)dy.

Let ξ ∈ X 

, it follows from

〈
f (t, ξ ), zn

〉
=

∫ π


u(t,x) sin t


 ·

√

π
sin(nx)dx

=

n

∫ π



[
∂

∂x
u(t,x)

]
sin t


 ·

√

π
cos(nx)dx

http://www.boundaryvalueproblems.com/content/2012/1/113
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and

〈
h(t, ξ ), zn

〉
=

∫ π


u(t,x) cos t ·

√

π
sin(nx)dx

=

n

∫ π



[
∂

∂x
u(t,x)

]
cos t ·

√

π
cos(nx)dx

that f and h are functions from [,T] × X 

into X 


and they are continuous. Moreover,

a similar computation of [] together with Lemma  and assumption (P) shows that
g(u) ∈ X 


whenever u ∈ C([,T],X 


).

Then for any r > , we see that the assumptions (H)-(H) are satisfied with

ϕr(t) = r sin t

 , φr(t) = r cos t, σ = σ = T


 ,

L = (n + )
(∫ π



∫ π



[
∂

∂x
K(x, y)

]

dxdy
) 


, ρ(t) = ρ(t) = .

Thus, the system () has at least one mild solution due to Theorem  provided that L +
T


√
π
(+K *) < . AndbyTheorem, thismild solution of the system () is unique on [,T]×

[,π ].
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