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Abstract
Existence and uniqueness result of the solutions to mean-field backward doubly
stochastic differential equations (BDSDEs in short) with locally monotone coefficients
as well as the comparison theorem for these equations are established. As a
preliminary step, the existence and uniqueness result for the solutions of mean-field
BDSDEs with globally monotone coefficients is also established. Furthermore, we give
the probabilistic representation of the solutions for a class of stochastic partial
differential equations by virtue of mean-field BDSDEs, which can be viewed as the
stochastic Feynman-Kac formula for SPDEs of mean-field type.
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1 Introduction
In this paper, we study a new kind of stochastic partial differential equations (SPDEs):
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where σ̂ * is the transpose of σ̂ which is defined by σ̂ := E[σ (s,X,x
s ,x)], and L is a second-

order differential operator given by (Lu)i = (Lui)≤i≤n with
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Here, the function u(t,x) : [,T]×R
d →R

n is the unknown function, and {Bt , ≤ t ≤ T}
is an l-dimensional Brownian motion process defined on a given complete probability
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space (�,F ,P). X,x
t , a stochastic process starting at x when t = , is the solution of one

class of stochastic differential equations (SDEs), and E denotes expectation with respect to
the probability P. In this paper, we call this kind of equations (.) McKean-Vlasov SPDEs,
because they are analogous to McKean-Vlasov PDEs except the stochastic term dBt .
McKean-Vlasov PDEs involving models of large stochastic particle systems with mean-

field interaction have been studied by stochastic methods in recent years (see [–] and
the references therein). Mean-field approaches have applications in many areas such as
statistical mechanics and physics, quantummechanics and quantum chemistry. Recently,
Lasry and Lions introduced mean-field approaches for high-dimensional systems of evo-
lution equations corresponding to a large number of ‘agents’ or ‘particles’. They extended
the field of such mean-field approaches to problems in economics, finance and game the-
ory (see [] and the references therein).
As is well known, to give a probabilistic representation (Feynman-Kac formula) of quasi-

linear parabolic SPDEs, Pardoux and Peng [] introduced a new class of backward stochas-
tic differential equations (BSDEs) called backward doubly stochastic differential equations
which have two different types of stochastic integrals: a standard (forward) stochastic inte-
gral dWt and a backward stochastic integral dBt . They proved the existence and unique-
ness for solutions of BDSDEs under uniformly Lipschitz coefficients. When the coeffi-
cients are smooth enough, they also established the connection between BDSDEs and a
certain kind of quasilinear SPDEs. BDSDEs have a practical background in finance. The
extra noise B can be regarded as some extra inside information in a derivative security
market. Since s, BDSDEs have drawn more attention from many authors (cf. [–]
and the references therein). Shi, Gu and Liu gave the comparison theorem of BDSDEs and
investigated the existence of solutions for BDSDEs with continuous coefficients in []. To
relax the Lipschitz conditions,Wu andZhang studied two kinds of BDSDEs under globally
(respectively, locally) monotone assumptions and obtained the uniqueness and existence
results of the solutions (see []).
Mean-field BSDEs are deduced by Buckdahn, Djehiche, Li and Peng [] when they stud-

ied a special mean-field problemwith a purely stochastic method. Later, Buckdahn, Li and
Peng [] investigated the properties of these equations in a Markovian framework, ob-
tained the uniqueness of the solutions of mean-field BSDEs as well as the comparison
theorem and also gave the viscosity solutions of a class of McKean-Vlasov PDEs in terms
of mean-field BSDEs.
In this paper, we study a new type of BDSDEs, that is, the so called mean-field BDSDEs,

under the globally (respectively locally) monotone coefficients. We obtain the existence
and uniqueness result of the solution by virtue of the technique proposed by Wu and
Zhang [] and the contractionmapping theoremunder certain conditions. Also, the com-
parison principle for mean-field BDSDEs is discussed when the coefficients satisfy some
stricter assumptions. A comparison theorem is a useful result in the theory of BSDEs. For
instance, it can be used to study viscosity solutions of PDEs. Here, we point out that it is
more delicate to prove the comparison theorem for mean-field BDSDEs because of the
mean-field term.
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We also present the connection between McKean-Vlasov SPDEs and mean-field
BDSDEs. In detail, let {Xt,x

s , t ≤ s ≤ T} be the solution of

⎧⎨
⎩dXt,x

s = E′[b(s, (X,x
s )′,Xt,x

s )]ds + E′[σ (s, (X,x
s )′,Xt,x

s )]dWs, s ∈ [t,T],

Xt,x
t = x.

Assume that Eq. (.) has a classical solution. Then the couple (Y t,x
s ,Zt,x

s ), where Y t,x
s =

u(s,Xt,x
s ) and Zt,x

s = E′[σ (s, (X,x
s )′,Xt,x

s )]* · Du(s,Xt,x
s ), verifies the following mean-field

BDSDE :
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+
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In Eq. (.), the integral dWt is a forward Itô integral, and the integral dBt denotes a back-
ward Itô integral. {Wt , ≤ t ≤ T} and {Bt ,  ≤ t ≤ T} are two mutually independent stan-
dard Brownianmotion processes with values respectively inR

d and inR
l . This conclusion

gives a probabilistic representation ofMcKean-Vlasov SPDEs (.), which can be regarded
as a stochastic Feynman-Kac formula for Mckean-Vlasov SPDEs.
Our paper is organized as follows. In Section , we present the existence and uniqueness

results about mean-field BDSDEs with globally monotone coefficients. We investigate the
properties of mean-field BDSDEs with locally monotone assumptions in Section . We
first prove the existence and uniqueness of the solutions of mean-field BDSDEs and then
derive the comparison theorem when the mean-field BDSDEs are one-dimensional. In
Section , we introduce the decoupled mean-field forward-backward doubly stochastic
differential equation and study the regularity of its solution with respect to x, which is the
initial condition of the McKean-Vlasov SDE. Finally, Section  is devoted to the formu-
lation of McKean-Vlasov SPDEs and provides the relationship between the solutions of
SPDEs and those of mean-field BDSDEs.

2 Mean-field BDSDEs with globally monotone coefficients
In this section, we study mean-field BDSDEs with globally monotone coefficients, which
is helpful for the case of locally monotone coefficients. To this end, we firstly introduce
some notations and recall some results on mean-field BSDEs obtained by Buckdahn, Li
and Peng [].
Let {Wt ,  ≤ t ≤ T} and {Bt ,  ≤ t ≤ T} be two mutually independent standard Brow-

nian motion processes, with values respectively in R
d and R

l , defined over some com-
plete probability space (�,F ,P), whereT is a fixed positive number throughout this paper.
Moreover, let N denote the class of P-null sets of F . For each  ≤ s ≤ T , we define

Ft �FW
,t ∨FB

t,T

with FW
s,t = σ {Wr ; s ≤ r ≤ t} ∨ N and FB

t,s = σ {Br – Bt ; t ≤ r ≤ s} ∨ N .
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Note that {Ft , t ∈ [,T]} is not an increasing family of σ -fields, so it is not a filtration.
We will also use the following spaces:
• For any n ∈N, letH

F
(,T ;Rn) denote the set of (classes of dP × dt a.e. equal)

n-dimensional jointly measurable random processes {ψt ; t ∈ [,T]} which satisfy:
(i) E

∫ T
 |ψt| dt < +∞,

(ii) ψt is Ft measurable, for a.e. ≤ t ≤ T .
Evidently,H

F
(,T ;Rn) is a Banach space endowed with the canonical norm

‖ψ‖ = {E ∫ T
 |ψs| ds} 

 .
• We denote similarly by S

F
([,T];Rn) the set of continuous n-dimensional random

processes {ψt ; t ∈ [,T]} which satisfy:
(i) E(sup≤t≤T |ψt|) < +∞,
(ii) ψt is Ft measurable, for a.e. ≤ t ≤ T .

• L(�,F ,P;Rn) denotes the space of all Rn valued F -measurable random variables.
• For  ≤ p < ∞, Lp(�,F ,P;Rn) is the space of all Rn valued F -measurable random
variables such that E[|ξ |p] < ∞.

Let (�̄, F̄ , P̄) = (� × �,F ⊗F ,P⊗ P) be the (non-completed) product of (�,F ,P) with
itself, andwe define F̄ = {F̄t =F⊗Ft ,  ≤ t ≤ T} on this product space. A random variable
ξ ∈ L(�,F ,P;Rn) originally defined on � is extended canonically to �̄ : ξ ′(ω′,ω) = ξ (ω′),
(ω′,ω) ∈ �̄ = � × �. For any θ ∈ L(�̄, F̄ , P̄), the variable θ (·,ω) : � → R

n belongs to
L(�,F ,P), P(dω)-a.s., whose expectation is denoted by

E′[θ (·,ω)] = ∫
�

θ
(
ω′,ω

)
P
(
dω′).

Notice that E′[θ ] = E′[θ (·,ω)] ∈ L(�,F ,P) and

Ē[θ ]
(
=

∫
�̄

θ dP̄ =
∫

�

E′[θ (·,ω)]P(dω)
)
= E

[
E′[θ ]

]
.

Moreover, for all (y′, z′, y, z), f = f (ω′,ω, t, y′, z′, y, z) : �̄ × [,T] × R
n × R

n×d × R
n ×

R
n×d → R

n, g = g(ω′,ω, t, y′, z′, y, z) : �̄ × [,T] × R
n × R

n×d × R
n × R

n×d → R
n×l are

two F̄t-measurable functions which satisfy

Assumption .
(A) g(t, , , , ) ∈H

F̄
(,T ;Rn×l), and there exist L >  and  < α < 

 such that

∣∣g(t, y′
, z

′
, y, z

)
– g

(
t, y′

, z
′
, y, z

)∣∣
≤ L

(∣∣y′
 – y′


∣∣ + |y – y|

)
+ α

(∣∣z′
 – z′


∣∣ + |z – z|

)
, ∀t, y′

, z
′
, y, z, y

′
, z

′
, y, z;

(A) for any fixed (ω′,ω, t), f (ω′,ω, t, ·, ·, ·, ·) is continuous;
(A) there exist a process f̄t ∈H

F̄
(,T ;R) and a constant L >  such that

∣∣f (t, y′, z′, y, z
)∣∣ ≤ f̄t + L

(∣∣y′∣∣ + ∣∣z′∣∣ + |y| + |z|);
(A) there exist constants λ,λ ∈ R such that for all t ∈ [,T], yi, y′

i ∈ R
n, zi, z′

i ∈ R
n×d

(i = , ),

(y – y)
(
f
(
t, y′

, z
′, y, z

)
– f

(
t, y′

, z
′, y, z

)) ≤ λ(y – y)
(
y′
 – y′


)
+ λ|y – y|;
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(A) there exists L >  such that, P̄-a.s., for all t ∈ [,T], y′, y ∈R
n, z, z, z′

, z′
 ∈R

n×d ,

∣∣f (t, y′, z′
, y, z

)
– f

(
t, y′, z′

, y, z
)∣∣ ≤ L

(∣∣z′
 – z′


∣∣ + |z – z|

)
.

We now consider the following mean-field BDSDEs with the form:

Yt = ξ +
∫ T

t
E′[f (s,Y ′

s ,Z
′
s,Ys,Zs

)]
ds +

∫ T

t
E′[g(s,Y ′

s ,Z
′
s,Ys,Zs

)]
dBs

–
∫ T

t
Zs dWs,  ≤ t ≤ T . (.)

Remark . Due to our notation, the coefficients of (.) are interpreted as follows:

E′[ϕ(
s,Y ′

s ,Z
′
s,Ys,Zs

)]
(ω)

= E′[ϕ(
s,Y ′

s ,Z
′
s,Ys(ω),Zs(ω)

)]
=

∫
�

ϕ
(
ω′,ω, s,Ys

(
ω′),Zs

(
ω′),Ys(ω),Zs(ω)

)
P
(
dω′), for ϕ = f , g.

Remark . If coefficient f meets the following Lipschitz assumption: There exists a con-
stant L >  such that, P̄-a.s., for all t ∈ [,T], yi, y′

i ∈R
n, zi, z′

i ∈ R
n×d (i = , ),

∣∣f (t, y′
, z

′
, y, z

)
– f

(
t, y′

, z
′
, y, z

)∣∣ ≤ L
(∣∣y′

 – y′

∣∣ + ∣∣z′

 – z′

∣∣ + |y – y| + |z – z|

)
,

then it must satisfy conditions (A) and (A).

Definition . A pair of Ft-measurable processes {(Yt ,Zt);  ≤ t ≤ T} is called a solution
of mean-field BDSDE (.) if (Y ,Z) ∈ S

F
([,T];Rn)×H

F
(,T ;Rn×d) and it satisfies mean-

field BDSDE (.).

The main result of this section is the following theorem.

Theorem. For any random variable ξ ∈ L(�,FT ,P;Rn), under Assumption .,mean-
field BDSDE (.) admits a unique solution (Y ,Z) ∈ S

F
([,T];Rn)×H

F
(,T ;Rn×d).

Proof Step : For any (y, z) ∈H
F
(,T ;Rn ×R

n×d), BDSDE

Yt = ξ +
∫ T

t
E′[f (s, y′

s, z
′
s,Ys,Zs

)]
ds +

∫ T

t
E′[g(s, y′

s, z
′
s,Ys,Zs

)]
dBs

–
∫ T

t
Zs dWs,  ≤ t ≤ T (.)

has a unique solution. In order to get this conclusion, we define

ϕ(y,z)(s,μ,ν) := E′[ϕ(
s, y′

s, z
′
s,μ,ν

)]
, for ϕ = f , g.

Then (.) can be rewritten as

Yt = ξ +
∫ T

t
f (y,z)(Ys,Zs)ds +

∫ T

t
g(y,z)(Ys,Zs)dBs –

∫ T

t
Zs dWs.
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Due to Assumption ., for all (μ,ν), (μ,ν), (μ,ν) ∈R
n ×R

n×d , g satisfies

∣∣g(y,z)(μ,ν) – g(y,z)(μ,ν)
∣∣ ≤ L|μ –μ| + α|ν – ν|,

and f fulfills

(μ –μ)
(
f (y,z)(μ,ν) – f (y,z)(μ,ν)

) ≤ λ|μ –μ|,∣∣f (y,z)(μ,ν) – f (y,z)(μ,ν)
∣∣ ≤ L|ν – ν|.

According to Theorem . in [], BDSDE (.) has a unique solution.
Step : Now, we introduce a norm on the spaceH

F
(,T ;Rn ×R

n×d) which is equivalent
to the canonical norm

∥∥(y, z)∥∥
β
=

{
E

∫ T


eβs(c̄|ys| + |zs|

)
ds

} 

, c̄,β > .

The parameters c̄ and β are specified later.
From Step , we can introduce the mapping (Y·,Z·) = I[(y′·, z′·)] :H

F
(,T ;Rn ×R

n×d) →
H

F
(,T ;Rn ×R

n×d) through the equation

Yt = ξ +
∫ T

t
E′[f (s, y′

s, z
′
s,Ys,Zs

)]
ds +

∫ T

t
E′[g(s, y′

s, z
′
s,Ys,Zs

)]
dBs

–
∫ T

t
Zs dWs,  ≤ t ≤ T .

For any (y, z), (y, z) ∈ H
F
(,T ;Rn × R

n×d), we set (Y ,Z) = I[(y, z)], (Y ,Z) =
I[(y, z)], (ȳ, z̄) = (y –y, z –z) and (Ȳ , Z̄) = (Y  –Y ,Z –Z). Then applying Itô’s formula
to eβs|Ȳs| and by virtue of Y ,Y  ∈ S

F
([,T];Rn), we have

E
[
eβt|Ȳt|

]
+ βE

[∫ T

t
eβs|Ȳs| ds

]
+ E

[∫ T

t
eβs|Z̄s| ds

]

= E
[∫ T

t
eβs(Ȳs, f (y

,z)(s,Y 
s ,Z


s
)
– f (y

,z)(s,Y 
s ,Z


s
))
ds

]

+ E
[∫ T

t
eβs∣∣g(y,z)(s,Y 

s ,Z

s
)
– g(y

,z)(s,Y 
s ,Z


s
)∣∣ ds]. (.)

From condition (A) and noting that E′[Ys(ω′)] = E[Ys(ω)], for anyM > , we get

(
Ȳs, f (y

,z)(s,Y 
s ,Z


s
)
– f (y

,z)(s,Y 
s ,Z


s
))

=
(
Ȳs, f (y

,z)(s,Y 
s ,Z


s
)
– f (y

,z)(s,Y 
s ,Z


s
))
+

(
Ȳs, f (y

,z)(s,Y 
s ,Z


s
)
– f (y

,z)(s,Y 
s ,Z


s
))

≤ λȲsE(ȳs) + λ|Ȳs| + 

M|Ȳs| + L

M
E
[|z̄s|] + L

M
|Z̄s|

≤
( |λ|M


+ λ+

 +


M

)
|Ȳs| + |λ|

M
E
[|ȳs|] + L

M
E
[|z̄s|] + L

M
|Z̄s|.
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Then we have

E
[
eβt|Ȳt|

]
+ βE

[∫ T

t
eβs|Ȳs| ds

]
+ E

[∫ T

t
eβs|Z̄s| ds

]

≤ E
[∫ T

t
eβs

((|λ|M + λ+
 + M + L

)|Ȳs| +
(
L +

|λ|
M

)
E
[|ȳs|]

+
(

L
M

+ α

)
E
[|z̄s|] +(

L
M

+ α

)
|Z̄s|

)
ds

]
.

If we setM = L
–α , c̄ =


+α (

|λ|
M + L), β = |λ|M + λ+

 + M + L + 
 c̄, then it yields

E
[∫ T

t
eβs(c̄|Ȳs| + |Z̄s|

)
ds

]
≤  + α


E
[∫ T

t
eβs(c̄|ȳs| + |z̄s|

)
ds

]
.

Consequently, I is a strict contraction onH
F
(,T ;Rn ×R

n×d) equipped with the norm
‖ · ‖β for  < α < 

 . With the contraction mapping theorem, there admits a unique fixed
point (Y ,Z) ∈ H

F
(,T ;Rn × R

n×d) such that I(Y ,Z) = (Y ,Z). On the other hand, from
Step , we know that if I(Y ,Z) = (Y ,Z), then (Y ,Z) ∈ S

F
([,T];Rn)×H

F
(,T ;Rn×d), which

is the unique solution of Eq. (.). �

Suppose that: For some f : �̄ × [,T]×R
n ×R

n×d ×R
n ×R

n×d → R
n satisfying (A)-

(A), the generators fi, i = ,  are of the form

fi
(
s,

(
Y i
s
)′,

(
Zi
s
)′,Y i

s ,Z
i
s
)
= f

(
s,

(
Y i
s
)′,

(
Zi
s
)′,Y i

s ,Z
i
s
)
+ ϕi(s), dsdP̄-a.e., i = , ,

where ϕi ∈H
F̄
(,T ;Rn). Then we have the following corollary.

Corollary . Suppose that (Y i,Zi) is the solution of mean-field BDSDE (.) with data
(ξ i, fi, g), i = , , where ξ , ξ  ∈ L(�,FT ,P;Rn) are two arbitrary terminal values. The dif-
ference of (Y ,Z) and (Y ,Z) satisfies the following estimate:

E
[∣∣Y 

t – Y 
t
∣∣] + E

[∫ T

t
eβ(s–t)∣∣Y 

s – Y 
s
∣∣ ds] +

 – α


E
[∫ T

t
eβ(s–t)∣∣Z

s – Z
s
∣∣ ds]

≤ E
[
eβ(T–t)∣∣ξ  – ξ ∣∣] + E

[∫ T

t
eβ(s–t)E′[∣∣ϕ(s) – ϕ(s)

∣∣]ds],
for all  ≤ t ≤ T , (.)

where β = |λ| + λ+
 +

L
–α +  + L.

The proof of the above corollary is similar to that of Theorem . and is therefore omit-
ted.

3 Mean-field BDSDEs with locally monotone coefficients
In this section, we investigate mean-field BDSDEs with locallymonotone coefficients. The
results can be regarded as an extension of the results in [] to the mean-field type.
We assume
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(A′) there exist L >  and  ≤ γ <  such that |f (t, y′, z′, y, z)| ≤ L( + |y′|γ + |z′|γ + |y|γ +
|z|γ );
(A′) for any N ∈ N, there exist constants λN , λ̄N ∈ R such that, ∀y′

i, yi, z′, z satisfying
|y′

i|, |yi|, |z′|, |z| ≤ N (i = , ), we have

(y – y)
(
f
(
t, y′

, z
′, y, z

)
– f

(
t, y′

, z
′, y, z

)) ≤ λN (y – y)
(
y′
 – y′


)
+ λ̄N |y – y|;

(A′) ∀N ∈N, there exists LN >  such that, for any y′, y, z′
i, zi satisfying |y′|, |y|, |z′

i|, |zi| ≤
N (i = , ), it holds

∣∣f (t, y′, z′
, y, z

)
– f

(
t, y′, z′

, y, z
)∣∣ ≤ LN

(∣∣z′
 – z′


∣∣ + |z – z|

)
.

Remark . Since |x|γ ≤  + |x|, γ ∈ [, ), (A′) implies that

∣∣f (t, y′, z′, y, z
)∣∣ ≤ L

(
 +

∣∣y′∣∣ + ∣∣z′∣∣ + |y| + |z|).
We need the following lemma, which plays an important role in the proof of the main

result.

Lemma . Under (A), (A′)-(A′) there exists a sequence of {fm}∞m= such that
(i) for fixed m ∈N, ω′, ω, t, fm(ω′,ω, t, ·, ·, ·, ·) is continuous;
(ii) ∀m, |fm(t, y′, z′, y, z)| ≤ |f (t, y′, z′, y, z)| ≤ L( + |y′|γ + |z′|γ + |y|γ + |z|γ );
(iii) ∀N , ρN (fm – f ) →  as m → ∞, where

ρ
m(f ) := E[

∫ T
 sup|y′|,|z′|,|y|,|z|≤m |f (t, y′, z′, y, z)| dt];

(iv) ∀m, fm is globally monotone in y;moreover, for anym, N withm ≥ N , it holds that

(y –y)
(
fm

(
t, y′

, z
′, y, z

)
– fm

(
t, y′

, z
′, y, z

)) ≤ λN (y –y)
(
y′
 –y

′

)
+ λ̄N |y –y|,

for any t, y′
i, yi, z′, z satisfying |y′

i|, |yi|, |z′|, |z| ≤ N (i = , );
(v) ∀m, fm is globally Lipschitz in z′, z;moreover, for anym, N withm ≥ N , it holds that

∣∣fm(
t, y′, z′

, y, z
)
– fm

(
t, y′, z′

, y, z
)∣∣ ≤ LN

(∣∣z′
 – z′


∣∣ + |z – z|

)
,

for any t, y′, y, z′
i, zi satisfying |y′|, |y|, |z′

i|, |zi| ≤ N (i = , ).

Proof We define fm by

fm
(
t, y′, z′, y, z

)
= f

(
t, y′, z′, y, z

)
φm

(
y′)ϕm

(
z′)ψm(y)ηm(z),

where φm :Rn →R
+ is a sequence of smooth functions such that ≤ φm ≤ , φm(x) =  for

|x| ≤ m, and φm(x) =  for |x| ≥ m+ . Similarly, we define the sequences ϕm :Rn×d →R
+,

ψm : Rn → R
+, ηm : Rn×d → R

+. It should be pointed out that φm, ϕm, ψm and ηm are
continuously differentiable with bounded derivatives for each m. The conclusion of this
lemma can be easily obtained by arguments similar to those of Lemma . in []. �

We now present the main result of this section.
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Theorem . Let (A), (A), (A′)-(A′) hold. Assume,moreover,

 + exp(L + |λN | + λ̄+
N + LNθ– + )

N(–γ ) → , as N → ∞, (.)

where θ is an arbitrarily fixed constant such that  < θ <  – α. Then mean-field BDSDE
(.) has a unique solution (Y ,Z) ∈ S

F
([,T];Rn)×H

F
(,T ;Rn×d).

Proof Wenowconstruct an approximate sequence. Let fm be associated to f byLemma..
Then for eachm, fm is globally monotone in y and globally Lipschitz in z. By Theorem .,
the following mean-field BDSDE

Ym
t = ξ +

∫ T

t
E′[fm(

s,
(
Ym
s

)′,
(
Zm
s
)′,Ym

s ,Zm
s
)]
ds

+
∫ T

t
E′[g(s, (Ym

s
)′,

(
Zm
s
)′,Ym

s ,Zm
s
)]
dBs –

∫ T

t
Zm
s dWs,  ≤ t ≤ T , (.)

admits a unique solution (Ym,Zm) ∈ S
F
([,T];Rn)×H

F
(,T ;Rn×d) for each m ≥ N . Ap-

plying Itô’s formula to |Ym
t | yields

E
[∣∣Ym

t
∣∣] + E

[∫ T

t

∣∣Zm
s
∣∣ ds]

= E
[|ξ |] + E

[∫ T

t
Ym
s · E′[fm(

s,
(
Ym
s

)′,
(
Zm
s
)′,Ym

s ,Zm
s
)]
ds

]

+ E
[∫ T

t

∣∣E′[g(s, (Ym
s

)′,
(
Zm
s
)′,Ym

s ,Zm
s
)]∣∣ ds],  ≤ t ≤ T ,

where

E
[∫ T

t
Ym
s · E′[fm(

s,
(
Ym
s

)′,
(
Zm
s
)′,Ym

s ,Zm
s
)]
ds

]

≤ L
[
E

∫ T

t

∣∣Ym
s

∣∣( + E
[∣∣Ym

s
∣∣] + E

[∣∣Zm
s
∣∣] + ∣∣Ym

s
∣∣ + ∣∣Zm

s
∣∣)ds]

≤  T + E
∫ T

t

(
L + L +

L

 – α

)∣∣Ym
s

∣∣ ds +  – α


E

∫ T

t

∣∣Zm
s
∣∣ ds,

and

E
[∫ T

t

∣∣E′[g(s, (Ym
s

)′,
(
Zm
s
)′,Ym

s ,Zm
s
)]∣∣ ds]

≤  + α
α

E
[∫ T

t

∣∣E′[g(s, (Ym
s

)′,
(
Zm
s
)′,Ym

s ,Zm
s
)]
– E′[g(s, , , , )]∣∣ ds]

+
 + α
 – α

E
[∫ T

t

∣∣E′[g(s, , , , )]∣∣ ds]

≤ ( + α)L
α

E
[∫ T

t

∣∣Ym
s

∣∣ ds] +
( + α)


E
[∫ T

t

∣∣Zm
s
∣∣ ds]

+
 + α
 – α

E
[∫ T

t

∣∣E′[g(s, , , , )]∣∣ ds].
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Hence,

E
[∣∣Ym

t
∣∣] + ( – α)


E
[∫ T

t

∣∣Zm
s
∣∣ ds]

≤ E
[|ξ |] + T +

 + α
 – α

E
[∫ T

t

∣∣E′[g(s, , , , )]∣∣ ds]

+
(
L + L +

L

 – α
+
( + α)L

α

)
E
[∫ T

t

∣∣Ym
s

∣∣ ds].
Then it follows from Gronwall’s inequality and the B-D-G inequality that

E
[
sup

≤t≤T

∣∣Ym
t

∣∣] + E
[∫ T



∣∣Zm
t
∣∣ dt]

≤ C
[
 + E

[|ξ |] + E
∫ T

t

∣∣E′[g(s, , , , )]∣∣ ds],
where C >  only depends on T , α, L and is independent ofm.
For anym,k ∈N, set

A :=
{(

ω′,ω, s
)
:
∣∣(Ym

s
)′∣∣ + ∣∣(Zm

s
)′∣∣ + ∣∣(Yk

s
)′∣∣ + ∣∣(Zk

s
)′∣∣

+
∣∣Ym

s
∣∣ + ∣∣Zm

s
∣∣ + ∣∣Yk

s
∣∣ + ∣∣Zk

s
∣∣ ≥ N

}
,

and Ā :=� \A.
Next, we will conclude that (Ym,Zm) is a Cauchy sequence in S

F
([,T];Rn) × H

F
(,

T ;Rn×d). Actually, since mean-field BDSDE

Yk
t = ξ +

∫ T

t
E′[fk(s, (Yk

s
)′,

(
Zk
s
)′,Yk

s ,Z
k
s
)]
ds +

∫ T

t
E′[g(s, (Yk

s
)′,

(
Zk
s
)′,Yk

s ,Z
k
s
)]
dBs

–
∫ T

t
Zk
s dWs,  ≤ t ≤ T ,

admits a unique solution (Yk ,Zk) ∈ S
F
([,T];Rn) × H

F
(,T ;Rn×d) for each k ≥ N . Ap-

plying Itô’s formula to |Ym
t – Yk

t |, we have

E
[∣∣Ym

t – Yk
t
∣∣] + E

[∫ T

t

∣∣Zm
s – Zk

s
∣∣ ds]

= E
[∫ T

t

(
Ym
s – Yk

s
) · (E′[fm(

s,
(
Ym
s

)′,
(
Zm
s
)′,Ym

s ,Zm
s
)]

– E′[fk(s, (Yk
s
)′,

(
Zk
s
)′,Yk

s ,Z
k
s
)])

ds
]

+ E
[∫ T

t

∣∣E′[g(s, (Ym
s

)′,
(
Zm
s
)′,Ym

s ,Zm
s
)
– g

(
s,

(
Yk
s
)′,

(
Zk
s
)′,Yk

s ,Z
k
s
)]∣∣ ds]

≤ LE
∫ T

t

∣∣Ym
s – Yk

s
∣∣ ds + αE

∫ T

t

∣∣Zm
s – Zk

s
∣∣ ds + I + II + III, (.)

http://www.boundaryvalueproblems.com/content/2012/1/114
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where

I = E
[∫ T

t

(
Ym
s – Yk

s
) · E′[fm(

s,
(
Ym
s

)′,
(
Zm
s
)′,Ym

s ,Zm
s
)

– fk
(
s,

(
Yk
s
)′,

(
Zk
s
)′,Yk

s ,Z
k
s
)]
IA ds

]
,

II = E
[∫ T

t

(
Ym
s – Yk

s
) · E′[fm(

s,
(
Ym
s

)′,
(
Zm
s
)′,Ym

s ,Zm
s
)

– fm
(
s,

(
Yk
s
)′,

(
Zk
s
)′,Yk

s ,Z
k
s
)]
IĀ ds

]
,

III = E
[∫ T

t

(
Ym
s – Yk

s
) · E′[fm(

s,
(
Yk
s
)′,

(
Zk
s
)′,Yk

s ,Z
k
s
)

– fk
(
s,

(
Yk
s
)′,

(
Zk
s
)′,Yk

s ,Z
k
s
)]
IĀ ds

]
.

We next estimate I, II and III.
For the first term I, based on Hölder’s inequality and Chebyshev’s inequality, we have

I ≤ E
∫ T

t

∣∣Ym
s – Yk

s
∣∣ ds

+ E
[∫ T

t
E′[∣∣fm(

s,
(
Ym
s

)′,
(
Zm
s
)′,Ym

s ,Zm
s
)
– fk

(
s,

(
Yk
s
)′,

(
Zk
s
)′,Yk

s ,Z
k
s
)∣∣]IA ds]

≤ E
∫ T

t

∣∣Ym
s – Yk

s
∣∣ ds +CN–(–γ ), (.)

where C >  depends on T , L, α and E[
∫ T
 |E′[g(s, , , , )]| ds].

For the second term II, due to the local monotonicity of fm in y and the local Lipschitz
condition of fm in z, we obtain that for ∀M > , the following holds:

II = E
[∫ T

t

(
Ym
s – Yk

s
) · E′[fm(

s,
(
Ym
s

)′,
(
Zm
s
)′,Ym

s ,Zm
s
)

– fm
(
s,

(
Yk
s
)′,

(
Zm
s
)′,Yk

s ,Z
m
s
)]
IĀ ds

]

+ E
[∫ T

t

(
Ym
s – Yk

s
) · E′[fm(

s,
(
Yk
s
)′,

(
Zm
s
)′,Yk

s ,Z
m
s
)

– fm
(
s,

(
Yk
s
)′,

(
Zk
s
)′,Yk

s ,Z
k
s
)]
IĀ ds

]

≤ E
∫ T

t

[
λN

(
Ym
s – Yk

s
)
E
(
Ym
s – Yk

s
)
+ λ̄N

∣∣Ym
s – Yk

s
∣∣]ds

+ME
∫ T

t

∣∣Ym
s – Yk

s
∣∣ ds + LN

M
E

∫ T

t

[
E′[∣∣(Zm

s
)′ –

(
Zk
s
)′∣∣] + ∣∣Zm

s – Zk
s
∣∣]ds

≤ (
|λN | + λ̄+

N +M
)
E

∫ T

t

∣∣Ym
s – Yk

s
∣∣ ds + LN

M
E

∫ T

t

∣∣Zm
s – Zk

s
∣∣ ds. (.)
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For the last term, we have

III≤ E
∫ T

t

∣∣Ym
s – Yk

s
∣∣ ds + ρ

N (fm – fk). (.)

ChooseM >  such that θ := LN
M <  – α. Then from (.)-(.), we obtain

E
[∣∣Ym

t – Yk
t
∣∣] + ( – α – θ )E

[∫ T

t

∣∣Zm
s – Zk

s
∣∣ ds]

≤ ρ
N (fm – fk) +CN–(–γ ) +

(
L + |λN | + λ̄+

N + LNθ– + 
)
E

∫ T

t

∣∣Ym
s – Yk

s
∣∣ ds.

Applying Gronwall’s inequality and the B-D-G inequality to the above inequality yields

E
[
sup

≤t≤T

∣∣Ym
t – Yk

t
∣∣] + E

[∫ T



∣∣Zm
s – Zk

s
∣∣ ds]

≤ c
[
ρ
N (fm – fk) +N–(–γ )] × [

 + exp
(
L + |λN | + λ̄+

N + LNθ– + 
)]
,

where c >  is independent of m, k. Now passing to the limit successively on m, k and
N , we see that (Ym,Zm) is a Cauchy (hence convergent) sequence in ∈ S

F
([,T];Rn) ×

H
F
(,T ;Rn×d); denote the limit by (Y ,Z), which satisfies

E
[
sup

≤t≤T

∣∣Ym
t – Yt

∣∣] + E
[∫ T



∣∣Zm
s – Zs

∣∣ ds] → 

asm → ∞.
Next, we show that (Y ,Z) is the solution of mean-field BDSDE (.). To this end, we only

need to prove that the following conclusion holds along a subsequence:

∫ T

t
E′[fm(

s,
(
Ym
s

)′,
(
Zm
s
)′,Ym

s ,Zm
s
)]
ds

→
∫ T

t
E′[f (s,Y ′

s ,Z
′
s,Ys,Zs

)]
ds in L(�) asm → ∞. (.)

Set

Am :=
{(

ω′,ω, s
)
:
∣∣(Ym

s
)′∣∣ + ∣∣(Zm

s
)′∣∣ + ∣∣Y ′

s
∣∣ + ∣∣Z′

s
∣∣ + ∣∣Ym

s
∣∣ + ∣∣Zm

s
∣∣ + |Ys| + |Zs| ≥ N

}
,

and Ām :=� \Am.
Since

fm
(
s,

(
Ym
s

)′,
(
Zm
s
)′,Ym

s ,Zm
s
)
– f

(
s,Y ′

s ,Z
′
s,Ys,Zs

)
= I(m, s) + I(m, s) + I(m, s) + I(m, s),

where

I(m, s) =
[
fm

(
s,

(
Ym
s

)′,
(
Zm
s
)′,Ym

s ,Zm
s
)
– f

(
s,

(
Ym
s

)′,Z′
s,Y

m
s ,Zs

)]
IAm ,

I(m, s) =
[
fm

(
s,

(
Ym
s

)′,Z′
s,Y

m
s ,Zs

)
– f

(
s,

(
Ym
s

)′,Z′
s,Y

m
s ,Zs

)]
IĀm ,

http://www.boundaryvalueproblems.com/content/2012/1/114


Xu Boundary Value Problems 2012, 2012:114 Page 13 of 20
http://www.boundaryvalueproblems.com/content/2012/1/114

I(m, s) =
[
fm

(
s,

(
Ym
s

)′,
(
Zm
s
)′,Ym

s ,Zm
s
)
– fm

(
s,

(
Ym
s

)′,Z′
s,Y

m
s ,Zs

)]
IĀm ,

I(m, s) = f
(
s,

(
Ym
s

)′,Z′
s,Y

m
s ,Zs

)
– f

(
s,Y ′

s ,Z
′
s,Ys,Zs

)
,

then we have

E
[∫ T

t

∣∣E′[fm(
s,

(
Ym
s

)′,
(
Zm
s
)′,Ym

s ,Zm
s
)]
– E′[f (s,Y ′

s ,Z
′
s,Ys,Zs

)]∣∣ ds]

≤ E
[∫ T

t
E′[∣∣I(m, s)

∣∣ + ∣∣I(m, s)
∣∣ + ∣∣I(m, s)

∣∣ + ∣∣I(m, s)
∣∣]ds]

≤ CN–(–γ ) + ρ
N (fm – f ) + LNE

[∫ T

t

∣∣Zm
s – Zs

∣∣ ds]

+ E
[∫ T

t
E′[∣∣f (s, (Ym

s
)′,Z′

s,Y
m
s ,Zs

)
– f

(
s,Y ′

s ,Z
′
s,Ys,Zs

)∣∣]ds], (.)

where C >  is independent ofm. As

E
[
sup

≤t≤T

∣∣Ym
t – Yt

∣∣] + E
[∫ T



∣∣Zm
s – Zs

∣∣ ds] →  and sup
m≥N

E
[
sup

≤t≤T

∣∣Ym
t

∣∣] <∞,

there exists a subsequence of Ym, still denoted by Ym, such that Ym
t → Yt a.e., a.s. It then

follows from the continuity of f in y and the dominated convergence theorem that

E
[∫ T

t
E′[∣∣f (s, (Ym

s
)′,Z′

s,Y
m
s ,Zs

)
– f

(
s,Y ′

s ,Z
′
s,Ys,Zs

)∣∣]ds] → 

asm → ∞.
Now, passing to the limit as m → ∞ and N → ∞ in (.) successively, it follows that

(.) holds. Then letting m → ∞ in (.) yields

Yt = ξ +
∫ T

t
E′[f (s,Y ′

s ,Z
′
s,Ys,Zs

)]
ds +

∫ T

t
E′[g(s,Y ′

s ,Z
′
s,Ys,Zs

)]
dBs

–
∫ T

t
Zs dWs,  ≤ t ≤ T .

Therefore, we come to the conclusion of this theorem. �

Now, we discuss the comparison theorem for mean-field BDSDEs. We only consider
one-dimensional mean-field BDSDEs, i.e., n = .
We consider the following mean-field BDSDEs: (≤ t ≤ T )

Y 
t = ξ  +

∫ T

t
E′[f(s, (Y 

s
)′,

(
Z
s
)′,Y 

s ,Z

s
)]
ds +

∫ T

t
E′[g(s, (Y 

s
)′,

(
Z
s
)′,Y 

s ,Z

s
)]
dBs

–
∫ T

t
Z
s dWs, (.)

Y 
t = ξ  +

∫ T

t
E′[f(s, (Y 

s
)′,

(
Z
s
)′,Y 

s ,Z

s
)]
ds +

∫ T

t
E′[g(s, (Y 

s
)′,

(
Z
s
)′,Y 

s ,Z

s
)]
dBs

–
∫ T

t
Z
s dWs. (.)
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Theorem . (Comparison theorem) Assume mean-field BDSDEs (.) and (.) sat-
isfy the conditions of Theorem .. Let (Y ,Z) and (Y ,Z) be the solutions of mean-field
BDSDEs (.) and (.), respectively.Moreover, for the two generators of f and f, we sup-
pose:

(i) One of the two generators is independent of z′.
(ii) One of the two generators is nondecreasing in y′.
Then if ξ  ≤ ξ , a.s., f(t, y′, z′, y, z) ≤ f(t, y′, z′, y, z), a.s., there also holds that Y 

t ≤ Y 
t ,

a.s. ∀t ∈ [,T].

Remark . The conditions (i) and (ii) of Theorem . are, in particular, satisfied if they
hold for the same generator fj (j = , ), but also if (i) is satisfied by one generator and (ii)
by the other one.

Proof Without loss of generality, we suppose that (i) is satisfied by f and (ii) by f. For
notational simplicity, we set ξ̄ := ξ  – ξ , (Ȳ , Z̄) := (Y  – Y ,Z – Z), then

Ȳt = ξ̄ +
∫ T

t
E′[f(s, (Y 

s
)′,Y 

s ,Z

s
)
– f

(
s,

(
Y 
s
)′,

(
Z
s
)′,Y 

s ,Z

s
)]
ds

+
∫ T

t
E′[g(s, (Y 

s
)′,

(
Z
s
)′,Y 

s ,Z

s
)
– g

(
s,

(
Y 
s
)′,

(
Z
s
)′,Y 

s ,Z

s
)]
dBs

–
∫ T

t
Z̄s dWs,  ≤ t ≤ T .

By Itô’s formula applied to |Ȳ +
t | and noting that ξ  ≤ ξ , it easily follows that

E
[∣∣Ȳ +

t
∣∣] + E

[∫ T

t
I{Ȳs>}|Z̄s| ds

]

= E
[∫ T

t
Ȳ +
s
(
E′[f(s, (Y 

s
)′,Y 

s ,Z

s
)
– f

(
s,

(
Y 
s
)′,

(
Z
s
)′,Y 

s ,Z

s
)])

ds
]

+ E
[∫ T

t
I{Ȳs>}

∣∣E′[g(s, (Y 
s
)′,

(
Z
s
)′,Y 

s ,Z

s
)

– g
(
s,

(
Y 
s
)′,

(
Z
s
)′,Y 

s ,Z

s
)]∣∣ ds]. (.)

Since f(t, y′, z′, y, z) ≤ f(t, y′, z′, y, z) a.s. and f is nondecreasing in y′, we have

Ȳ +
s E

′[f(s, (Y 
s
)′,Y 

s ,Z

s
)
– f

(
s,

(
Y 
s
)′,

(
Z
s
)′,Y 

s ,Z

s
)]

= Ȳ +
s E

′[f(s, (Y 
s
)′,Y 

s ,Z

s
)
– f

(
s,

(
Y 
s
)′,Y 

s ,Z

s
)

+ f
(
s,

(
Y 
s
)′,Y 

s ,Z

s
)
– f

(
s,

(
Y 
s
)′,

(
Z
s
)′,Y 

s ,Z

s
)

+ f
(
s,

(
Y 
s
)′,

(
Z
s
)′,Y 

s ,Z

s
)
– f

(
s,

(
Y 
s
)′,

(
Z
s
)′,Y 

s ,Z

s
)]

≤ Ȳ +
s E

′[f(s, (Y 
s
)′,Y 

s ,Z

s
)
– f

(
s,

(
Y 
s
)′,Y 

s ,Z

s
)

+ f
(
s,

(
Y 
s
)′,Y 

s ,Z

s
)
– f

(
s,

(
Y 
s
)′,Y 

s ,Z

s
)]

+ Ȳ +
s E

′[f(s, (Y 
s
)′,

(
Z
s
)′,Y 

s ,Z

s
)
– f

(
s,

(
Y 
s
)′,

(
Z
s
)′,Y 

s ,Z

s
)]
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≤ λ̄+
N |Ȳs|I{Ȳs>} +

LN
 – α

∣∣Ȳ +
s
∣∣ + ( – α)|Z̄s|I{Ȳs>}

+ λNȲsE′[(Y 
s
)′ –

(
Y 
s
)′]I{Ȳs>}.

Then we have

� : = E
[
Ȳ +
s
(
E′[f(s, (Y 

s
)′,Y 

s ,Z

s
)
– f

(
s,

(
Y 
s
)′,

(
Z
s
)′,Y 

s ,Z

s
)])]

≤
(
λ̄+

N +
LN

 – α
+ |λN |

)
E
[∣∣Ȳ +

s
∣∣] + ( – α)E

[
I{Ȳs>}|Z̄s|

]
. (.)

With the assumption (A), we obtain

∣∣E′[g(s, (Y 
s
)′,

(
Z
s
)′,Y 

s ,Z

s
)
– g

(
s,

(
Y 
s
)′,

(
Z
s
)′,Y 

s ,Z

s
)]∣∣

≤ E′[∣∣g(s, (Y 
s
)′,

(
Z
s
)′,Y 

s ,Z

s
)
– g

(
s,

(
Y 
s
)′,

(
Z
s
)′,Y 

s ,Z

s
)∣∣]

≤ E′[L(∣∣(Y 
s
)′ –

(
Z
s
)′∣∣ + |Ȳs|

)
+ α

(∣∣(Z
s
)′ –

(
Z
s
)′∣∣ + |Z̄s|

)]
= LE|Ȳs| + αE|Z̄s| + L|Ȳs| + α|Z̄s|. (.)

Combining (.), (.) with (.) yields

E
[∣∣Ȳ +

t
∣∣] ≤

(
λ̄+

N +
LN

 – α
+ |λN | + L

)∫ T

t
E
[(
Ȳ +
s
)]ds.

By Gronwall’s inequality, it follows that

E
[∣∣Ȳ +

t
∣∣] = , ∀t ∈ [,T],

that is, Y 
t ≤ Y 

t , P-a.s., ∀t ∈ [,T]. �

4 Decoupledmean-field forward-backward doubly SDEs
In this section, we study the decoupled mean-field forward-backward doubly stochas-
tic differential equations. First, we recall some results of Buckdahn, Li and Peng [] on
McKean-Vlasov SDEs. Given continuous functions b : �̄ × [,T] × R

d × R
d → R

d and
σ : �̄ × [,T]×R

d ×R
d →R

d×d which are supposed to satisfy the following conditions:

Assumption .
(i) b(t, , ) and σ (t, , ) are F̄t-measurable continuous processes and there exists some

constant L >  such that

∣∣b(t,x′,x
)∣∣ + ∣∣σ (

t,x′,x
)∣∣ ≤ L

(
 + |x|), a.s., for all  ≤ t ≤ T ,x,x′ ∈R

d;

(ii) b and σ are Lipschitz in x, x′, i.e., there is some constant L >  such that

∣∣b(t,x′
,x

)
– b

(
t,x′

,x
)∣∣ + ∣∣σ (

t,x′
,x

)
– σ

(
t,x′

,x
)∣∣

≤ L
(∣∣x′

 – x′

∣∣ + |x – x|

)
, a.s., for all  ≤ t ≤ T ,x,x′

,x,x
′
 ∈R

d.
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For any x ∈ R
d , we consider the following SDE parameterized by the initial condition

(t, ζ ) ∈ [,T]× L(�,Ft ,P;Rd):

⎧⎨
⎩dXt,ζ

s = E′[b(s, (X,x
s )′,Xt,ζ

s )]ds + E′[σ (s, (X,x
s )′,Xt,ζ

s )]dWs, s ∈ [t,T],

Xt,ζ
t = ζ .

(.)

From the result about Eq. (.) in [], we know that under Assumption ., SDE (.) has
a unique strong solution, and we can obtain that Xt,ζ

T has a continuous version with the
following well-known standard estimates.

Proposition . ∀p ≥ , there exists Cp ∈ R
+ such that, for all t ∈ [,T] and ζ , ζ ′ ∈

Lp(�,Ft ,P;Rd),

E
[
sup
t≤s≤T

∣∣Xt,ζ
s –Xt,ζ ′

s
∣∣p∣∣Ft

]
≤ Cp

∣∣ζ – ζ ′∣∣p, a.s.;

E
[
sup
t≤s≤T

∣∣Xt,ζ
s

∣∣p∣∣Ft

]
≤ Cp

(
 + |ζ |p), a.s.; (.)

E
[

sup
t≤s≤t+δ

∣∣Xt,ζ
s – ζ

∣∣p∣∣Ft

]
≤ Cp

(
 + |ζ |p)δ p

 , P-a.s.;

for all δ >  with t + δ ≤ T .

Now, let f (t,x′,x, y′, y, z′, z), g(t,x′,x, y′, y, z′, z) and �(x′,x) be real-valued functions and
satisfy the following conditions.

Assumption .
(i)� : �̄×R

d ×R
d →R

n is an F̄T ⊗B(Rd)-measurable random variable, f : �̄× [,T]×
R

d ×R
d ×R

n ×R
n ×R

n×d ×R
n×d →R

n and g : �̄× [,T]×R
d ×R

d ×R
n ×R

n ×R
n×d ×

R
n×d →R

n×l are twomeasurable processes such that f (t,x′,x, y′, y, z′, z), g(t,x′,x, y′, y, z′, z)
are F̄t-measurable, for all (x′,x, y′, y, z′, z) ∈R

d ×R
d ×R

n ×R
n ×R

n×d ×R
n×d .

(ii) For all  ≤ t ≤ T , x′
,x,x′

,x ∈ R
d , y′

, y, y′
, y ∈ R

n, z′
, z, z′

, z ∈ R
n×d , there exist

constants L > , λ,λ ∈R and  < α < 
 such that

∣∣�(
x′
,x

)
–�

(
x′
,x

)∣∣ + ∣∣f (t,x′
,x, y

′
, y, z

′
, z

)
– f

(
t,x′

,x, y
′
, y, z

′
, z

)∣∣
≤ L

(∣∣x′
 – x′


∣∣ + |x – x| +

∣∣z′
 – z′


∣∣ + |z – z|

)
,

(y – y)
(
f
(
t,x′

,x, y
′
, y, z

′
, z

)
– f

(
t,x′

,x, y
′
, y, z

′
, z

))
≤ λ

(
y′
 – y′


)
(y – y) + λ|y – y|,∣∣g(t,x′

,x, y
′
, y, z

′
, z

)
– g

(
t,x′

,x, y
′
, y, z

′
, z

)∣∣
≤ L

(∣∣x′
 – x′


∣∣ + |x – x| +

∣∣y′
 – y′


∣∣ + |y – y|

)
+ α

(∣∣z′
 – z′


∣∣ + |z – z|

)
.

(iii) f , g and � satisfy a linear growth condition, i.e., there exists some L >  such that,
a.s., for all x′,x ∈R

d

∣∣�(
x′,x

)∣∣ + ∣∣f (t,x′,x, , , , 
)∣∣ + ∣∣g(t,x′,x, , , , 

)∣∣ ≤ L
(
 + |x| + ∣∣x′∣∣).
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Next, we investigate the solution of the following BDSDE:

⎧⎪⎪⎨
⎪⎪⎩
–dY t,ζ

s = E′[f (s, (X,x
s )′,Xt,ζ

s , (Y ,x
s )′,Y t,ζ

s , (Z,x
s )′,Zt,ζ

s )]ds

+ E′[g(s, (X,x
s )′,Xt,ζ

s , (Y ,x
s )′,Y t,ζ

s , (Z,x
s )′,Zt,ζ

s )]dBs – Zt,ζ
s dWs,

Y t,ζ
T = E′[�((X,x

T )′,Xt,ζ
T )], s ∈ [t,T].

(.)

Firstly, we study the case (t, ζ ) = (,x). From Theorem ., we know that there ex-
ists a unique solution (Y ,x ,Z,x ) ∈ S

F
(,T ;Rn) × H

F
(,T ;Rn×d) to the mean-field

BDSDE (.). Once we have (Y ,x ,Z,x ), Eq. (.) becomes a classical BDSDE with coef-
ficients

f̃
(
ω, s,Xt,ζ

s , y, z
)
:= E′[f (·,ω, s, (X,x

s
)′,Xt,ζ

s ,
(
Y ,x
s

)′, y,
(
Z,x
s

)′, z
)]
,

g̃
(
ω, s,Xt,ζ

s , y, z
)
:= E′[g(·,ω, s, (X,x

s
)′,Xt,ζ

s ,
(
Y ,x
s

)′, y,
(
Z,x
s

)′, z
)]
,

and �̃(ω,Xt,ζ
T (ω)) = E′[�(·,ω, (X,x

T )′,Xt,ζ
T )] ∈ L(�,FT ,P;Rn). Then due to Theorem .

in [], we obtain that there exists a unique solution (Y t,ζ ,Zt,ζ ) ∈ S
F
([,T];Rn) ×

H
F
(,T ;Rn×d) to Eq. (.).

For BDSDE (.), we give the following proposition.

Proposition . For any t ∈ [,T] and ζ , ζ ′ ∈ L(�,Ft ,P;Rd), there exists a constant C >
 such that

E
(

sup
t≤s≤T

∣∣Y t,ζ
s

∣∣ + ∫ T

t

∣∣Zt,ζ
s

∣∣ ds∣∣∣Ft

)
≤ C

(
 + |ζ |), a.s.; (.)

E
[
sup
t≤s≤T

∣∣Y t,ζ
s – Y t,ζ ′

s
∣∣ + ∫ T

t

∣∣Zt,ζ
s – Zt,ζ ′

s
∣∣ ds∣∣∣Ft

]
≤ C

(∣∣ζ – ζ ′∣∣), a.s. (.)

Proof Combining classical BDSDE estimates (see the proof of Theorem. in Pardoux and
Peng []) with the techniques presented in Theorem ., we can get the proof easily. �

5 Mean-field BDSDEs andMcKean-Vlasov SPDEs
We now pay attention to investigation of the following system of quasilinear backward
stochastic partial differential equations which are called McKean-Vlasov SPDEs: for any
(t,x) ∈ [,T]×R

d ,

u(t,x) = E
[
�

(
X,x
T ,x

)]
+

∫ T

t
Lu(s,x)ds

+
∫ T

t
E
[
f
(
s,X,x

s ,x,u
(
s,X,x

s
)
,u(s,x), σ̂ * · ∇u

(
s,X,x

s
)
, σ̂ * · ∇u(s,x)

)]
ds

+
∫ T

t
E
[
g
(
s,X,x

s ,x,u
(
s,X,x

s
)
,u(s,x),

σ̂ * · ∇u
(
s,X,x

s
)
, σ̂ * · ∇u(s,x)

)]
dBs, (.)
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with σ̂ := E[σ (s,X,x
s ,x)] = E′[σ (s, (X,x

s )′,x)], and u :R+ ×R
d –→R

n,

Lu =

⎛
⎜⎜⎝
Lu
...

Lun

⎞
⎟⎟⎠

with

L :=



d∑
i,j=

aij
∂

∂xi ∂xj
+

d∑
i=

E
[
bi

(
t,X,x

t ,x
)] ∂

∂xi
,

where

a := (ai,j) =
(
E
[
σ
(
t,X,x

t ,x
)]
E
[
σ
(
t,X,x

t ,x
)]*).

Note that

E
[
ϕ
(
s,X,x

s ,x,u
(
s,X,x

s
)
,u(s,x), σ̂ * · ∇u

(
s,X,x

s
)
, σ̂ * · ∇u(s,x)

)]
=

∫
Rd

ϕ
(
s,x′,x,u

(
s,x′),u(s,x), σ̂ * · ∇u

(
s,x′), σ̂ * · ∇u(s,x)

)
PX,x

s

(
dx′), for ϕ = f , g.

In fact, Eq. (.) is a new kind of nonlocal SPDE because of the mean-field term. Here,
the functions b, σ , f , g and � are supposed to satisfy Assumption . and Assumption .
respectively, and X,x is the solution of the mean-field SDE (.) with (t, ξ ) = (,x).
Now, we give the main theorem of this section.

Theorem . Suppose that Assumption . and Assumption . hold. Let {u(t,x);  ≤ t ≤
T ,x ∈ R

d} be a FB
t,T -measurable random field such that u(t,x) satisfies Eq. (.) and for

each (t,x),u ∈ C,([,T] × R
d;Rn) a.s. Moreover, we assume that f , g ∈ C([,T] × R

d ×
R

d ×R
n ×R

n ×R
n×d ×R

n×d) for a.s. ω̄ ∈ �̄.
Then we have u(t,x) = Y t,x

t , where {(Y t,x
s ,Zt,x

s ); t ≤ s ≤ T}t≥,x∈Rd is the unique solution of
the mean-field BDSDEs (.) and

Y t,x
s = u

(
s,Xt,x

s
)
, Zt,x

s = E′[σ (
s,

(
X,x
s

)′,Xt,x
s

)]* · ∇u
(
s,Xt,x

s
)
. (.)

Proof It suffices to show that {u(s,Xt,x
s ),E′[σ (s, (X,x

s )′,Xt,x
s )]* · ∇u(s,Xt,x

s );  ≤ t ≤ s} solves
the mean-field BDSDE (.). To simplify the notation, we define

ϕ̂
(
s,X,x

s ,x
)
� E

[
ϕ
(
s,X,x

s ,x,u
(
s,X,x

s
)
,u(s,x),

σ̂ * · ∇u
(
s,X,x

s
)
, σ̂ * · ∇u(s,x)

)]
, for ϕ = f , g.

According to our notations introduced in Section , we know that

ϕ̂
(
s,X,x

s ,x
)
= E′[ϕ(

ω′, s,X,x
s

(
ω′),x,u(

s,X,x
s

(
ω′)),u(s,x),

σ̂ * · ∇u
(
s,X,x

s
(
ω′)), σ̂ * · ∇u(s,x)

)]
.
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Let t = t < t < t < · · · < tn = T and λ :=max{ti+ – ti} → . For each ti ∈ [t,T), applying
Itô’s formula to u(ti,Xt,x

ti ) and noticing that u satisfies Eq. (.), we get

u
(
ti,Xt,x

ti

)
– u

(
ti+,Xt,x

ti+

)
= u

(
ti,Xt,x

ti

)
– u

(
ti,Xt,x

ti+

)
+ u

(
ti,Xt,x

ti+

)
– u

(
ti+,Xt,x

ti+

)
= –

∫ ti+

ti
Lu

(
ti,Xt,x

s
)
ds –

∫ ti+

ti
E′[σ (

s,
(
X,x
s

)′,Xt,x
s

)]* · ∇u
(
s,Xt,x

s
)
dWs

+
∫ ti+

ti
Lu

(
s,Xt,x

ti+

)
ds +

∫ ti+

ti
f̂
(
s,X,x

s ,Xt,x
ti+

)
ds +

∫ ti+

ti
ĝ
(
s,X,x

s ,Xt,x
ti+

)
dBs

=
∫ ti+

ti
f̂
(
s,X,x

s ,Xt,x
s

)
ds +

∫ ti+

ti
ĝ
(
s,X,x

s ,Xt,x
s

)
dBs

–
∫ ti+

ti
E′[σ (

s,
(
X,x
s

)′,Xt,x
s

)]* · ∇u
(
s,Xt,x

s
)
dWs.

The condition that u ∈ C,([,T] × R
d;Rn) and the continuity of f and g are adopted in

the last equation.
Then we have

u(t,x) – u
(
T ,Xt,x

T
)
=

n–∑
i=

[
u
(
ti,Xt,x

ti

)
– u

(
ti+,Xt,x

ti+

)]

=
n–∑
i=

∫ ti+

ti
f̂
(
s,X,x

s ,Xt,x
s

)
ds +

n–∑
i=

∫ ti+

ti
ĝ
(
s,X,x

s ,Xt,x
s

)
dBs

–
n–∑
i=

∫ ti+

ti
E′[σ (

s,
(
X,x
s

)′,Xt,x
s

)]* · ∇u
(
s,Xt,x

s
)
dWs

=
∫ T

t
f̂
(
s,X,x

s ,Xt,x
s

)
ds +

∫ T

t
ĝ
(
s,X,x

s ,Xt,x
s

)
dBs

–
∫ T

t
E′[σ (

s,
(
X,x
s

)′,Xt,x
s

)]* · ∇u
(
s,Xt,x

s
)
dWs.

So, Y t,x
s := u(s,Xt,x

s ), Zt,x
s := E′[σ (s, (X,x

s )′,Xt,x
s )]* · ∇u(s,Xt,x

s ) solves the mean-field BDSDE
(.). The proof is now complete. �

Remark . Formula (.) generalizes the stochastic Feynman-Kac formula for SPDEs of
the mean-field type.
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