
Abbas et al. Boundary Value Problems 2012, 2012:128
http://www.boundaryvalueproblems.com/content/2012/1/128

RESEARCH Open Access

Partial neutral functional integro-differential
equations of fractional order with delay
Saïd Abbas1, Mouffak Benchohra2 and Alberto Cabada3*

*Correspondence:
alberto.cabada@usc.es
3Departamento de Análise
Matemática, Facultade de
Matemáticas, Universidade de
Santiago de Compostela, Santiago
de Compostela, Spain
Full list of author information is
available at the end of the article

Abstract
In this paper we obtain sufficient conditions for the existence of solutions of some
classes of partial neutral integro-differential equations of fractional order by using
suitable fixed point theorems.
MSC: 26A33

Keywords: integro-differential equation; left-sided mixed Riemann-Liouville integral
of fractional order; Caputo fractional-order derivative; finite delay; infinite delay;
solution; fixed point

1 Introduction
Fractional differential and integral equations have recently been applied in various areas
of engineering, science, finance, applied mathematics, bio-engineering and others. There
has been a significant development in ordinary and partial fractional differential equations
in recent years; see the monographs of Abbas et al. [], Baleanu et al. [], Kilbas et al. [],
Lakshmikantham et al. [], Podlubny [], and the references therein.
In [], Czlapinski proved some results for the following system of the Darboux problem

for the second-order partial functional differential equations of the form

D
xyZ(x, y) = f

(
x, y,Z(x,y), (DxZ)(x,y), (DyZ)(x,y)

)
; (x, y) ∈R

, ()

Z(x, y) = �(x, y); if (x, y) ∈ E :=
(
(–∞,a]× (–∞,b]

)\((,a]× (,b]
)
, ()

where a,b > , f :R×B×B×B →R,� : E →R,Dx := ∂
∂x ,Dy := ∂

∂y ,D

xy :=

∂

∂x ∂y , andB is a
vector space of real-valued functions defined in (–∞, ]× (–∞, ], equipped with a semi-
norm and satisfying some suitable axioms, which was introduced by Hale and Kato [];
see also [–] with rich bibliography concerning functional differential equations with
infinite delay. Recently, Abbas et al. studied some existence results for the Darboux prob-
lem for several classes of fractional-order partial differential equations with finite delay
[, ] and others with infinite delay [, ].
Motivated by the above papers, in this article we deal with the existence of solutions for

two systems of neutral integro-differential equations of fractional order with delay. First,
we consider the system of fractional-order neutral integro-differential equations with fi-
nite delay of the form

cDr
θ

[
u(x, y) – g(x, y,u(x,y))

]
= f

(
x, y, Irθu(x, y),u(x,y)

)
; (x, y) ∈ J , ()
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u(x, y) = �(x, y); if (x, y) ∈ J̃ :=
(
[–α,a]× [–β ,b]

)\((,a]× (,b]
)
, ()⎧⎪⎪⎨

⎪⎪⎩
u(x, ) = ϕ(x); x ∈ [,a],

u(, y) = ψ(y); y ∈ [,b],

ϕ() =ψ(),

()

where J := [,a] × [,b]; a,b,α,β > , θ = (, ), r = (r, r), r, r ∈ (,∞), Irθ is the left-
sided mixed Riemann-Liouville integral of order r (see Section  for definition), cDr

θ is
the fractional Caputo derivative of order r, f : J × R

n × C → R
n, g : J × C → R

n are
given continuous functions, φ ∈ C(J̃), ϕ : [,a] →R

n, ψ : [,b] →R
n are given absolutely

continuous functions with ϕ(x) = φ(x, ), ψ(y) = φ(, y) for each x ∈ [,a], y ∈ [,b], and
C := C([–α, ]× [–β , ]) is the Banach space of continuous functions on [–α, ]× [–β , ]
coupled with the norm

‖w‖C = sup
(x,y)∈[–α,]×[–β ,]

∥∥w(x, y)∥∥.
If u ∈ C([–α,a]× [–β ,b]); α,β ,a,b > , then for any (x, y) ∈ J , define u(x,y) by

u(x,y)(s, t) = u(x + s, y + t); (s, t) ∈ [–α, ]× [–β , ],

here u(x,y)(·, ·) represents the history of the state from time (x – α, y – β) up to the present
time (x, y).
Next, we consider the system of fractional-order neutral integro-differential equations

with infinite delay of the form

cDr
θ

[
u(x, y) – g(x, y,u(x,y))

]
= f

(
x, y, Irθu(x, y),u(x,y)

)
; (x, y) ∈ J , ()

u(x, y) = φ(x, y), if (x, y) ∈ J̃ ′ :=
(
(–∞,a]× (–∞,b]

)\((,a]× (,b]
)
, ()⎧⎪⎪⎨

⎪⎪⎩
u(x, ) = ϕ(x); x ∈ [,a],

u(, y) = ψ(y); y ∈ [,b],

ϕ() =ψ(),

()

where J , ϕ, ψ are as in the problem ()-() and φ ∈ C(J̃ ′), f : J ×R
n ×B →R

n, g : J ×B →
R

n are given continuous functions, and B is called a phase space that will be specified in
Section .
During the last two decades, many authors have considered the questions of existence,

uniqueness, estimates of solutions, and dependence with respect to initial conditions
of the solutions of differential and integral equations of two and three variables (see
[–] and the references therein).
It is clear that more complicated partial differential systems with deviated variables and

partial differential integral systems can be obtained from () and () by a suitable defini-
tion of f and g . Barbashin [] considered a class of partial integro-differential equations
which appear in mathematical modeling of many applied problems (see [], Section ).
Recently Pachpatte [, ] considered some classes of partial functional differential equa-
tions which occur in a natural way in the description of many physical phenomena.
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We present the existence results for our problems based on the nonlinear alternative
of the Leray-Schauder theorem. The present results extend those considered with integer
order derivative [, , , , ] and those with fractional derivative [, , ].

2 Preliminaries
In this section, we introduce notations, definitions, and preliminary facts which are used
throughout this paper. By C(J) we denote the Banach space of all continuous functions
from J into R

n with the norm

‖w‖J = sup
(x,y)∈J

∥∥w(x, y)∥∥,
where ‖ · ‖ denotes the usual supremum norm on R

n.
Also, E := C([–α,a]× [–β ,b]) is a Banach space with the norm

‖w‖E = sup
(x,y)∈[–α,a]×[–β ,b]

∥∥w(x, y)∥∥.
As usual, by AC(J) we denote the space of absolutely continuous functions from J into R

n

and L(J) is the space of Lebesgue-integrable functions w : J →R
n with the norm

‖w‖L =
∫ a



∫ b



∥∥w(x, y)∥∥dydx.
Definition . ([]) Let r = (r, r) ∈ (,∞) × (,∞), θ = (, ), and u ∈ L(J). The left-
sided mixed Riemann-Liouville integral of order r of u is defined by

(
Irθu

)
(x, y) =



(r)
(r)

∫ x



∫ y


(x – s)r–(y – t)r–u(s, t)dt ds,

where 
(·) is the (Euler’s) gamma function defined by 
(ξ ) =
∫ ∞
 tξ–e–t dt; ξ > .

In particular,

(
Iθθ u

)
(x, y) = u(x, y),

(
Iσθ u

)
(x, y) =

∫ x



∫ y


u(s, t)dt ds; for almost all (x, y) ∈ J ,

where σ = (, ).
Note that if u ∈ L(J), then Irθu exists for all r, r ∈ (,∞). Moreover, Irθu ∈ C(J) provided

u ∈ C(J), and

(
Irθu

)
(x, ) =

(
Irθu

)
(, y) = ; x ∈ [,a], y ∈ [,b].

Example . Let λ,ω ∈ (–,∞) and r = (r, r) ∈ (,∞)× (,∞). Then

Irθx
λyω =


( + λ)
( +ω)

( + λ + r)
( +ω + r)

xλ+ryω+r for almost all (x, y) ∈ J .

By  – r we mean ( – r,  – r) ∈ [, )× [, ).

http://www.boundaryvalueproblems.com/content/2012/1/128
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Definition . ([]) Let r ∈ (, ] × (, ] and u ∈ L(J). The Caputo fractional-order
derivative of order r of u is defined by the expression

cDr
θu(x, y) =

(
I–rθ D

xyu
)
(x, y) =



( – r)
( – r)

∫ x



∫ y



D
stu(s, t)

(x – s)r (y – t)r
dt ds.

The case σ = (, ) is included, and we have

(cDσ
θ u

)
(x, y) =

(
D

xyu
)
(x, y) for almost all (x, y) ∈ J .

Example . Let λ,ω ∈ (–,∞) and r = (r, r) ∈ (, ]× (, ]. Then

cDr
θx

λyω =

( + λ)
( +ω)


( + λ – r)
( +ω – r)
xλ–ryω–r for almost all (x, y) ∈ J .

In the sequel, we need the following lemma.

Lemma . ([]) Let f ∈ L(J) and g ∈ AC(J). Then the unique solution u ∈ AC(J) of the
problem

⎧⎪⎪⎨
⎪⎪⎩

cDr
θ (u – g)(x, y) = f (x, y); (x, y) ∈ J ,

u(x, ) = ϕ(x); x ∈ [,a], u(, y) = ψ(y); y ∈ [,b],

ϕ() =ψ(),

is given by the following expression:

u(x, y) = μ(x, y) + g(x, y) – g(x, ) – g(, y) + g(, ) +
(
Irθ f

)
(x, y); (x, y) ∈ J ,

where

μ(x, y) = ϕ(x) +ψ(y) – ϕ().

As a consequence of Lemma ., it is not difficult to verify the following result.

Corollary . Let f ∈ L(J × R
n × C) and g ∈ AC(J × C). A function u ∈ AC([–α,a] ×

[–β ,b]) is a solution of the problem ()-() if and only if u satisfies

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u(x, y) = �(x, y); (x, y) ∈ J̃ ,

u(x, y) = μ(x, y) + g(x, y,u(x,y)) + g(, ,u(,))

– g(x, ,u(x,)) – g(, y,u(,y))

+ Irθ f (x, y, Irθu(x, y),u(x,y)); (x, y) ∈ J .

Also, we need the following theorem.

Theorem. (Nonlinear alternative of Leray-Schauder type []) ByU and ∂U we denote
the closure of U and the boundary of U respectively. Let X be a Banach space and C a

http://www.boundaryvalueproblems.com/content/2012/1/128
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nonempty convex subset of X. Let U be a nonempty open subset of C with  ∈ U and T :
U → C be a completely continuous operator.
Then either
(a) T has fixed points or
(b) there exist u ∈ ∂U and λ ∈ (, ) with u = λT(u).

3 Existence results with finite delay
Let us start by defining what we mean by a solution of the problem ()-().

Definition . A function u ∈ E is said to be a solution of the problem ()-() if u satisfies
equations (), () on J and the condition () on J̃ .

Further, we present conditions for the existence of a solution of the problem ()-().

(H) There exist nonnegative functions p,q,d ∈ C(J) such that

∥∥f (x, y,u, v)∥∥ ≤ p(x, y) + q(x, y)‖u‖ + d(x, y)‖v‖C

for all (x, y) ∈ J , u ∈R
n, and v ∈ C .

(H) For any bounded set B in E, the set {(x, y) → g(x, y,u(x,y)) : u ∈ B} is equicontinuous in
E, and there exist constants L,L ≥  such that

∥∥g(x, y,u)∥∥ ≤ L + L‖u‖C ; (x, y) ∈ J and u ∈ C.

Set

L =
arbr


( + r)
( + r)
, p* = ‖p‖J , q* = ‖q‖J and d* = ‖d‖J .

Theorem . Assume that the hypotheses (H) and (H) hold. Then if

L + q*L + d*L < , ()

the problem ()-() has at least one solution u ∈ AC([–α,a]× [–β ,b]).

Proof Transform the problem ()-() into a fixed point problem. Define the operator N :
E → E by

(Nu)(x, y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�(x, y); (x, y) ∈ J̃ ,

μ(x, y) + g(x, y,u(x,y)) + g(, ,u(,))

– g(x, ,u(x,)) – g(, y,u(,y))

+ Irθ f (x, y, Irθu(x, y),u(x,y)); (x, y) ∈ J .

()

It is clear thatN maps E into itself. By Corollary ., the problem of finding the solutions of
the problem ()-() is reduced to finding the solutions of the operator equation N(u) = u.
We shall show that the operator N satisfies all the conditions of Theorem .. The proof
will be given in two steps.

http://www.boundaryvalueproblems.com/content/2012/1/128
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Step : N is continuous and completely continuous.
Using (H)we deduce that g is a complete continuous operator fromE toRn, so it suffices

to show that the operator N : E → E defined by

(Nu)(x, y) =

⎧⎨
⎩�(x, y); (x, y) ∈ J̃ ,

μ(x, y) + Irθ f (x, y, Irθu(x, y),u(x,y)); (x, y) ∈ J
()

is continuous and completely continuous. The proof will be given in several claims.
Claim : N is continuous.
Let {un}n∈N be a sequence such that un → u in E. Then for each (x, y) ∈ [–α,a]× [–β ,b],

we have

∥∥(Nun)(x, y) – (Nu)(x, y)
∥∥

≤ ∥∥Irθ(f (x, y, Irθun(x, y),un(x,y)) – f
(
x, y, Irθu(x, y),u(x,y)

))∥∥
≤ 


(r)
(r)

∫ x



∫ y


(x – s)r–(y – t)r–

× ∥∥f (s, t, Irθun(s, t),un(s,t)) – f
(
s, t, Irθu(s, t),u(s,t)

)∥∥dt ds.
Hence, for each (x, y) ∈ J , we get

∥∥N(un) –N(u)
∥∥
E

≤ 

(r)
(r)

∫ a



∫ b


(x – s)r–(y – t)r–

× ∥∥f (·, ·, Irθun(·, ·),un(·,·)) – f
(·, ·, Irθu(·, ·),u(·,·))∥∥E dt ds.

Since un → u as n→ ∞ and f , Irθ are continuous, then

∥∥N(un) –N(u)
∥∥
E →  as n→ ∞.

Claim : N maps bounded sets into bounded sets in E.
Indeed, it is enough to show that for any η > , there exists a positive constant � >  such

that if ‖u‖E ≤ η, we have that ‖N(u)‖E ≤ �.
By (H) and (H), we have that for each (x, y) ∈ J and ‖u‖E ≤ η,

∥∥(Nu)(x, y)
∥∥ ≤ ∥∥μ(x, y)

∥∥ +
p*arbr


( + r)
( + r)

+
q*arbr


(r)
(r)
( + r)
( + r)

×
∫ x



∫ y


(x – s)r–(y – t)r–

∥∥u(s, t)∥∥dt ds
+

d*


(r)
(r)

∫ x



∫ y


(x – s)r–(y – t)r–‖u(s,t)‖C dt ds

≤ ∥∥μ(x, y)
∥∥ +

p*arbr

( + r)
( + r)

http://www.boundaryvalueproblems.com/content/2012/1/128
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+
q*arbr


(r)
(r)
( + r)
( + r)

×
∫ x



∫ y


(x – s)r–(y – t)r–‖u‖J dt ds

+
d*


(r)
(r)

∫ x



∫ y


(x – s)r–(y – t)r–‖u‖E dt ds

≤ ‖μ‖J + p*L +
(
q*L + d*L

)‖u‖E
≤ ‖μ‖J + p*L +

(
q*L + d*)Lη := �.

Thus,

∥∥N(u)
∥∥
E ≤ max

{
�,‖�‖C

}
:= �.

Claim : N maps bounded sets in E into equicontinuous sets in E.
Let (x, y), (x, y) ∈ J , x < x, y < y, η > , and let u ∈ E be such that ‖u‖E ≤ η. Then

∥∥(Nu)(x, y) – (Nu)(x, y)
∥∥

≤ ∥∥μ(x, y) –μ(x, y)
∥∥

+
p* + q*Lη + d*η


(r)
(r)

[∫ x



∫ y



[
(x – s)r–(y – t)r– – (x – s)r–(y – t)r–

]
dt ds

+
∫ x

x

∫ y

y
(x – s)r–(y – t)r– dt ds +

∫ x



∫ y

y
(x – s)r–(y – t)r– dt ds

+
∫ x

x

∫ y


(x – s)r–(y – t)r– dt ds

]

=
∥∥μ(x, y) –μ(x, y)

∥∥ +
p* + q*Lη + d*η


( + r)
( + r)

× [
yr (x – x)r + xr (y – y)r + xr y

r
 – xr y

r
 – (x – x)r (y – y)r

]
.

As x → x, y → y, the right-hand side of the above inequality tends to zero with the
same rate of convergence for all u ∈ E with ‖u‖E ≤ η.
The equicontinuity for the cases x < x < , y < y <  and x ≤  ≤ x, y ≤  ≤ y is

obvious. As a consequence of Claims  to  together with the Arzelá-Ascoli theorem, we
can conclude that N is continuous and completely continuous.
Step : A priori bounds.
We shall show that there exists an open set U ⊆ E with u 
= λN(u) for all λ ∈ (, ) and

all u ∈ ∂U .
Let u ∈ E be such that u = λN(u) for some  < λ < . Thus, for each (x, y) ∈ J , we have

u(x, y) = λ
(
μ(x, y) + g(x, y,u(x,y)) + g(, ,u(,))

– g(x, ,u(x,)) – g(, y,u(,y))
)

+ λIrθ f
(
x, y, Irθu(x, y),u(x,y)

)
.

http://www.boundaryvalueproblems.com/content/2012/1/128
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Then for (x, y) ∈ J , we have

∥∥u(x, y)∥∥ ≤ ∥∥μ(x, y)
∥∥ + L + L

(‖u(x,y)‖C + ‖u(x,)‖C + ‖u(,y)‖C + ‖u(,)‖C
)

+ p*L +
q*L


(r)
(r)

∫ x



∫ y


(x – s)r–(y – t)r–

∥∥u(s, t)∥∥dt ds
+

d*


(r)
(r)

∫ x



∫ y


(x – s)r–(y – t)r–‖u(s,t)‖C dt ds

≤ ∥∥μ(x, y)
∥∥ + L + L‖u‖E + p*L

+
q*L


(r)
(r)

∫ x



∫ y


(x – s)r–(y – t)r–‖u‖J dt ds

+
d*


(r)
(r)

∫ x



∫ y


(x – s)r–(y – t)r–‖u‖E dt ds

≤ ‖μ‖J + L + p*L +
(
L + q*L + d*L

)‖u‖E .

It is obvious that

‖u‖E =max
{‖u‖J̃ ,‖u‖J

} ≤ max
{‖φ‖J̃ ,‖u‖J

}
.

As consequence, if ‖u‖J ≤ ‖φ‖J̃ , then ‖u‖E ≤ ‖φ‖J̃ .
On the contrary, when ‖u‖J > ‖φ‖J̃ , we have that ‖u‖E = ‖u‖J . So, from the previous

inequalities and the condition (), we arrive at

‖u‖E ≤ ‖μ‖J + L + p*L
 – L – q*L – d*L

:=M.

Thus,

‖u‖E ≤max
{‖φ‖J̃ ,M

}
:=M*.

Set

U =
{
u ∈ E : ‖u‖E <M* + 

}
.

By our choice of U , there is no u ∈ ∂U such that u = λN(u) for λ ∈ (, ).
As a consequence of Steps  and  together with Theorem ., we deduce that N has a

fixed point u in U which is a solution to the problem ()-(). �

4 The phase spaceB
The notation of the phase space B plays an important role in the study of both qualitative
and quantitative theory for functional differential equations. A usual choice is a semi-
normed space satisfying suitable axioms, which was introduced by Hale and Kato (see
[]). For further applications, see, for instance, the books [, , ] and their references.
For any (x, y) ∈ J , denote E(x,y) := ([,x] × {}) ∪ ({} × [, y]). Furthermore, in case x = a,
y = b, we write simply E . Consider the space (B,‖(·, ·)‖B) a semi-normed linear space of
functions mapping (–∞, ] × (–∞, ] into R

n and satisfying the following fundamental
axioms which were adapted from those introduced by Hale and Kato for ordinary differ-
ential functional equations:

http://www.boundaryvalueproblems.com/content/2012/1/128
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(A) If z : (–∞,a] × (–∞,b] → R
n is a continuous function on J and z(x,y) ∈ B for all

(x, y) ∈ E , then there are constants H ,K ,M >  such that for any (x, y) ∈ J , the fol-
lowing conditions hold:

(i) z(x,y) is in B;
(ii) ‖z(x, y)‖ ≤ H‖z(x,y)‖B ;
(iii) ‖z(x,y)‖B ≤ K sup(s,t)∈[,x]×[,y] ‖z(s, t)‖ +M sup(s,t)∈E(x,y) ‖z(s,t)‖B .

(A) For the function z(·, ·) in (A), z(x,y) is a B-valued continuous function on J .
(A) The space B is complete.

Now, we present some examples of phase spaces [, ].

Example . Let B be the set of all functions φ : (–∞, ]× (–∞, ] →R
n which are con-

tinuous on [–α, ]× [–β , ], α,β ≥ , with the semi-norm

‖φ‖B = sup
(s,t)∈[–α,]×[–β ,]

∥∥φ(s, t)
∥∥.

Then we have H = K =M = . The quotient space B̂ = B/‖ · ‖B is isometric to the space C
of all continuous functions from [–α, ]× [–β , ] into R

n with the supremum norm. This
means that partial differential functional equations with finite delay are included in our
axiomatic model.

Example . Let γ ∈ R, and let Cγ be the set of all continuous functions φ : (–∞, ] ×
(–∞, ] →R

n, for which a limit lim‖(s,t)‖→∞ eγ (s+t)φ(s, t) exists, with the norm

‖φ‖Cγ = sup
(s,t)∈(–∞,]×(–∞,]

eγ (s+t)∥∥φ(s, t)
∥∥.

Then we have H =  and K =M =max{e–γ (a+b), }.

Example . Let α,β ,γ ≥ , and let

‖φ‖CLγ = sup
(s,t)∈[–α,]×[–β ,]

∥∥φ(s, t)
∥∥ +

∫ 

–∞

∫ 

–∞
eγ (s+t)∥∥φ(s, t)

∥∥dt ds
be the semi-norm for the space CLγ of all functions φ : (–∞, ] × (–∞, ] → R

n which
are continuous on [–α, ] × [–β , ] measurable on ((–∞, –α] × (–∞, ]) ∪ ((–∞, ] ×
(–∞, –β]), and such that ‖φ‖CLγ <∞. Then

H = , K =
∫ 

–α

∫ 

–β

eγ (s+t) dt ds, M = .

5 Existence results with infinite delay
Set

� :=
{
u : (–∞,a]× (–∞,b]→R

n : u(x,y) ∈ B for (x, y) ∈ E and u|J ∈ C(J)
}
.

Let us start by defining what we mean by a solution of the problem ()-().

http://www.boundaryvalueproblems.com/content/2012/1/128
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Definition . A function u ∈ � is said to be a solution of ()-() if u satisfies equations
() and () on J and the condition () on J̃ ′.

Now, we present conditions for the existence of a solution of the problem ()-().

(H′
) There exist nonnegative functions p̄, q̄, d̄ ∈ C(J) such that

∥∥f (x, y,u, v)∥∥ ≤ p̄(x, y) + q̄(x, y)‖u‖ + d̄(x, y)‖v‖B

for all (x, y) ∈ J , u ∈R
n, and v ∈ B.

(H′
) For any bounded set B in �, the set {(x, y) → g(x, y,u(x,y)) : u ∈ B} is equicontinuous

in �, and there exist constants L̄, L̄ ≥  such that

∥∥g(x, y,u)∥∥ ≤ L̄ + L̄‖u‖B ; (x, y) ∈ J and u ∈ B.

Set

p̄* = ‖p̄‖J , q̄* = ‖q̄‖J and d̄* = ‖d̄‖J .

Theorem . Assume that the hypotheses (H′
) and (H′

) hold. If

L̄ + q̄*L + d̄*L < , ()

then the problem ()-() has at least one solution on (–∞,a]× (–∞,b].

Proof Transform the problem ()-() into a fixed point problem. Let u ∈ � and define the
operator N̄ :� → � by

(N̄u)(x, y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�(x, y); (x, y) ∈ J̃ ′,

μ(x, y) + g(x, y,u(x,y)) + g(, ,u(,))

– g(x, ,u(x,)) – g(, y,u(,y))

+ Irθ f (x, y, Irθu(x, y),u(x,y)); (x, y) ∈ J .

()

As in Theorem ., we can easily see that N̄ maps � into itself.
Let v(·, ·) : (–∞,a]× (–∞,b] →R

n be a function defined by

v(x, y) =

⎧⎨
⎩φ(x, y), (x, y) ∈ J̃ ′,

μ(x, y), (x, y) ∈ J .

Then v(x,y) = φ for all (x, y) ∈ E .
For eachw ∈ C(J) withw(x, y) =  for each (x, y) ∈ E , we denote byw the function defined

by

w(x, y) =

⎧⎨
⎩, (x, y) ∈ J̃ ′,

w(x, y), (x, y) ∈ J .

If u(·, ·) satisfies the integral equation, u(x, y) = (N̄u)(x, y); (x, y) ∈ [–α,a]× [–β ,b], we can

http://www.boundaryvalueproblems.com/content/2012/1/128
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decompose u(·, ·) as u(x, y) = w(x, y) + v(x, y); (x, y) ∈ [–α,a]× [–β ,b], which implies u(x,y) =
w(x,y) + v(x,y) for every (x, y) ∈ J , and the function w(·, ·) satisfies

w(x, y) = g(x, y,u(x,y)) + g(, ,w(,) + v(,))

– g(x, ,w(x,) + v(x,)) – g(, y,w(,y) + v(,y))

+ Irθ f
(
x, y, Irθ

(
w(x, y) + v(x, y)

)
,w(x,y) + v(x,y)

)
.

Set

C =
{
w ∈ C(J) : w(x, y) =  for (x, y) ∈ E

}
,

and let ‖ · ‖(a,b) be the norm in C defined by

‖w‖(a,b) = sup
(x,y)∈E

‖w(x,y)‖B + sup
(x,y)∈J

∥∥w(x, y)∥∥ = sup
(x,y)∈J

∥∥w(x, y)∥∥, w ∈ C.

C is a Banach space with the norm ‖ · ‖(a,b).
Note that u ∈ � if and only if w ∈ C.
Let the operator P : C → C be defined by

(Pw)(x, y) = g(x, y,u(x,y)) + g(, ,w(,) + v(,))

– g(x, ,w(x,) + v(x,)) – g(, y,w(,y) + v(,y))

+



(r)
(r)

∫ x



∫ y


(x – s)r–(y – t)r–

× f
(
s, t, Irθ

(
w(s, t) + v(s, t)

)
,w(s,t) + v(s,t), g(s, t)

)
dt ds. ()

Then the operator N̄ has a fixed point in � if and only if P has a fixed point in C. As
in the proof of Theorem ., we can show that the operator P satisfies all the conditions
of Theorem .. Indeed, to prove that P is continuous and completely continuous and by
using (H′

), it suffices to show that the operator P̄ : F → F defined by

(P̄w)(x, y) =



(r)
(r)

∫ x



∫ y


(x – s)r–(y – t)r–

× f
(
s, t, Irθ

(
w(s, t) + v(s, t)

)
,w(s,t) + v(s,t), g(s, t)

)
dt ds ()

is continuous and completely continuous. Also, we can show that there exists an open
set U ′ ⊆ F with u 
= λP(u) for λ ∈ (, ) and u ∈ ∂U ′. Consequently, by Theorem ., we
deduce that N̄ has a fixed point u in U ′ which is a solution to the problem ()-(). �

6 An example
Consider the following neutral integro-differential equations of fractional order:

cDr
θ

(
u(x, y) –

 + |u(x – , y – )|
ex+y+

)

=
 + (x + y)|u(x – , y – )| + xy|Irθu(x, y)|
e( + |u(x – , y – )| + |Irθu(x, y)|)

; (x, y) ∈ [, ]× [, ], ()

http://www.boundaryvalueproblems.com/content/2012/1/128
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u(x, y) = x + y; if (x, y) ∈ J̃ :=
(
[–, ]× [–, ]

)\((, ]× (, ]
)
, ()

ϕ(x) = x, ψ(y) = y; x, y ∈ [, ]. ()

Set

f (x, y,u, v) =
 + (x + y)|u| + xy|v|
e( + |u| + |v|) ; (x, y) ∈ [, ]× [, ],

and

g(x, y,u) =
 + |u|
ex+y+

; (x, y) ∈ [, ]× [, ].

We have μ(x, y) = x + y; (x, y) ∈ [, ] × [, ]. For each u, v ∈ R and (x, y) ∈ [, ] × [, ],
we have

∣∣f (x, y,u, v)∣∣ ≤ e–
(
 + (x + y)|u| + xy|v|),

and

∣∣g(x, y,u)∣∣ ≤ 

e–

(
 + |u|).

Hence, the condition (H) is satisfied with p* = e–, q* = e–, d* = e–. Also, the condi-
tion (H) is satisfied with L = 

e
– and L = 

e
–.

We shall show that the condition () holds for each (r, r) ∈ (, ]× (, ] with a = b = .
Indeed, 
(ri) > ., 
( + ri) > .; i = , , and L = 


(+r)
(+r)
< .. Then

L + q*L + d*L = e– + e–
(
L + L

)
<
.
e

< .

Consequently, Theorem . implies that the problem ()-() has at least one solution
defined on [–, ]× [–, ].
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