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Abstract
In this paper, the Bromwich integral for the inverse Mellin transform is used for finding
an integral representation for a fractional exponential operator. This operator can be
considered as an approach for solving partial fractional differential equations. Also,
application of this operator for obtaining a formal solution of the time-fractional
telegraph equation is discussed.
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1 Introduction and problem
We consider the exponential operator

eλ[q(x) d
dx+v(x)]f (x) = f

(
x(λ)

)
g(λ), (.)

where x(λ), g(λ) are specified by the system of first-order differential equations []

⎧⎨
⎩

d
dλ
x(λ) = q(x(λ)), x() = x

d
dλ
g(λ) = v(x(λ))g(λ), g() = .

(.)

By the above exponential operator, Dattoli et al. found solutions of some boundary value
problems arising in mathematical physics in terms of integral transforms type; see [, ]
and references therein. Also, they used this operational technique to describe properties
of some special polynomials and functions [–]; also see [].
When we encounter an exponential operator of higher order eλα sα , where α is integer

or non-integer and s = q(x) d
dx + v(x), it is of interest to have an integral representation to

reduce the order and apply the relation (.). For example, for exponential operators of
orders two and three, we can write the Gauss-Weierstrass and the Airy integrals [, ]

eλs =
√
π

∫ ∞

–∞
e–ξ+λsξ dξ , (.)

eλs =
∫ ∞

–∞
e

√λsξ Ai(ξ )dξ , (.)
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where Ai(ξ ) is the Airy function of the first kind given by

Ai(ξ ) =

π

∫ ∞


cos

(
t


+ ξ t

)
dt. (.)

For the fractional exponential operator e–λα sα ,  < α < , it may occur that this operator
can be written as the Laplace transform of the Wright function [–]

e–λαsα =
∫ ∞


e–st


t
W

(
–α, ; –λαt–α

)
dt, (.)

where the Wright function is presented by the following relation []:

W (α,β ; t) =
∞∑
k=

tk

k!�(αk + β)
, α > –,β ∈C, t ∈C. (.)

In this paper, in a general case we obtain an integral representation for eλα sα , α > , with
order one for s, and then we show how this operator can be applied to find the formal
solutions of partial fractional differential equations (PFDEs).
This problem for integral representation is referred to as the inverse of theMellin trans-

form of eλαsα , α > , and in Section , we state main theorems and corollaries related to it.
In Section , as an application of this technique, we find formal solutions of the space-
fractional Moshinskii’s equation and the time-fractional telegraph equation. Finally, in
Section  the main conclusions are drawn.

2 Main theorems and corollaries
In this section, we establish some theorems on the fractional exponential operator which
can be useful for solving PFDEs. First, we derive an integral representation for the oper-
ator eλnsn , which can be considered as a generalized representation of the relations (.)
and (.).

Theorem . The following identity holds true for c < �s < c:

eλnsn =

π

∫ ∞

–∞
esξAn(ξ ,λ)dξ , n = , , . . . , (.)

where the function An(ξ ,λ) is presented by

An(ξ ,λ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫ ∞
 cos(rξ + (–) n+ λnrn))dr, n = k + ,

nλ

∫ ∞
 e–r cos(


λ
r

n ξ )

r–

n

dr, n = k + ,


nλ

∫ ∞
 er cos(


λ
r

n ξ )

r–

n

dr, n = k.

(.)

Proof By the definition of the inverse of the Mellin transform for a function eλnsn , we have


π i

∫ c+i∞

c–i∞
eλnsn t–s ds =


π

∫ ∞


e(–iλr)

n
tir dr +


π

∫ ∞


e(iλr)

n
t–ir dr

=

π

∫ ∞


eλnrne–

nπ
 i
tir dr +


π

∫ ∞


eλnrne

nπ
 i
t–ir dr
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=

π

∫ ∞


eλnrn cos( nπ

 )e–iλ
nrn sin( nπ

 )+ir ln(t) dr

+

π

∫ ∞


eλnrn cos( nπ

 )eiλ
nrn sin( nπ

 )–ir ln(t) dr

=

π

∫ ∞


eλnrn cos( nπ

 ) cos

(
r ln(t) – λnrn sin

(
nπ



))
dr. (.)

The above relation implies that the Mellin transform of the last integral is equal to the
function eλnsn , that is,

eλnsn =

π
M

{∫ ∞


eλnrn cos( nπ

 ) cos

(
r ln(t) – λnrn sin

(
nπ



))
dr; s

}

=

π

∫ ∞


ts–

∫ ∞


eλnrn cos( nπ

 ) cos

(
r ln(t) – λnrn sin

(
nπ



))
dr dt.

By setting ln(t) = ξ , we get the relation (.). �

Theorem . (The Schouten-Van der Pol theorem for the Laplace transform []) Let c
be a suitable real constant such that F(s) and �(s) are analytic functions in the half-plane
�s > c and F(s) is the Laplace transform of f (t). Then the inverse of the Laplace transform
F(�(s)) is given by

g(t) =L–{F(
�(s)

)
; t

}
=

∫ ∞


f (τ )

[


π i

∫ c+i∞

c–i∞
e–�(s)τ+ts ds

]
dτ . (.)

Proof Using the definition of the Laplace transform for F(�(s))

F
(
�(s)

)
=

∫ ∞


e–�(s)τ f (τ )dτ ,

replacing in the inverse of the Laplace transform F(�(s))

g(t) =L–{F(
�(s)

)
; t

}
=


π i

∫ c+i∞

c–i∞
F
(
�(s)

)
ets ds

and changing the order of integration, we get the relation (.). �

Corollary . It is obvious that by setting�(s) = sα ,  < α < , in the relations (.) and us-
ing the relation (.) for the inverse of the Laplace transform e–sα , the inverse of the Laplace
transform F(sα) can be presented by

L–{F(
sα

)
; t

}
=

t

∫ ∞


f (τ )W

(
–α, ; –τ t–α

)
dτ . (.)

Corollary . By setting F(s) = eλnsn and combining the relations (.) and (.), we get a
new integral representation for the fractional exponential equation eλnsγ

eλnsγ =

π

∫ ∞

–∞
esξA(α)

n (ξ ,λ)dξ , γ = nα,  < α ≤ , (.)
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where the function A(α)
n (ξ ) is given by

A(α)
n (ξ ,λ) =


ξ

∫ ∞


An(τ ,λ)W

(
–α, ; –τξ–α

)
dτ . (.)

In view of the theorems of a fractional exponential operator expressed in this section,
we may apply this operator to PFDEs in the next section.

3 Application to partial fractional differential equations
Example . In connection with initial-value diffusions, we consider the space-fractional
Moshinskii’s equation of order γ in the Riemann-Liouville sense []

∂

∂t
u(x, t) =


 + x

((
 + x

) ∂

∂x

)γ

u(x, t), γ > ,x > , t >  (.)

with the Cauchy-type initial condition as u(x, ) = f (x).

In order to obtain the solution of (.), by solving the first-order partial differential with
respect to t and applying the initial condition, the formal solution in the form of fractional
exponential operator gives rise to

u(x, t) = e
t

+x
((+x) ∂

∂x )
γ

f (x). (.)

Now, by setting ( t
+x )


n = λ, s = ( + x) ∂

∂x and applying Corollary . for the integral rep-
resentation of eλnsγ , we can write the solution in terms of the integral transform as

u(x, t) =

π

∫ ∞

–∞
e(+x

) ∂
∂x ξA(α)

n (ξ ,λ)f (x)dξ , γ = nα,  < α ≤ ,

where the functionA(α)
n (ξ ,λ) is given by the relation (.). The above relation can be sim-

plified in the following form:

u(x, t) =

π

∫ ∞

–∞
A(α)

n

(
ξ ,

(
t

 + (tan(ξ + tan–(x)))

) 
n
)
f
(
tan

(
ξ + tan–(x)

))
dξ , (.)

where we used the relations (.) and (.) by choosing the functions q(x) =  + x and
v(x) = .

Example . As another application, we consider the time-fractional telegraph equation
[, ]

∂

∂x
u(x, t) =

[
a

∂α

∂tα
+ b

∂α

∂tα
+ c

]
u(x, t),  < α ≤ ,x, t > ,a,b, c ∈ R (.)

with initial and asymptotic conditions u(, t) = f (t), limx→∞ u(x, t) = .

Similar to the previous problem by solving the equation with respect to x and applying
the initial and asymptotic conditions, the formal solution takes the form:

u(x, t) = e
–x

√
a ∂α

∂tα
+b ∂α

∂tα +c
f (t). (.)
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Now, by setting ∂
∂t = s and writing an integral representation for e–x

√
as+bs+c in terms of

the Bessel function of order one, we get []

e–x
√
as+bs+c

= e–x(
b


√
a+

√
as) – x

√
�

a

∫ ∞

x
√
a
e–su–

b
a
J(

√
�
a

√
u – ax)

√
u – ax

du, � = ac –
b


�= . (.)

We can rewrite the relation (.) in the following form:

u(x, t) = e–
xb

√
a

∫ ∞




τ
W

(
–α, ; –x

√
aτ–α

)
f (t – τ )dτ

– x
√

�

a
e–

b
a

∫ ∞




τ
f (t – τ )

∫ ∞

x
√
a

J(
√

�
a

√
u – ax)

√
u – ax

×W
(
–α, ; –uτ–α

)
dudτ , (.)

where we used the relation (.) for the linearization of a fractional exponential operator
e–xsα , and then we applied the relations (.) and (.) by substituting q(x) =  and v(x) = .

4 Conclusions
This paper provides some new results in the theory of fractional derivative. These results
show the flexible operational technique can be used in a fairly wide context beside the
integral transforms for obtaining the formal solutions of PFDEs.
Also, this technique can be considered as a promising approach for many applications

in applied sciences.
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