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Abstract
In this paper we study the existence of even positive homoclinic solutions for
p-Laplacian ordinary differential equations (ODEs) of the type
(u′|u′|p–2)′ – a(x)u|u|p–2 + λb(x)u|u|q–2 = 0, where 2 ≤ p < q, λ > 0 and the functions a
and b are strictly positive and even. First, we prove a result on symmetry of positive
solutions of p-Laplacian ODEs. Then, using the mountain-pass theorem, we prove the
existence of symmetric positive homoclinic solutions of the considered equations.
Some examples and additional comments are given.
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1 Introduction andmain results
In this paperwe prove the existence of positive homoclinic solutions for p-LaplacianODEs
of the type

(
u′∣∣u′∣∣p–)′ – a(x)u|u|p– + λb(x)u|u|q– = , x ∈ R, ()

where  ≤ p < q and λ > . We assume that
(H) the functions a(x) are b(x) are continuously differentiable, strictly positive,

 < a≤ a(x)≤ A and  < b≤ b(x)≤ B. Let, moreover, a(x) and b(x) be even
functions on R, xa′(x) >  and xb′(x) <  for x �= .

By a solution of (), we mean a function u : R → R such that u ∈ C(R), (u′|u′|p–)′ ∈
C(R) and Eq. () holds for every x ∈ R. We are looking for positive solutions of () which
are homoclinic, i.e., u(x) →  and u′(x) →  as |x| → ∞.
In the case p = , q =  and λ = , similar problems are considered in [–] using varia-

tional methods. Note that in [] and [] the following second-order differential equations
are considered:

u′′ – a(x)u – b(x)u + c(x)u = 

and

u′′ + a(x)u – b(x)u + c(x)u = ,
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where a, b and c are periodic, bounded functions and a and c are positive. These equations
come from a biomathematics model suggested by Austin [] and Cronin []. Further re-
sults and the phase plane analysis of these equations with constant coefficients are given in
[]. Note that the periodic and homoclinic solutions of p-Laplacian ODEs are considered
in [, ].
The present work is an extension of these studies to p-Laplacian ODEs. Let XT :=

W ,p
 (–T ,T) be the Sobolev space of p-integrable absolutely continuous functions u :

[–T ,T] →R such that

‖u‖p =
∫ T

–T

(∣∣u′(x)
∣∣p + ∣∣u(x)∣∣p)dx < ∞

and u(–T) = u(T) = .
We use a variational treatment of the problem considering the functional JT : XT →R

JT (u) =
∫ T

–T

(

p
(∣∣u′(x)

∣∣p + a(x)
∣∣u(x)∣∣p) – λ

q
b(x)

(
u+(x)

)q)dx,

where u+(x) =max{u(x), }.
Using the well-known mountain-pass theorem, we conclude that the functional JT has

a nontrivial critical point uT ,λ ∈ XT , which is a solution of the restricted problem

(
u′∣∣u′∣∣p–)′ – a(x)u|u|p– + λb(x)u|u|q– = , x ∈ (–T ,T),

u(–T) = u(T) = .
()

Further, we obtain uniform estimates for the solutions uT ,λ, extended by  outside
[–T ,T]. Then, a positive homoclinic solution uλ of () is found as a limit of uT ,λ, asT → ∞
in C

loc(R). The function uλ is also an even function.
To obtain the property, we extend the symmetry lemma of Korman and Ouyang [] to

the p-Laplacian equations. The result is formulated and proved in Section .
Our main result is:

Theorem  Suppose that  ≤ p < q, λ >  and assumptions (H) hold. Then Eq. () has a
positive solution uλ such that uλ(x) →  and u′

λ(x)→  as |x| → ∞.Moreover, the solution
uλ is an even function, max{uλ(x) : x ∈R} = uλ()→ +∞ as λ →  and u′

λ(x) <  for x > .

Theorem  is proved in Section . From its proof we have

max
{
uλ(x) : x ∈R

}
= uλ() ≥

(
a()
λb()

)/(q–p)

> ,

from which it follows that uλ()→ +∞ as λ → . Observe that if λ = , the problem

(
u′∣∣u′∣∣p–)′ – a(x)u|u|p– = , x ∈R,

u(±∞) = u′(±∞) = 

http://www.boundaryvalueproblems.com/content/2012/1/121


Tersian Boundary Value Problems 2012, 2012:121 Page 3 of 14
http://www.boundaryvalueproblems.com/content/2012/1/121

has a unique solution u = . Indeed, multiplying the equation by u and integrating by parts
over R, we obtain

∫ ∞

–∞

(∣∣u′(x)
∣∣p + a(x)

∣∣u(x)∣∣p)dx = ,

which implies that u≡ .
A simplified method can be applied to the equations

u′′ – a(x)u|u|p– + λb(x)u|u|q– = , x ∈R, ()

under assumptions (H) and  ≤ p < q, λ > . Note that in this case, the even homoclinic
solution uλ of Eq. () satisfies

max
{
uλ(x) : x ∈R

}
= uλ() ≥

(
a()
λb()

)/(q–p)

,

and again uλ()→ +∞ as λ → . If a and b are constants, Eq. () is a conservative system
and one can plot the phase curves ( v )

 –a |u|p
p +λb |u|q

q = C in the phase plane (u, v) = (u,u′).
An example is given at the end of Section .

2 Preliminary results
Let ϕp(t) = t|t|p–, p ≥  and �p(t) = |t|p

p . It is clear that �p(t) is a differentiable function
and �′

p(t) = ϕp(t). Moreover, ϕ′
p(t) exists and ϕ′

p(t) = (p – )|t|p– for p≥ .
Let Lp(a,b),  < p <∞ be the space of Lebesguemeasurable functions u : (a,b)→R such

that the norm |u|pp =
∫ b
a |u(x)|p dx < ∞.

The dual space of Lp(a,b) is Lp′ (a,b), where 
p +


p′ = . Let 〈·, ·〉 be the duality pairing be-

tween Lp′ (a,b) and Lp(a,b). By the Hölder inequality, |〈v,u〉| ≤ |v|p′ |u|p for any v ∈ Lp′ (a,b)
and u ∈ Lp(a,b). We will use the following lemmata in further considerations.

Lemma  For any u, v ∈ Lp(a,b), the following inequality holds:

〈
ϕp(u) – ϕp(v),u – v

〉 ≥ (|u|p–p – |v|p–p
)(|u|p – |v|p

)
.

Proof of Lemma . Note that for u ∈ Lp(a,b), ϕp(u) ∈ Lp′ (a,b). From the Hölder inequality,
we have

〈
ϕp(u) – ϕp(v),u – v

〉
= |u|pp + |v|pp –

〈
ϕp(u), v

〉
–

〈
ϕp(v),u

〉
≥ |u|pp + |v|pp – |u|p–p |v|p – |v|p–p |u|p
=

(|u|p–p – |v|p–p
)(|u|p – |v|p

)
. �

Lemma  Let p≥ , u ∈ C([a,b]) and (u′|u′|p–)′ ∈ C([a,b]). Then

∫ b

a

(
u′∣∣u′∣∣p–)′u′ dx =

p – 
p

(∣∣u′(b)
∣∣p – ∣∣u′(a)

∣∣p).
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The statement of Lemma  follows simply from the identity

(∣∣u′∣∣p)′ =
p

p – 
(
u′∣∣u′∣∣p–)′u′.

The one-dimensional p-Laplacian operator Lp for a differentiable function u on the in-
terval I is introduced as Lp(u) := (ϕp(u′))′. Let us consider the problem

⎧⎨
⎩
Lp(u) + f (x,u) = , x ∈ (–T ,T),

u(–T) = u(T) = ,
()

where f ∈ C([–T ,T]×R
+) and satisfies

f (–x,u) = f (x,u), x ∈ (–T ,T),u > ,

xfx(x,u) < , x ∈ (–T ,T)\{},u > .
()

A function u : [–T ,T] → R is said to be a solution of the problem () if u ∈ C([–T ,T])
with u(–T) = u(T) =  is such that u′|u′|p– is absolutely continuous and Lpu(x) +
f (x,u(x)) =  holds a.e. in (–T ,T).
We formulate an extension of Lemma  of [] for p-Laplacian nonlinear equations. The

result of Korman and Ouyang is one-dimensional analogue of the result of Gidas, Ni and
Nirenberg [] for symmetry of positive solutions of semilinear Laplace equations. In the
case of p-Laplacian equations, the symmetry of solutions in higher dimensions is dis-
cussed by Reihel and Walter [].

Theorem  Assume that f ∈ C([–T ,T]×R
+) satisfies (). Then any positive solution u of

() is an even function such thatmax{u(x) : –T ≤ x ≤ T} = u() and u′(x) <  for x ∈ (,T].

Remark  Let us note that if the function f satisfies (), but u is not a positive solution of
(), then u is not necessarily an even function. A simple counter example in the case p = 
is the problem

⎧⎨
⎩
u′′ + u – x + π –  = , –π < x < π ,

u(–π ) = u(π ) = .

The term f (x,u) = u–x +π – satisfies () in the interval (–π ,π ), but the solution of the
problem u(x) = x – π + sinx is negative in (–π ,π ) and not an even function. Its graph is
presented in Figure . It would be more interesting to show an example for the case p > 
and f satisfying the additional assumption f (x, ) = .

Sketch of Proof of Theorem 
Suppose that the function u has only one global maximum on [–T ,T].
Assume that the function u(x) has a finite number of local minima in the interval [,T],

and let x be the largest localminimum. Let x̄ ∈ [x,T] be the localmaximumand x̃ ∈ [x̄,T]
be such that u(x) = u(x̃). Denote u = u(x) = u(x̃) and u = u(x̄), and let x = α(u) and
x = β(u) be the inverse functions of the function u = u(x) in the intervals [x, x̄] and [x̄,T],

http://www.boundaryvalueproblems.com/content/2012/1/121
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Figure 1 Graph of the functions u(x) = x2 –π2 + sinx.

respectively. Multiplying the equation in () by u′ and integrating in [x, x̃], we obtain by
Lemma  and ():

 =
∫ x̃

x

(
Lp(u)u′ + f (x,u)u′)dx

=
p – 
p

∣∣u′∣∣p(x̃) +
∫ x̄

x
f (x,u)u′ dx +

∫ x̃

x̄
f (x,u)u′ dx

=
p – 
p

∣∣u′∣∣p(x̃) +
∫ u

u

(
f
(
α(u),u

)
– f

(
β(u),u

))
du

> ,

which leads to contradiction. One can prove the last fact using other arguments; see, for
instance, Theorem . of []. Suppose now that u has infinitely many local minima in
[–T ,x∗]. Further, we can follow the steps of the proof of Lemma  of [] with corresponding
modifications based on Lemma . �

3 Proof of themain result
Let XT = W ,p

 (–T ,T) be the Sobolev space of p-integrable absolutely continuous func-
tions u : [–T ,T] →R such that

‖u‖pT =
∫ T

–T

(∣∣u′(x)
∣∣p + ∣∣u(x)∣∣p)dx < ∞

and u(–T) = u(T) = . Note that if a(x) is strictly positive and bounded, i.e., there exist a
and A such that  < a ≤ a(x)≤ A, then ‖u‖pa,T =

∫ T
–T (|u′(x)|p + a(x)|u(x)|p)dx is an equiva-

lent norm in XT .
We need an extension to the p-case of the following proposition by Rabinowitz [].

Proposition  Let u ∈W ,p
loc (R). Then:

(i) If T ≥ , for x ∈ [T – /,T + /],

max
x∈[T–/,T+/]

∣∣u(x)∣∣ ≤ 
p–
p

(∫ T+/

T–/

(∣∣u′(t)
∣∣p + ∣∣u(t)∣∣p)dt

)/p

. ()

http://www.boundaryvalueproblems.com/content/2012/1/121
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(ii) For every u ∈W ,p
 (–T ,T),

‖u‖L∞(–T ,T) ≤ 
p–
p ‖u‖T . ()

Proof of Proposition  Let x, t ∈ [T – /,T + /]. It follows

∣∣u(x)∣∣ ≤ ∣∣u(t)∣∣ +
∫ T+/

T–/

∣∣u′(s)
∣∣ds.

Integrating with respect to t ∈ [T – /,T + /] and using the Hölder and Jensen inequal-
ities, we obtain

∣∣u(x)∣∣ ≤
∫ T+/

T–/

∣∣u(t)∣∣dt +
∫ T+/

T–/

∣∣u′(s)
∣∣ds

≤
(∫ T+/

T–/

∣∣u(t)∣∣p dt
)/p

+
(∫ T+/

T–/

∣∣u′(t)
∣∣p dt

)/p

≤ 
p–
p

(∫ T+/

T–/

(∣∣u′(t)
∣∣p + ∣∣u(t)∣∣p)dt

)/p

.

(ii) Take u ∈ W ,p
 (–T ,T). Since W ,p

 (–T ,T) ⊂ C[–T ,T], there exists τ ∈ [–T ,T] such
that by (i)

‖u‖L∞(–T ,T) = ‖u‖C[τ–/,τ+/] ≤ 
p–
p

(∫ τ+/

τ–/

(∣∣u′(t)
∣∣p + ∣∣u(t)∣∣p)dt

)/p

≤ ‖u‖. �

We are looking for positive solutions of (), which are homoclinic, i.e., u(x) →  and
u′(x)→  as |x| → ∞. Firstly, we look for positive solutions of the problem

⎧⎨
⎩
(ϕp(u′))′ – a(x)ϕp(u) + λb(x)ϕq(u) = , x ∈ (–T ,T),

u(–T) = u(T) = .
(PT )

A function u : [–T ,T]→R is said to be a solution of the problem (PT ) if u ∈ C([–T ,T])
with u(–T) = u(T) =  is such that ϕp(u′) is absolutely continuous and (ϕp(u′))′(x) –
a(x)ϕp(u)(x) + λb(x)ϕq(u)(x) =  holds a.e. in (–T ,T).
A function u : [–T ,T]→R is said to be a weak solution of the problem (PT ) if

∫ T

–T

((
ϕp

(
u′))′v′ dx + a(x)ϕp(u)v – λb(x)ϕq(u)v

)
dx = , ∀v ∈W ,p


(
(–T ,T)

)
.

Standard arguments show that a weak solution of the problem (PT ) is a solution of (PT )
(see [] and []). Consider the modified problem

⎧⎨
⎩
(ϕp(u′))′ – a(x)ϕp(u) + λb(x)(u+)q– = , x ∈ (–T ,T),

u(–T) = u(T) = ,
(P+

T )

http://www.boundaryvalueproblems.com/content/2012/1/121
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where u+ = max(u, ). It is easy to see that solutions of the problem (P+
T ) are positive so-

lutions of the problem (PT ). Indeed, if u(x) is a solution of (P+
T ) and u(x) has negative

minimum at x ∈ (–T ,T), since for p ≥ , (ϕp(u′))′(x) ≥ , by the equation (ϕp(u′))′ –
a(x)ϕp(u) + λb(x)(u+)q– = , we reach a contradiction

 =
(
ϕp

(
u′))′(x) + a(x)

(
–u(x)

)p– > .

Then u(x) ≥  and u is a solution of (PT ). We use a variational treatment of the problem
(P+

T ), considering the functional JT : XT →R

JT (u) =
∫ T

–T

(

p
(∣∣u′(x)

∣∣p + a(x)
∣∣u(x)∣∣p) – λ

q
b(x)

(
u+(x)

)q)dx.

Critical points of JT are weak solutions of (P+
T ), i.e.,

∫ T

–T

(
ϕp

(
u′)v′ + a(x)ϕp(u)v – λb(x)

(
u+

)q–v)dx, ∀v ∈W ,p
 (–T ,T)

and, by a standardway, they are solutions of (P+
T ).We show that JT satisfies the assumptions

of the mountain-pass theorem of Ambrosetti and Rabinowitz [].

Theorem  (Mountain-pass theorem) Let X be a Banach space with norm ‖ · ‖, I ∈
C(X,R), I() =  and I satisfy the (PS) condition. Suppose that there exist r > , α > 
and e ∈ X such that ‖e‖ > r

(i) I(x)≥ α if ‖x‖ = r,
(ii) I(e) < . Let c = infγ∈
{max≤t≤ I(γ (t))} ≥ α, where


 =
{
γ ∈ C

(
[, ],X

)
: γ () = ,γ () = e

}
.

Then c is a critical value of I , i.e., there exists x such that I(x) = c and I ′(x) = .

Next, denote by Cj several positive constants.

Lemma Let ≤ p < q, λ >  and assumptions (H) hold.Then for every T > , the problem
(PT ) has a positive solution uT ,λ.Moreover, there is a constant K > , independent of T , such
that

‖uT ,λ‖T ≤ K . ()

Proof Step . JT satisfies the (PS) condition.
Let (uk)k ⊂ XT be a sequence, and suppose there exist C and k such that for k ≥ k

∣∣JT (uk)∣∣ =
∣∣∣∣
∫ T

–T

(

p
(∣∣u′

k(x)
∣∣p + a(x)

∣∣uk(x)∣∣p) – λ

q
b(x)

(
u+k (x)

)q)dx
∣∣∣∣ ≤ C

p
, ()

and

∣∣〈JT (uk),uk 〉∣∣ =
∣∣∣∣
∫ T

–T

(∣∣u′
k(x)

∣∣p + a(x)
∣∣uk(x)∣∣p – λb(x)

(
u+k (x)

)q)dx
∣∣∣∣ ≤ ‖uk‖T . ()

http://www.boundaryvalueproblems.com/content/2012/1/121
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Let us denote â =min(,a). From () and (), it follows that

C ≥
∫ T

–T

((∣∣u′
k(x)

∣∣p + a(x)
∣∣uk(x)∣∣p) – λp

q
b(x)

(
u+k (x)

)q)dx ≥ –C

and

‖uk‖T ≥
∫ T

–T

(
–
∣∣u′

k(x)
∣∣p – a(x)

∣∣uk(x)∣∣p + λb(x)
(
u+k (x)

)q)dx≥ –‖uk‖T

Then

C + ‖uk‖T ≥ λ
(q – p)b

p

∫ T

–T

(
u+k (x)

)q dx,

and

â‖uk‖pT –C ≤
∫ T

–T

(∣∣u′
k(x)

∣∣p + a(x)
∣∣uk(x)∣∣p)dx –C

≤ λp
q

∫ T

–T
b(x)

(
u+k (x)

)q dx≤ λpB
q

∫ T

–T

(
u+k (x)

)q dx.

We have

â‖uk‖pT –C ≤ B
q(q – p)b

(
C + ‖uk‖T

)
,

which implies that the sequence (uk)k is bounded in XT . By the compact embedding XT ⊂
C([–T ,T]), there exist u ∈ XT and the subsequence of (uk)k , still denoted by (uk)k , such
that uk ⇀ u weakly in XT and uk → u strongly in C([–T ,T]). We will show that uk → u
strongly in XT using Lemma . By uniform convergence of uk to u in C([–T ,T]), it follows
that

〈
J ′T (uk) – J ′T (u),uk – u

〉
=

〈
ϕp

(
u′
k
)
– ϕp

(
u′),u′

k – u′〉 + 〈
ϕp(uk) – ϕp(u),a(x)(uk – u)

〉
–

〈
ϕq(uk) – ϕq(u),b(x)(uk – u)

〉 → , k → ∞,

and

〈
ϕp(uk) – ϕp(u),a(x)(uk – u)

〉
–

〈
ϕq(uk) – ϕq(u),b(x)(uk – u)

〉 → , k → ∞.

Then

〈
ϕp

(
u′
k
)
– ϕp

(
u′),u′

k – u′〉 → , k → ∞,

and by Lemma ,

〈
ϕp

(
u′
k
)
– ϕp

(
u′),u′

k – u′〉 ≥ (∣∣u′
k
∣∣p–
p –

∣∣u′∣∣p–
p

)(∣∣u′
k
∣∣
p –

∣∣u′∣∣
p

) ≥ ,

http://www.boundaryvalueproblems.com/content/2012/1/121
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which implies that |u′
k|p → |u′|p. Then ‖uk‖T → ‖u‖T and by the uniform convexity of the

space XT , it follows that ‖uk – u‖T → , as k → ∞.
Step . Geometric conditions.
Obviously, JT () = . By assumption (H) it follows

JT (u) ≥ â
p

‖u‖pT +
∫ T

–T

(
a(x)
p

∣∣u(x)∣∣p – λp
q
b(x)

(
u+(x)

)q)dx

≥ â
p

‖u‖pT +
∫ T

–T

∣∣u(x)∣∣p
(

a
p

–
λp
q
b(x)

∣∣u(x)∣∣q–p
)
dx > 

if ‖u‖T = ρ := ( aq
λp )

/(q–p) > . Then JT (u) ≥ âρp
p > .

Let u(x) ∈ XT be such that u(x) >  if x ∈ (–T ,T) and also u(–T) = u(T) = . Con-
sider the function

û(x) =

⎧⎨
⎩

μu(x), if x ∈ [–, ],

, if x ∈ [–T ,T]\[–, ].

Then

JT (û) = μp
∫ T

–T


p
(∣∣u′

(x)
∣∣p + a(x)

∣∣u(x)∣∣p)dx –μq
∫ T

–T

λ

q
b(x)

(
u(x)

)q dx < ,

for μ large enough.
By the mountain-pass theorem, there exists a solution uT ,λ ∈ XT such that

cT = JT (uT ,λ) = inf
γ∈
T

max
t∈[,]

JT
(
γ (t)

)
, J ′T (uT ,λ) = , ()

where


T =
{
γ (t) ∈ C

(
[, ],XT

)
: γ () = ,γ () = û(x)

}
.

Moreover, using the variational characterization (), we have

cT ≥ âρp

p
> .

Therefore, uT ,λ is a nontrivial and positive solution of (PT ). By Theorem , max{uT ,λ :
–T ≤ x ≤ T} = uT ,λ() and u′

T ,λ(x) <  for x ∈ (,T].
Step . Uniform estimates.
Let T ≥ T ≥ . By continuation with zero of a function u ∈ XT to [–T,T], we have

XT ⊂ XT and 
T ⊂ 
T . Using the variational characterization (), we infer that cT ≤
cT ≤ c and then

∫ T

–T

(

p
(∣∣u′

T ,λ(x)
∣∣p + a(x)upT ,λ(x)

)
–

λ

q
b(x)uqT ,λ(x)

)
dx ≤ c. ()

Multiplying the equation of (PT ) by uT and integrating by parts, we have

∫ T

–T

(∣∣u′
T ,λ

∣∣p + a(x)upT ,λ
)
dx =

∫ T

–T
λb(x)uqT ,λ dx.
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Then by (),

c ≥
∫ T

–T

(

p
(∣∣u′

T ,λ
∣∣p + a(x)upT ,λ

)
–

λ

q
λb(x)uqT ,λ

)
dx

≥
(

p
–

q

)∫ T

–T

(∣∣u′
T ,λ

∣∣p + a(x)upT ,λ
)
dx ≥ â(q – p)

pq
‖uT ,λ‖pT .

We get () with K = pqc
â(q–p) , which completes the proof. �

Proof of Theorem  Take Tn → ∞ and let un be the solution of the problem (PTn ) given by
Lemma . Consider the extension of un to R with zero outside [–Tn,Tn] and denote it by
the same symbol.
Claim . The sequence of functions (un)n is uniformly bounded and equicontinuous.
By () and the embedding of XTn in C([–Tn,Tn]), there is K such that ‖un‖L∞([–Tn ,Tn]) ≤

K. Then by the equation of (PTn ), it follows that

∥∥(
ϕp

(
u′
n
))′∥∥

L∞([–Tn ,Tn])
≤ K. ()

By the mean value theorem for every natural n and every t ∈R, there exists ξn ∈ [t – , t]
such that

un(t) – un(t – ) = u′
n(ξk).

Then, as a consequence of (), we obtain

∣∣ϕp
(
u′
n(t)

)∣∣ =
∣∣∣∣
∫ t

ξk

(
ϕp

(
u′
n(s)

))′ ds + ϕp
(
u′
n(ξk)

)∣∣∣∣
≤

∫ t

t–

∣∣(ϕp
(
u′
n(s)

))′∣∣ds + ∣∣u′
n(ξk)

∣∣p–

≤ K +
(∣∣un(t)∣∣ + ∣∣un(t – )

∣∣)p–
≤ K + (K)p– =: K

(p–)/p
 , ∀t ∈R, ()

from which it follows ‖u′
n‖L∞([–Tn ,Tn]) ≤ K and the sequence of functions (un) is equicon-

tinuous. Further, we claim that the sequence (u′
n)n is also equicontinuous.

Claim . The sequence of functions (u′
n)n is equicontinuous.

To prove this statement, we follow the method given by Tang and Xiao []. For com-
pleteness, we present it in details.
Suppose that (u′

n)n is not an equicontinuous sequence in Cloc(R). Then there exist an ε

and sequences (tk) and (tk ) such that  < tk – tk <

k and

∣∣u′
n
(
tk

)
– u′

n
(
tk

)∣∣ ≥ ε. ()

By (), there are numbers w and w and the subsequence (u′
nk ) such that u′

nk (t

k) → w

and u′
nk (t


k ) → w as k → ∞. By (), |w –w| ≥ ε. On the other hand, by () we have

∣∣ϕp
(
u′
nk

(
tk

))
– ϕp

(
u′
nk

(
tk

))∣∣ ≤
∫ tk

tk

∣∣ϕp
(
u′
nk (s)

)′∣∣ds≤ K

k
.
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Then passing to a limit as k → ∞, we obtain ϕp(w) = ϕp(w). Hence, w = w which con-
tradicts |w –w| ≥ ε. Thus, the sequence (u′

n)n is equicontinuous.
LetT > . By Claim  andClaim  and theArzelà-Ascoli theorem, there is a subsequence

of (un)n, still denoted by (un)n, and functions uλ and vλ of C([–T ,T]) such that ‖un –
uλ‖C([–T ,T]) →  and ‖u′

n – vλ‖C([–T ,T]) → . Trivially, it follows that uλ ∈ C([–T ,T]),
u′

λ = vλ and ‖un – vλ‖C([–T ,T]) → . Repeating this procedure as in [], we obtain that
there is a subsequence of (un)n, still denoted by (un)n, and uλ such that un → uλ in C

loc(R).
The function uλ satisfies Eq. (). Indeed, let [x,x] be an interval ofR and Tn >  such that
[x,x] ⊂ [–Tn,Tn]. By the above considerations, taking a limit as n → ∞ in the equation

(
u′
n
∣∣u′

n
∣∣p–)′ – a(x)up–n + λb(x)uq–n = , x ∈ [x,x],

equivalent to

u′
n
∣∣u′

n
∣∣p–(x) = u′

n
∣∣u′

n
∣∣p–(x) +

∫ x

x

(
a(t)up–n (t) – λb(t)uq–n (t)

)
dt

= , x ∈ [x,x],

we obtain

u′
λ

∣∣u′
λ

∣∣p–(x) = u′
λ

∣∣u′
λ

∣∣p–(x) +
∫ x

x

(
a(t)up–λ (t) – λb(t)uq–λ (t)

)
dt

= , x ∈ [x,x],

and hence

(
u′

λ

∣∣u′
λ

∣∣p–)′ – a(x)up–λ + λb(x)uq–λ = , x ∈ [x,x].

Since x and x are arbitrary, uλ is a solution of (). Moreover, we have

∫ ∞

–∞

(∣∣u′
λ(x)

∣∣p + a(x)
∣∣uλ(x)

∣∣p)dx < ∞. ()

It remains to show that uλ is nonzero and uλ(±∞) =  and u′
λ(±∞) = .

By Theorem , un is an even function and attains its maximum at . Then by Eq. (),

up–n ()
(
–a() + λb()uq–pn ()

) ≥ .

By assumption (H)

un() ≥
(

a()
λb()

)/(q–p)

≥
(

a
λB

)/(q–p)

= C > ,

independently of n. Hence, passing to a limit as n→ ∞, we obtain

uλ()≥
(

a
λB

)/(q–p)

> .

Note, that this implies max{uλ(x) : x ∈ R} = uλ() → +∞ as λ → .

http://www.boundaryvalueproblems.com/content/2012/1/121
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From () and Proposition , it follows

lim
Tn→±∞ max

x∈[Tn–/,Tn+/]
∣∣uλ(x)

∣∣

≤ lim
Tn→±∞(p–)/p

∫ Tn–/

Tn+/

(∣∣u′
n(x)

∣∣p + a(x)
∣∣un(x)∣∣p)dx = , ()

so uλ(±∞) = .
Now, we will show that u′

λ(∞) = . The arguments for u′
λ(–∞) =  are similar.

If u′
λ(∞) �= , there exist ε >  and a monotone increasing sequence xk → ∞ such that

|u′
λ(xk)| ≥ (ε)/(p–). Then for x ∈ [xk ,xk + ε

K
],

∣∣u′
λ(x)

∣∣p– = ∣∣∣ϕp
(
u′

λ(xk)
)
+

∫ x

xk
ϕp

(
u′

λ(t)
)′ dt

∣∣∣

≥ ∣∣u′
λ(xk)

∣∣p– –
∫ xk+

ε
K

xk

∣∣ϕp
(
u′

λ(t)
)′∣∣dt

≥ ε –
ε

K
·K = ε,

which contradicts ().
Moreover, u is an even function that attains its only maximum at , since the same holds

for the functions un. Arguing as in the proof of Theorem , we easily obtain that u′(x) < 
if x > . �

Remark  A simplified method can be applied to the equations

u′′ – a(x)u|u|p– + λb(x)u|u|q– = , x ∈R,

under assumptions (H) and  ≤ p < q, λ > . Namely, first one looks for the even positive
solutions uT ,λ of the problem

⎧⎨
⎩
u′′ – a(x)ϕp(u) + λb(x)ϕq(u) = , x ∈ (–T ,T),

u(–T) = u(T) = ,

considering the functional IT :H
(–T ,T) →R

IT (u) =
∫ T

–T

(


u′(x) +


p
a(x)

∣∣u(x)∣∣p – λ

q
b(x)

(
u+(x)

)q)dx,

where H
(–T ,T) is the Sobolev space of square integrable functions such that

‖u‖ =
∫ T

–T
u′(x) dx < ∞.

Since H
(–T ,T) is a Hilbert space, compactly embedded in C([–T ,T]) the proof of the

(PS)-condition is easier. Similar considerations are made in [] and []. Then, the even

http://www.boundaryvalueproblems.com/content/2012/1/121
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Figure 2 Phase portrait of u′′ – u3 + 0.5u5 = 0, in [–2, 2]× [–1.25, 1.25].

homoclinic solution uλ is obtained as a C
loc limit of the sequence uT ,λ. Note that in this

case, the even homoclinic solution uλ of Eq. () satisfies

max
{
uλ(x) : x ∈R

}
= uλ() ≥

(
a()
λb()

)/(q–p)

,

and again uλ()→ +∞ as λ → . If a and b are constants, Eq. () is a conservative system
and one can plot the phase curves ( v )

 –a |u|p
p +λb |u|q

q = C in the phase plane (u, v) = (u,u′).
Consider the equation u′′ – u + λu = . The phase portrait in a (u, v) plane, for λ = . in
the rectangle {(u, v) : – ≤ u≤ ,–.≤ v ≤ .}, is plotted on Figure .
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