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Abstract
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1 Introduction
Nonlinear boundary value problems (BVPs) involving the p-Laplacian operator –�p arise
from a variety of physical phenomena such as non-Newtonian fluids, reaction-diffusion
problems, petroleum extraction, flow through porous media, etc. Thus, the study of such
problems and their generalizations have attracted numerous attention in recent years.
Some of the BVPs studied in the literature include the following:

⎧⎨⎩–�pu + g(x,u(x)) = f (x), a.e. in �,

– ∂u
∂n = , a.e. on �

(.)

whose existence results in Lp(�) (for various ranges of p) can be found in [–]; a related
BVP

⎧⎨⎩–�pu + g(x,u(x)) = f (x), a.e. in �,

–〈ϑ , |∇u|p–∇u〉 ∈ βx(u(x)), a.e. on �
(.)

was tackled in [–] and later generalized to one that contains a perturbation term |u|p–u
[, ]

⎧⎨⎩–�pu + |u|p–u + g(x,u(x)) = f (x), a.e. in �,

–〈ϑ , |∇u|p–∇u〉 ∈ βx(u(x)), a.e. on �.
(.)
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Motivated by Tolksdorf ’s work [] where the following Dirichlet BVP has been dis-
cussed:⎧⎨⎩–div[(C(x) + |∇u|) p– ∇u] = f (x), a.e. in K(,S),

u = g, a.e. in �(,S),
(.)

several generalizations have been investigated. These include [–]⎧⎨⎩–div[(C(x) + |∇u|) p– ∇u] + |u|p–u + g(x,u(x)) = f (x), a.e. in �,

–〈ϑ , (C(x) + |∇u|) p– ∇u〉 = , a.e. on �,
(.)

⎧⎨⎩–div[(C(x) + |∇u|) p– ∇u] + |u|p–u + g(x,u(x)) = f (x), a.e. in �,

–〈ϑ , (C(x) + |∇u|) p– ∇u〉 ∈ βx(u(x)), a.e. on �
(.)

and ⎧⎨⎩–div[(C(x) + |∇u|) p– ∇u] + ε|u|q–u + g(x,u(x)) = f (x), a.e. in �,

–〈ϑ , (C(x) + |∇u|) p– ∇u〉 ∈ βx(u(x)), a.e. on �,
(.)

where  ≤ C(x) ∈ Lp(�), ε is a nonnegative constant and ϑ denotes the exterior normal
derivative of �.
Inspired by all this research, recently we have studied the following nonlinear parabolic

equation with mixed boundary conditions []:⎧⎪⎪⎨⎪⎪⎩
∂u
∂t – div[(C(x, t) + |∇u|) p– ∇u] + ε|u|p–u = f (x, t), (x, t) ∈ � × (,T),

–〈ϑ , (C(x, t) + |∇u|) p– ∇u〉 ∈ β(u) – h(x, t), (x, t) ∈ � × (,T),

u(x, ) = u(x,T), a.e. x ∈ �.

(.)

We tackle the existence of solutions for (.) via the study of existence of solutions for two
BVPs: (i) the elliptic equation with Dirichlet boundary conditions⎧⎨⎩–div[(C(x) + |∇u|) p– ∇u] + ε|u|q–u = f (x), a.e. in �,

γu = w, a.e. on �
(.)

and (ii) the elliptic equation with Neumann boundary conditions⎧⎨⎩–div[(C(x) + |∇u|) p– ∇u] + ε|u|q–u = f (x), a.e. in �,

–〈ϑ , (C(x) + |∇u|) p– ∇u〉 ∈ β(u) – h(x), a.e. in �.
(.)

By setting up the relations between the auxiliary equations (.) and (.) and by em-
ploying some results on ranges for maximal monotone operators, we showed that (.)
has a unique solution in Lp(,T ;W ,p(�)), where  ≤ p < +∞,  ≤ q < +∞ if p ≥ N , and
 ≤ q ≤ N–p

N–p if p <N .
In this paper, we shall employ the technique used in (.), viz. using the results on ranges

for nonlinear operators, to study the existence and uniqueness of the solution to a nonlin-
ear integro-differential equation with the generalized p-Laplacian operator. We note that
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most of the existing methods in the literature used to investigate such problems are based
on the finite element method, hence our technique is new in tackling integro-differential
equations. We shall consider the following nonlinear integro-differential problem with
mixed boundary conditions:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂u
∂t – div[(C(x, t) + |∇u|) p– ∇u] + ε|u|q–u + a ∂

∂t
∫
�
udx

= f (x, t), (x, t) ∈ � × (,T),

–〈ϑ , (C(x, t) + |∇u|) p– ∇u〉 ∈ βx(u), (x, t) ∈ � × (,T),

u(x, ) = u(x,T), x ∈ �.

(.)

Our discussion is based on some results on the ranges for maximal monotone operators
and pseudo-monotone operators in [–]. Some new methods of constructing appro-
priate mappings to achieve our goal are employed. Moreover, we weaken the restrictions
on p and q. The paper is outlined as follows. In Section  we shall state the definitions
and results needed, and in Section  we shall establish the existence and uniqueness of the
solution to (.).

2 Preliminaries
LetX be a real Banach space with a strictly convex dual spaceX*.We use (·, ·) to denote the
generalized duality pairing between X and X*. For a subset C of X, we use IntC to denote
the interior of C. We also use ‘→’ and ‘w-lim’ to denote strong and weak convergences,
respectively.
Let X and Y be Banach spaces. We use X ↪→ Y to denote that X is embedded continu-

ously in Y .
The function � is called a proper convex function on X [] if � is defined from X to

(–∞, +∞], � is not identically +∞ such that �((–λ)x+λy)≤ (–λ)�(x) +λ�(y), when-
ever x, y ∈ X and  ≤ λ ≤ .
The function � : X → (–∞, +∞] is said to be lower-semicontinuous on X [] if

lim infy→x �(y)≥ �(x) for any x ∈ X.
Given a proper convex function � on X and a point x ∈ X, we denote by ∂�(x) the set

of all x* ∈ X* such that �(x)≤ �(y) + (x– y,x*) for every y ∈ X. Such elements x* are called
subgradients of � at x, and ∂�(x) is called the subdifferential of � at x [].
A mapping T :D(T) = X → X* is said to be demi-continuous on X if w-limn→∞Txn = Tx

for any sequence {xn} strongly convergent to x in X. A mapping T :D(T) = X → X* is said
to be hemi-continuous on X if w-limt→T(x + ty) = Tx for any x, y ∈ X [].
With each multi-valued mapping A : X → X , we associate the subset A as follows []:

Ax =
{
y ∈ Ax : ‖y‖ = |Ax|},

where |Ax| := inf{‖z‖ : z ∈ Ax}. If X* is strictly convex, then D(A) =D(A) and A is single-
valued, which in this case is called theminimal section of A.
A multi-valued mapping B : X → X* is said to be monotone [] if its graph G(B) is a

monotone subset of X ×X* in the sense that (u – u,w –w) ≥  for any [ui,wi] ∈ G(B),
i = , . The monotone operator B is said to bemaximal monotone if G(B) is not properly
contained in any other monotone subsets of X ×X*.

http://www.boundaryvalueproblems.com/content/2012/1/131
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Definition . [] Let C be a closed convex subset of X, and let A : C → X* be a multi-
valued mapping. Then A is said to be a pseudo-monotone operator provided that

(i) for each x ∈ C, the image Ax is a nonempty closed and convex subset of X*;
(ii) if {xn} is a sequence in C converging weakly to x ∈ C and if fn ∈ Axn is such that

lim supn→∞(xn – x, fn) ≤ , then to each element y ∈ C, there corresponds an
f (y) ∈ Ax with the property that

(
x – y, f (y)

) ≤ lim inf
n→∞ (xn – x, fn);

(iii) for each finite-dimensional subspace F of X , the operator A is continuous from
C ∩ F to X* in the weak topology.

Lemma . [] Let � be a bounded conical domain in R
N . If mp >N , then Wm,p(�) ↪→

CB(�); if  <mp≤ N and q = Np
N–mp , then Wm,p(�) ↪→ Lq(�); if mp =N and p > , then for

 ≤ q < +∞,Wm,p(�) ↪→ Lq(�).

Lemma . [] If B : X → X* is an everywhere defined,monotone, and hemi-continuous
operator, then B is maximal monotone. If B : X → X* is a maximal monotone operator
such that D(B) = X, then B is pseudo-monotone.

Lemma . [] If X is a Banach space and � : X → (–∞, +∞] is a proper convex and
lower-semicontinuous function, then ∂� is maximal monotone from X to X*.

Lemma . [] If B and B are two maximal monotone operators in X such that
intD(B)∩D(B) �= ∅, then B + B is maximal monotone.

Lemma. [] Let X and its dual X* be strictly convex Banach spaces. Suppose S :D(S)⊂
X → X* is a closed linear operator and S* is the conjugate operator of S. If (u,Su) ≥ 
∀u ∈D(S) and (v,S*v) ≥  ∀v ∈D(S*), then S is a maximal monotone operator possessing a
dense domain.

Lemma . [] Any hemi-continuous mapping T : X → X* is demi-continuous on
IntD(T).

Theorem . [] Let X be a real reflexive Banach space with X* being its dual space. Let
C be a nonempty closed convex subset of X. Assume that

(i) the mapping A : C → X* is a maximal monotone operator;
(ii) the mapping B : C → X* is pseudo-monotone, bounded, and demi-continuous;
(iii) if the subset C is unbounded, then the operator B is A-coercive with respect to the

fixed element b ∈ X*, i.e., there exists an element u ∈ C ∩D(A) and a number r > 
such that (u – u,Bu) > (u – u,b) for all u ∈ C with ‖u‖ > r.

Then the equation b ∈ Au + Bu has a solution.

3 Existence and uniqueness of the solution to (1.11)
We begin by stating some notations and assumptions used in this paper. Throughout, we
shall assume that

 < q ≤ p < +∞,

p
+


p′ =  and


q
+


q′ = .

http://www.boundaryvalueproblems.com/content/2012/1/131


Wei et al. Boundary Value Problems 2012, 2012:131 Page 5 of 15
http://www.boundaryvalueproblems.com/content/2012/1/131

Let V = Lp(,T ;W ,p(�)) and V * be the dual space of V . The duality pairing between
V and V * will be denoted by 〈〈·, ·〉〉V . The norm in V will be denoted by ‖ · ‖V , which is
defined by

‖u‖V =
(∫ T



∥∥u(t)∥∥p
W ,p(�) dt

) 
p
, ∀u(x, t) ∈ V .

Let W = Lq(,T ;W ,p(�)) and W * be the dual space of W . The norm in W will be de-
noted by ‖ · ‖W , which is defined by

‖v‖W =
(∫ T



∥∥v(t)∥∥q
W ,p(�) dt

) 
q
, ∀v(x, t) ∈W .

In the integro-differential equation (.), � is a bounded conical domain of a Euclidean
spaceRN whereN ≥ , � is the boundary of�with � ∈ C [], ϑ denotes the exterior nor-
mal derivative to �. Here, | · | and 〈·, ·〉 denote the Euclidean norm and the inner-product
in R

N , respectively. Also,  ≤ C(x, t) ∈ Lp(,T ;W ,p(�)), f (x, t) ∈ V * is a given function, T
and a are positive constants, and ε is a nonnegative constant. Moreover, βx is the subdif-
ferential of ϕx, where ϕx = ϕ(x, ·) :R →R for x ∈ �, and ϕ : � ×R →R is a given function.
To tackle (.), we need the following assumptions which can be found in [, ].

Assumption  Green’s formula is available.

Assumption  For each x ∈ �, ϕx = ϕ(x, ·) : R → R is a proper, convex, and lower-
semicontinuous function and ϕx() = .

Assumption   ∈ βx() and for each t ∈ R, the function x ∈ � → (I + λβx)–(t) ∈ R is
measurable for λ > .

We shall present a series of lemmas before we prove the main result.

Lemma . Define the function � : V →R by

�(u) =
∫ T



∫
�

ϕx
(
u|�(x, t)

)
d�(x)dt, ∀u ∈ V .

Then� is a proper, convex, and lower-semicontinuousmapping on V .Therefore, ∂� : V →
V *, the subdifferential of �, is maximal monotone.

Proof The proof of this lemma is analogous to that of Lemma . in [].We give the outline
of the proof as follows.
Note that for each s ∈ R, the function x ∈ � → β

x (s) ∈ R is measurable, where β
x (s)

denotes the minimal section of βx. Since for all s, s ∈R we have

{
x ∈ � : ϕx(s) > s

}
=

⋃
n

{
x ∈ � :

n∑
i=

s
n

β
x

(
is
n

)
> s

}
,

it implies that for u ∈ V , the function ϕx(u|�(x, t)) is measurable on �. Then from the
property of ϕx, we know that � is proper and convex on V .

http://www.boundaryvalueproblems.com/content/2012/1/131
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To see that� is lower-semicontinuous onV , let un → u inV . Wemay assume that there
exists a subsequence of un, for simplicity, we still denote it by un, such that un|�(x, t) →
u|�(x, t) for x ∈ � and t ∈ (,T) a.e. This yields

ϕx
(
u|�(x, t)

) ≤ lim inf
n→∞ ϕx

(
un|�(x, t)

)
for all x ∈ � and each t ∈ (,T) a.e. since ϕx is lower-semicontinuous for each x ∈ �. It
then follows from Fatou’s lemma that for each t ∈ (,T),∫

�

ϕx
(
u|�(x, t)

)
d�(x) ≤

∫
�

lim inf
n→∞ ϕx

(
un|�(x, t)

)
d�(x)

≤ lim inf
n→∞

∫
�

ϕx
(
un|�(x, t)

)
d�(x).

So, �(u) ≤ lim infn→∞ �(un) whenever un → u in V . This completes the proof. �

Lemma . Define S :D(S) = {u ∈ V : ∂u
∂t ∈ V *,u(x, ) = u(x,T)} → V * by

Su =
∂u
∂t

+ a
∂

∂t

∫
�

udx.

Then S is a linear maximal monotone operator possessing a dense domain in V .

Proof It is obvious that S is closed and linear.
For u(x, t),w(x, t) ∈D(S), integrating by parts gives

〈〈w,Su〉〉V +
〈〈
u,

∂w
∂t

+ a
∂

∂t

∫
�

wdx
〉〉

V

=
∫ T



∫
�

∂u
∂t

w(x, t)dxdt + a
∫ T



∫
�

(
∂

∂t

∫
�

udx
)
w(x, t)dxdt

+
∫ T



∫
�

u(x, t)
∂w
∂t

dxdt + a
∫ T



∫
�

(
∂

∂t

∫
�

wdx
)
u(x, t)dxdt

=
∫

�

u(x,T)w(x,T)dx –
∫

�

u(x, )w(x, )dx

+ a
∫

�

u(x,T)dx
∫

�

w(x,T)dx – a
∫

�

u(x, )dx
∫

�

w(x, )dx = .

Then S*w = – ∂w
∂t – a ∂

∂t
∫
�
wdx, where D(S*) = {w ∈ V : ∂w

∂t ∈ V *,w(x, ) = w(x,T)}.
For u(x, t) ∈D(S), we find∫ T



∫
�

∂u
∂t

u(x, t)dxdt =
∫

�

∣∣u(x,T)∣∣ dx – ∫
�

∣∣u(x, )∣∣ dx – ∫ T



∫
�

∂u
∂t

u(x, t)dxdt

= –
∫ T



∫
�

∂u
∂t

u(x, t)dxdt,

which implies that

∫ T



∫
�

∂u
∂t

u(x, t)dxdt = .
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Similarly, for u(x, t) ∈D(S),

a
∫ T



∫
�

u(x, t)
(

∂

∂t

∫
�

udx
)
dxdt

= a
(∫

�

u(x,T)dx
)

– a
(∫

�

u(x, )dx
)

– a
∫ T



∫
�

u(x, t)
(

∂

∂t

∫
�

udx
)
dxdt,

which implies that

a
∫ T



∫
�

u(x, t)
(

∂

∂t

∫
�

udx
)
dxdt = .

Thus,

〈〈u,Su〉〉V =
∫ T



∫
�

∂u
∂t

u(x, t)dxdt + a
∫ T



∫
�

u(x, t)
(

∂

∂t

∫
�

udx
)
dxdt = .

In the samemanner, we have 〈〈w,S*w〉〉V =  for w ∈D(S*). Therefore, noting Lemma .
the result follows. �

In view of Lemmas . and ., we have the following result.

Lemma . S + ∂� : V → V * is maximal monotone.

Lemma . [] Define the mapping Bp,q :W ,p(�) → (W ,p(�))* as follows:

(v,Bp,qu) =
∫

�

〈(
C(x, t) + |∇u|) p–

 ∇u,∇v
〉
dx + ε

∫
�

|u|q–uvdx, ∀u, v ∈W ,p(�).

Then Bp,q is maximal monotone.

Lemma . [] Let X denote the closed subspace of all constant functions in W ,p(�).
Let X be the quotient space W ,p(�)

X
. For u ∈W ,p(�), define the mapping P :W ,p(�) → X

by

Pu =


meas(�)

∫
�

udx.

Then, there is a constant C >  such that for every u ∈W ,p(�),

‖u – Pu‖Lp(�) ≤ C‖∇u‖(Lp(�))N .

Here meas(�) denotes the measure of �.

Definition . Define A : V → V * as follows:

〈〈v,Au〉〉V =
∫ T


(v,Bp,qu)dt –

∫ T



∫
�

f (x, t)v(x, t)dxdt, ∀u, v ∈ V .

Lemma . The mapping A : V → V * is everywhere defined, bounded, monotone, and
hemi-continuous. Therefore, Lemma . implies that it is also pseudo-monotone.

http://www.boundaryvalueproblems.com/content/2012/1/131
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Proof From Lemma ., we know that W ,p(�) ↪→ CB(�) when p > N , and W ,p(�) ↪→
Lq(�) when p =N . If p <N , thenW ,p(�) ↪→ L

Np
N–p (�) ↪→ Lp(�) ↪→ Lq(�) since  < q ≤ p <

+∞. Thus, for all w ∈ W ,p(�), ‖w‖Lq(�) ≤ k‖w‖W ,p(�), where k >  is a constant. There-
fore, for u, v ∈ V , we have∫ T


‖u‖qLq(�) dt ≤ const ·

∫ T


‖u‖qW ,p(�) dt = const · ‖u‖qW

and ∫ T


‖v‖qLq(�) dt ≤ const ·

∫ T


‖v‖qW ,p(�) dt = const · ‖v‖qW .

Moreover, since  < q ≤ p < +∞, then Lp(,T ;W ,p(�)) ↪→ Lq(,T ;W ,p(�)), which im-
plies that ‖u‖W ≤ ‖u‖V and ‖v‖W ≤ ‖v‖V for u, v ∈ V .
If p≥ , then for u, v ∈ V , we have

∣∣〈〈v,Au〉〉V
∣∣

≤
∫ T



∫
�

∣∣C(x, t) + |∇u|∣∣ p– |∇u| · |∇v|dxdt

+ ε

∫ T



∫
�

|u|q–|v|dxdt +
∫ T



∫
�

|f | · |v|dxdt

≤
∫ T



∫
�

∣∣max
(
C(x, t), |∇u|)∣∣ p– |∇u| · |∇v|dxdt

+ const · ε‖v‖W‖u‖
q
q′
W + ‖f ‖V *‖v‖V

≤ 
p–


∫ T



∫
�

C(x, t)
p–
 |∇u| · |∇v|dxdt + 

p–
 ‖u‖

p
p′
V ‖v‖V

+ const · ε‖v‖W‖u‖
q
q′
W + ‖f ‖V *‖v‖V

≤ 
p–


(∫ T



∫
�

C(x, t)
p–
 p′ |∇v|p′

dxdt
) 

p′ ‖u‖V + 
p–
 ‖u‖

p
p′
V ‖v‖V

+ const · ε‖v‖W‖u‖
q
q′
W + ‖f ‖V *‖v‖V

≤ 
p–


∥∥C(x, t)∥∥p–
V ‖u‖V‖v‖V + 

p–
 ‖u‖

p
p′
V ‖v‖V + const · ε‖v‖V‖u‖

q
q′
V + ‖f ‖V *‖v‖V ,

which implies that A is everywhere defined and bounded.
If  < p < , then for u, v ∈ V , we have

∣∣〈〈v,Au〉〉V
∣∣

≤
∫ T



∫
�

∣∣C(x, t) + |∇u|∣∣ p– |∇u| · |∇v|dxdt

+ ε

∫ T



∫
�

|u|q–|v|dxdt +
∫ T



∫
�

|f | · |v|dxdt

=
∫ T



∫
�

|∇u| · |∇v|
|C(x, t) + |∇u|| –p

dxdt + const · ε‖v‖W‖u‖
q
q′
W + ‖f ‖V *‖v‖V

http://www.boundaryvalueproblems.com/content/2012/1/131
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≤
∫ T



∫
�

|∇u| · |∇v|
|∇u|–p dxdt + const · ε‖v‖W‖u‖

q
q′
W + ‖f ‖V *‖v‖V

≤ ‖u‖
p
p′
V ‖v‖V + const · ε‖v‖V‖u‖

q
q′
V + ‖f ‖V *‖v‖V ,

which also implies that A is everywhere defined and bounded.
Since Bp,q is monotone, we can easily see that for u, v ∈ V ,

〈〈u – v,Au –Av〉〉V =
∫ T


(u – v,Bp,qu – Bp,qv)dt ≥ ,

which implies that A is monotone.
To show that A is hemi-continuous, it suffices to show that for any u, v,w ∈ V and k ∈

[, ], 〈〈w,A(u + kv) – Au〉〉V → , as k → . Noting the fact that Bp,q is hemi-continuous
and using the Lebesgue’s dominated convergence theorem, we have

 ≤ lim
k→

∣∣〈〈w,A(u + kv) –Au
〉〉
V

∣∣ ≤
∫ T


lim
k→

∣∣(w,Bp,q(u + kv) – Bp,qu
)∣∣dt = .

Hence, A is hemi-continuous.
This completes the proof. �

Lemma . The mapping A : V → V * satisfies that for u ∈D(S),

〈〈u – u,Au〉〉V
‖u‖V → +∞, (.)

as ‖u‖V → +∞ in V .

Proof First, we shall show that for u ∈ V ,

‖u‖V → +∞

is equivalent to∥∥∥∥u –


meas(�)

∫
�

udx
∥∥∥∥
V

→ +∞.

In fact, from Lemma ., we know that for u ∈ V ,∥∥∥∥u –


meas(�)

∫
�

udx
∥∥∥∥
Lp(�)

≤ C‖∇u‖(Lp(�))N ,

where C is a positive constant. Thus,∥∥∥∥u –


meas(�)

∫
�

udx
∥∥∥∥p

W ,p(�)

=
∥∥∥∥u –


meas(�)

∫
�

udx
∥∥∥∥p

Lp(�)
+

∥∥∥∥∇
(
u –


meas(�)

∫
�

udx
)∥∥∥∥p

(Lp(�))N

≤ (
Cp + 

)‖∇u‖p(Lp(�))N ,
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which implies that

∥∥∥∥u –


meas(�)

∫
�

udx
∥∥∥∥
V

≤
[(
Cp + 

)∫ T


‖∇u‖p(Lp(�))N dt

] 
p

≤ (
Cp + 

) 
p ‖u‖V . (.)

On the other hand, we have∥∥∥∥u –


meas(�)

∫
�

udx
∥∥∥∥
W ,p(�)

≥ ‖u‖W ,p(�) –
∥∥∥∥ 
meas(�)

∫
�

udx
∥∥∥∥
W ,p(�)

,

which implies that

‖u‖W ,p(�) ≤
∥∥∥∥u –


meas(�)

∫
�

udx
∥∥∥∥
W ,p(�)

+ const.

Hence,

‖u‖V ≤
∥∥∥∥u –


meas(�)

∫
�

udx
∥∥∥∥
V
+ const. (.)

In view of (.) and (.), we have shown that for u ∈ V , ‖u‖V → +∞ is equivalent to
‖u – 

meas(�)
∫
�
udx‖V → +∞.

Next, we shall show that A satisfies (.). In fact, we have

〈〈u – u,Au〉〉V
‖u‖V

=
∫ T


∫
�
〈(C(x, t) + |∇u|) p– ∇u,∇u〉dxdt

‖u‖V

+ ε

∫ T


∫
�

|u|q dxdt
‖u‖V –

∫ T


∫
�
f (x, t)(u – u)dxdt

‖u‖V

–
∫ T


∫
�
〈(C(x, t) + |∇u|) p– ∇u,∇u〉dxdt

‖u‖V – ε

∫ T


∫
�

|u|q–uu dxdt
‖u‖V . (.)

If  < p < , then

∫ T


∫
�
〈(C(x, t) + |∇u|) p– ∇u,∇u〉dxdt

‖u‖V + ε

∫ T


∫
�

|u|q dxdt
‖u‖V

=


‖u‖V
[∫ T



∫
�

(
C(x, t) + |∇u|) p

 dxdt

–
∫ T



∫
�

C(x, t)

(C(x, t) + |∇u|) –p
dxdt + ε

∫ T



∫
�

|u|q dxdt
]

≥ 
‖u‖V

[∫ T



∫
�

|∇u|p dxdt + ε

∫ T



∫
�

|u|q dxdt
]

–


‖u‖V
∫ T



∫
�

C(x, t)

(C(x, t) + |∇u|) –p
dxdt

http://www.boundaryvalueproblems.com/content/2012/1/131
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≥ 
‖u‖V

[∫ T



∫
�

|∇u|p dxdt + ε

∫ T



∫
�

|u|q dxdt
]

–


‖u‖V
∫ T



∫
�

C(x, t)

C(x, t)
–p


dxdt

≥ 
‖u‖V

∫ T



∫
�

|∇u|p dxdt – 
‖u‖V

∫ T



∫
�

C(x, t)
p
 dxdt. (.)

From (.) and (.), we know that

∫ T



∫
�

|∇u|p dxdt ≥ 
Cp + 

∥∥∥∥u –


meas(�)

∫
�

udx
∥∥∥∥p

V
≥ 

Cp + 
‖u‖pV + const.

Also,

∫ T



∫
�

C(x, t)
p
 dxdt ≤ ∥∥C(x, t)∥∥p

V < +∞.

It follows from (.) that

∫ T


∫
�
〈(C(x, t) + |∇u|) p– ∇u,∇u〉dxdt

‖u‖V + ε

∫ T


∫
�

|u|q dxdt
‖u‖V → +∞,

as ‖u‖V → +∞.
Moreover, we have

∣∣∣∣
∫ T


∫
�
〈(C(x, t) + |∇u|) p– ∇u,∇u〉dxdt

‖u‖V

+ ε

∫ T


∫
�

|u|q–uu dxdt
‖u‖V +

∫ T


∫
�
f (x, t)(u – u)dxdt

‖u‖V
∣∣∣∣

≤
∫ T


∫
�
(C(x, t) + |∇u|) p– |∇u| · |∇u|dxdt

‖u‖V

+ ε

∫ T


∫
�

|u|q–|u|dxdt
‖u‖V +

∫ T


∫
�

|f | · |u – u|dxdt
‖u‖V

≤ 
‖u‖V

∫ T



∫
�

|∇u| · |∇u|
(C(x, t) + |∇u|) –p

dxdt

+
ε

‖u‖V
∫ T



∫
�

|u|q–|u|dxdt + ‖f ‖V *‖u – u‖V
‖u‖V

≤ 
‖u‖V

∫ T



∫
�

|∇u|p–|∇u|dxdt + const · ε‖u‖
q
q′
V ‖u‖V

‖u‖V +
‖f ‖V *‖u – u‖V

‖u‖V
≤ 

‖u‖V
[‖u‖

p
p′
V ‖u‖V + const · ε‖u‖

q
q′
V ‖u‖V + ‖f ‖V *‖u‖V

]
+ ‖f ‖V *

≤ const. (.)

Therefore, it follows from (.), (.), and (.) that A satisfies (.) when  < p < .
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If p≥ , then

〈〈u – u,Au〉〉V
‖u‖V

≥
∫ T


∫
�
〈(C(x, t) + |∇u|) p– ∇u,∇u〉dxdt

‖u‖V

+ ε

∫ T


∫
�

|u|q dxdt
‖u‖V –

∫ T


∫
�

|f | · |u – u|dxdt
‖u‖V

–
∫ T


∫
�
(C(x, t) + |∇u|) p– |∇u| · |∇u|dxdt

‖u‖V – ε

∫ T


∫
�

|u|q–|u|dxdt
‖u‖V

≥
∫ T


∫
�
〈(C(x, t) + |∇u|) p– ∇u,∇u〉dxdt

‖u‖V + ε

∫ T


∫
�

|u|q dxdt
‖u‖V –

‖f ‖V *‖u – u‖V
‖u‖V

–


p–


∫ T


∫
�
C(x, t)

p–
 |∇u| · |∇u|dxdt

‖u‖V –


p–


∫ T


∫
�

|∇u|p–|∇u|dxdt
‖u‖V

– ε

∫ T


∫
�

|u|q–|u|dxdt
‖u‖V

≥
∫ T


∫
�

|∇u|p dxdt
‖u‖V –


p–
 (

∫ T


∫
�

|∇u|p dxdt) 
p′ (

∫ T


∫
�

|∇u|p dxdt)

p

‖u‖V

–
‖f ‖V *‖u – u‖V

‖u‖V + ε

∫ T


∫
�

|u|q dxdt
‖u‖V – ε

‖u‖V (
∫ T


∫
�

|u|q dxdt) 
q′

‖u‖V
– 

p–


∥∥C(x, t)∥∥p–
V ‖u‖V

≥ M(‖u – 
|�|

∫
�
udx‖pV – ‖u‖V‖u – 

|�|
∫
�
udx‖

p
p′
V )

‖u‖V –
‖f ‖V *‖u – u‖V

‖u‖V

+
ε(

∫ T


∫
�

|u|q dxdt) 
q′ [(

∫ T


∫
�

|u|q dxdt)– 
q′ – ‖u‖V ]

‖u‖V
– 

p–


∥∥C(x, t)∥∥p–
V ‖u‖V , (.)

whereM is a positive constant. We can easily see that

‖u – 
|�|

∫
�
udx‖pV – ‖u‖V‖u – 

|�|
∫
�
udx‖

p
p′
V

‖u‖V → +∞,

as ‖u‖V → +∞. Moreover, if
∫ T


∫
�

|u|q dxdt < +∞, then

ε(
∫ T


∫
�

|u|q dxdt) 
q′ [(

∫ T


∫
�

|u|q dxdt)– 
q′ – ‖u‖V ]

‖u‖V → ,

as ‖u‖V → +∞; while if
∫ T


∫
�

|u|q dxdt → +∞,

ε(
∫ T


∫
�

|u|q dxdt) 
q′ [(

∫ T


∫
�

|u|q dxdt)– 
q′ – ‖u‖V ]

‖u‖V > .
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Hence, the right side of (.) tends to +∞ as ‖u‖V → +∞, which implies that A satis-
fies (.).
This completes the proof. �

Lemma . If w(x, t) ∈ ∂�(u), then w(x, t) = w̃(x, t) ∈ ∂βx(u) a.e. on � × (,T).

Proof If w(x, t) ∈ ∂�(u), then from the definition of subdifferential, we have

∫ T



∫
�

ϕx
(
u|�(x, t)

)
d�(x)dt ≤

∫ T



∫
�

ϕx
(
w|�(x, t)

)
d�(x)dt

+
∫ T



∫
�

w(x, t)(u –w)d�(x)dt,

which implies that the result is true. �

We are now ready to prove the main result.

Theorem . The integro-differential equation (.) has a unique solution in V for
f (x, t) ∈ V *.

Proof First, we shall show the existence of a solution. Noting Lemmas ., ., . and .,
and by using Theorem ., we know that there exists u(x, t) ∈D(S)⊂ V such that

 = Su +Au + ∂�(u). (.)

Then we have for all w ∈ V ,

〈〈u –w,Su〉〉V + 〈〈u –w,Au〉〉V +
〈〈
u –w, ∂�(u)

〉〉
V = .

The definition of subdifferential implies that〈〈
u –w,

∂u
∂t

〉〉
V
+

〈〈
u –w,a

∂

∂t

∫
�

udx
〉〉

V
+ 〈〈u –w,Au〉〉V +�(u) –�(w) ≤ .

From the definition of S, we have

u(x, ) = u(x,T). (.)

Moreover,∫ T



∫
�

∂u
∂t

(u –w)dxdt +
∫ T



∫
�

(
a

∂

∂t

∫
�

udx
)
(u –w)dxdt

+
∫ T



∫
�

〈(
C(x, t) + |∇u|) p–

 ∇u,∇(u –w)
〉
dxdt

+ ε

∫ T



∫
�

|u|q–u(u –w)dxdt

–
∫ T



∫
�

f (x, t)(u –w)dxdt +�(u) –�(w) ≤ . (.)
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Let w = u± ψ , where ψ ∈ C∞
 (� × (,T)). Then we have

∫ T



∫
�

∂u
∂t

ψ dxdt +
∫ T



∫
�

(
a

∂

∂t

∫
�

udx
)

ψ dxdt

+
∫ T



∫
�

〈(
C(x, t) + |∇u|) p–

 ∇u,∇ψ
〉
dxdt

+ ε

∫ T



∫
�

|u|q–uψ dxdt =
∫ T



∫
�

f (x, t)ψ dxdt.

From the properties of a generalized function, we get

∂u
∂t

+ a
∂

∂t

∫
�

udx – div
[(
C(x, t) + |∇u|) p–

 ∇u
]
+ ε|u|q–u

= f (x, t), a.e. in � × (,T). (.)

Noting (.) again, by using Green’s formula, we have

∫ T



∫
�

∂u
∂t

(w – u)dxdt +
∫ T



∫
�

(
a

∂

∂t

∫
�

udx
)
(w – u)dxdt

–
∫ T



∫
�

div
[(
C(x, t) + |∇u|) p–

 ∇u
]
(w – u)dxdt

+
∫ T



∫
�

〈
ϑ ,

(
C(x, t) + |∇u|) p–

 ∇u
〉
(w – u)|� d�(x)dt

+ ε

∫ T



∫
�

|u|q–u(w – u)dxdt +�(w) –�(u)

≥
∫ T



∫
�

f (x, t)(w – u)dxdt.

Then using (.), we obtain

�(w) –�(u)≥ –
∫ T



∫
�

〈
ϑ ,

(
C(x, t) + |∇u|) p–

 ∇u
〉
(w – u)|� d�(x)dt.

Thus, –〈ϑ , (C(x, t) + |∇u|) p– ∇u〉 ∈ ∂�(u).
In view of Lemma ., we have –〈ϑ , (C(x, t) + |∇u|) p– ∇u〉 ∈ βx(u) a.e. on � × (,T).

Combining it with (.) and (.), we know that (.) has a solution in V .
Next, we shall prove the uniqueness of the solution. Let u(x, t) and v(x, t) be two solutions

of (.). By (.), we have

〈〈
u – v, (A + ∂�)u – (A + ∂�)v

〉〉
V = –〈〈u – v,Su – Sv〉〉V ≤ 

since S is monotone. But A+ ∂� is monotone too, so 〈〈u– v,Su– Sv〉〉V = , which implies
that u(x, t) = v(x, t).
The proof is complete. �
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