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Abstract
By properly constructing a functional and by using the critical point theory, we
establish the existence of homoclinic solutions for a class of subquadratic
second-order Hamiltonian systems. Our result generalizes and improves some
existing ones. An example is given to show that our theorem applies, while the
existing results are not applicable.
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1 Introduction
Consider the following second-order Hamiltonian system:

q̈(t) – L(t)q(t) +Wq
(
t,q(t)

)
= , t ∈R, (HS)

where q = (q,q, . . . ,qn) ∈R
n, L ∈ C(R,Rn×n) is a symmetric matrix-valued function, and

W (t,q) ∈ C(R×R
n,R),Wq(t,q) ∈ C(R×R

n,Rn) is the gradient ofW about q. As usual
we say that a solution q(t) of (HS) is homoclinic (to ) if q ∈ C(R,Rn) such that q(t) → 
and q̇(t)→  as |t| → ∞. If q(t) �≡ , q(t) is called a nontrivial homoclinic solution.
By now, the existence and multiplicity of homoclinic solutions for second-order Hamil-

tonian systems have been extensively investigated in many papers (see, e.g., [–] and the
references therein) via variational methods. More precisely, many authors studied the ex-
istence andmultiplicity of homoclinic solutions for (HS); see [–]. Some of them treated
the case where L(t) and W (t,u) are either independent of t or periodic in t (see, for in-
stance, [–]), and a more general case is considered in the recent paper []. If L(t) is
neither constant nor periodic in t, the problem of the existence of homoclinic solutions
for (HS) is quite different from the one just described due to the lack of compactness of
the Sobolev embedding. After the work of Rabinowitz and Tanaka [], many results [–]
were obtained for the case where L(t) is neither constant nor periodic in t.
Recently, Zhang andYuan [] obtained the existence of a nontrivial homoclinic solution

for (HS) by using a standard minimizing argument. In this paper, (·, ·) : Rn × R
n → R

denotes the standard inner product in R
n, and subsequently, | · | is the induced norm. If

q = (q,q, . . . ,qn) ∈R
n, then |q| =

√
q + q + · · · + qn.
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Theorem . (See [, Theorem .]) Assume that L and W satisfy the following condi-
tions:
(H) L(t) ∈ C(R,Rn×n) is a symmetric matrix for all t ∈ R, and there is a continuous

function α :R→ R such that α(t) >  for all t ∈R and (L(t)q,q)≥ α(t)|q| and
α(t)→ +∞ as |t| → +∞.

(H) W (t,q) = a(t)|q|γ where a(t) :R →R
+is a positive continuous function such that

a(t) ∈ L(R,R)∩ L


–γ (R,R) and  < γ <  is a constant.
Then (HS) possesses at least one nontrivial homoclinic solution.

In [–], the authors considered the case where W (t,q) is subquadratic as |q| → ∞.
However, there are many functions with subquadratic growth but they do not satisfy the
condition (H) in [] and the corresponding conditions in [, ]. For example,

W (t,q) = a(t)|q|γ + b(t)ecos
 |q|, ∀(t,q) ∈ (

R,Rn), ()

where  < γ < , a(t),b(t) :R →R
+ are positive continuous functions such that a(t),b(t) ∈

L(R,R)∩ L


–γ (R,R).
In this paper, our aim is to revisit (HS) and study the subquadratic case which is not

included in [–]. Now, we state our main result.

Theorem . Let the above condition (H) hold.Moreover, assume that the following con-
ditions hold:
(H) W (t,q)≥ a(t)|q|γ , ∀(t,q) ∈ (R,Rn), where a(t) :R →R

+ is a positive continuous
function such that a(t) ∈ L(R,R)∩ L


–γ (R,R) and  < γ <  is a constant.

(H) |Wq(t,q)| ≤ f(t)|q|γ– + f(t), ∀(t,q) ∈ (R,Rn) where f(t), f(t) :R→R
+ are

positive continuous functions such that f(t), f(t) ∈ L(R,R)∩ L


–γ (R,R).
Then (HS) possesses at least one nontrivial homoclinic solution.

Remark . Obviously, the condition (H) is a special case of (H)-(H). If (H) holds,
so do (H)-(H); however, the reverse is not true. W (t,q) defined in () can satisfy the
conditions (H) and (H), butW (t,q) cannot satisfy the condition (H). So, we generalize
and significantly improve Theorem . in [].

Remark . We still consider the functionW (t,q) defined in (),

W (t,q)≥ a(t)|q|γ + b(t)e–, ∀(t,q) ∈ (
R,Rn).

Due to inft∈R a(t) = , there are no constants b, r >  such that

W (t,q)≥ b|q|γ , ∀t ∈R and |q| ≥ r,

soW (t,q) does not satisfy the conditions (W) and (W) in []. Moreover, for any given
 < γ < 

 , W (t,q) does not satisfy the condition (W) in []. Therefore, we also extend
Theorem . in [] and Theorem . in [].

Example . Consider the following second-order Hamiltonian system with n = :

q̈ – L(t)q +Wq(t,q) = , ∀t ∈R, ()

http://www.boundaryvalueproblems.com/content/2012/1/132
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where

L(t) =

⎛
⎜⎝
 + t  
  + t 
   + t

⎞
⎟⎠ , W (t,q) =

(


 + |t|
)

|q|  +
(


 + |t|

)
esin

 |q|.

Let α(t) = t, γ = 
 and a(t) = 

+|t| , a(t) =


+|t| ,Wq(t,q) = 
a(t)|q|–


 q + a(t)esin

 |q| ×
|q|–q sin |q| cos |q| ≤ 

a(t)|q|

 +a(t)e,Wq(t, ) = . Clearly, (H), (H), and (H) hold.

Therefore, by applying Theorem ., the Hamiltonian system () possesses at least one
nontrivial homoclinic solution.

Remark . It is easy to see that (H) in Theorem . is not satisfied, so we cannot ob-
tain the existence of homoclinic solutions for the Hamiltonian system () by Theorem ..
On the other hand, W does not satisfy the conditions (W) and (W) of [], then we
cannot obtain the existence of homoclinic solutions for the Hamiltonian system () by
Theorem . in [].

The remainder of this paper is organized as follows. In Section , some preliminary
results are presented. In Section , we give the proof of Theorem ..

2 Preliminary results
In order to establish our result via the critical point theory, we firstly describe some prop-
erties of the space on which the variational associated with (HS) is defined. Like in [],
let

E =
{
q ∈H(

R,Rn) : ∫
R

[|q̇| + (
L(t)q(t),q(t)

)]
dt < ∞

}
.

Then the space E is a Hilbert space with the inner product

〈x, y〉 =
∫
R

[(
ẋ(t), ẏ(t)

)
+

(
L(t)x(t), y(t)

)]
dt

and the corresponding norm ‖x‖ = 〈x,x〉. Note that

E ⊂H(
R,Rn) ⊂ Lp

(
R,Rn)

for all p ∈ [, +∞) with the embedding being continuous. Here Lp(R,Rn) ( ≤ p < +∞)
and H(R,Rn) denote the Banach spaces of functions on R with values in R

n under the
norms

‖q‖p :=
(∫

R

|q|p dt
)/p

and

‖q‖H :=
(‖q‖ + ‖q̇‖

)/

http://www.boundaryvalueproblems.com/content/2012/1/132
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respectively. In particular, for p = +∞, there exists a constant C >  such that

‖q‖∞ ≤ C‖q‖, ∀q ∈ E, ()

here ‖q‖∞ := ess sup{|q(t)| : t ∈R}.

Lemma . There exists a constant β >  such that if q ∈ E, then

‖q‖ ≥ √
β‖q‖. ()

Proof From (H), we can imply that there exists a constant β >  such that

(
L(t)q,q

) ≥ β|q|,

for all t ∈ R and q ∈R
n. By the above inequality, one has

‖q‖ ≥
∫
R

(
L(t)q(t),q(t)

)
dt ≥ β

∫
R

∣∣q(t)∣∣ dt = β‖q‖.

So, the lemma is proved. �

Lemma . ([, Lemma ]) Suppose that L satisfies (H). Then the embedding of E in
L(R,Rn) is compact.

Lemma . Suppose that (H) and (H) are satisfied. If qk ⇀ q (weakly) in E, then
Wq(t,qk) →Wq(t,q) in L(R,Rn).

Proof Assume that qk ⇀ q in E. Then there exists a constant d >  such that, by the
Banach-Steinhaus theorem and (),

sup
k∈N

‖qk‖∞ ≤ d, ‖q‖∞ ≤ d.

Since  < γ < , by (H) there exists a constant d >  such that

∣∣Wq(t,qk)
∣∣ ≤ df(t) + f(t),

∣∣Wq(t,q)
∣∣ ≤ df(t) + f(t)

for all k ∈Nand t ∈ R. Hence,

∣∣Wq(t,qk) –Wq(t,q)
∣∣ ≤ df(t) + f(t).

On the other hand, by Lemma ., qk → q in L, passing to a subsequence if necessary,
which implies qk(t) → q(t) for almost every t ∈ R . Then using Lebesgue’s convergence
theorem, the lemma is proved. �

Now,we introducemore notation and somenecessary definitions. Let E be a real Banach
space, I ∈ C(E,R), which means that I is a continuously Fréchet-differentiable functional
defined on E. Recall that I ∈ C(E,R) is said to satisfy the (PS) condition if any sequence
{uj}j∈N ⊂ E, for which {I(uj)}j∈N is bounded and I ′(uj) →  as j → +∞, possesses a con-
vergent subsequence in E.

http://www.boundaryvalueproblems.com/content/2012/1/132
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Lemma . ([, Theorem .]) Let E be a real Banach space, and let us have I ∈ C(E,R)
satisfying the (PS) condition. If I is bounded from below, then

c≡ inf
E
I

is a critical value of I .

3 Proof of Theorem 1.2
Now, we are going to establish the corresponding variational framework to obtain homo-
clinic solutions of (HS). Define the functional I : E →R

I(q) =
∫
R

[


∣∣q̇(t)∣∣ + 


(
L(t)q(t),q(t)

)
–W

(
t,q(t)

)]
dt

=


‖q‖ –

∫
R

W
(
t,q(t)

)
dt. ()

Lemma . Under the assumptions of Theorem ., we have

I ′(q)v =
∫
R

[(
q̇(t), v̇(t)

)
+

(
L(t)q(t), v(t)

)
–

(
Wq

(
t,q(t)

)
, v(t)

)]
dt, ()

which yields that

I ′(q)q = ‖q‖ –
∫
R

(
Wq

(
t,q(t)

)
,q(t)

)
dt. ()

Moreover, I is a continuously Fréchet-differentiable functional defined on E, i.e., I ∈
C(E,R) and any critical point of I on E is a classical solution of (HS) with q(±∞) =  =
q̇(±∞).

Proof We firstly show that I ∈ C(E,R). Let q ∈ E, by (), (H), and the Hölder inequality,
we have

 ≤
∫
R

W
(
t,q(t)

)
dt ≤

∫
R

(
f(t)

∣∣q(t)∣∣γ + f(t)
∣∣q(t)∣∣)dt

≤
(∫

R

∣∣f(t)∣∣ 
–γ dt

) –γ


(∫
R

∣∣q(t)∣∣γ · γ dt
) γ



+
(∫

R

∣∣f(t)∣∣ dt
) 


(∫

R

∣∣q(t)∣∣ dt) 


= ‖f‖ 
–γ

‖q‖γ
 + ‖f‖‖q‖

≤ 
(
√

β)γ
‖f‖ 

–γ
‖q‖γ +

√
β

‖f‖‖q‖ < +∞. ()

Combining () and (), we show that I : E → R. Next, we prove that I ∈ C(E,R). Rewrite
I as follows:

I = I – I,

http://www.boundaryvalueproblems.com/content/2012/1/132
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where

I :=
∫
R

[


∣∣q̇(t)∣∣ + 


(
L(t)q(t),q(t)

)]
dt, I :=

∫
R

W
(
t,q(t)

)
dt.

It is easy to check that I ∈ C(E,R) and

I ′(q)v =
∫
R

[(
q̇(t), v̇(t)

)
+

(
L(t)q(t), v(t)

)]
dt. ()

Thus, it is sufficient to show that this is the case for I. In the process we will see that

I ′(q)v =
∫
R

(
Wq

(
t,q(t)

)
, v(t)

)
dt, ()

which is defined for all q, v ∈ E. For any given q ∈ E, let us define J(q) : E →R as follows:

J(q)v =
∫
R

(
Wq

(
t,q(t)

)
, v(t)

)
dt, v ∈ E.

It is obvious that J(q) is linear. Now, we show that J(q) is bounded. Indeed, for any given
q ∈ E, by () and (H), there exists a constant d >  such that

∣∣Wq
(
t,q(t)

)∣∣ ≤ f(t)|q|γ– + f(t) ≤ df(t) + f(t)

for all t ∈ R, which yields that by () and the Hölder inequality,

∣∣J(q)v∣∣ = ∣∣∣∣
∫
R

(
Wq

(
t,q(t)

)
, v(t)

)
dt

∣∣∣∣ ≤
∫
R

[
df(t)

∣∣v(t)∣∣ + f(t)
∣∣v(t)∣∣]dt

≤ d‖f‖‖v‖ + ‖f‖‖v‖ ≤ √
β

(
d‖f‖ + ‖f‖

)‖v‖. ()

Moreover, for any q, v ∈ E, by the mean value theorem, we have∫
R

W
(
t,q(t) + v(t)

)
dt –

∫
R

W
(
t,q(t)

)
dt =

∫
R

(
Wq

(
t,q(t) + h(t)v(t)

)
, v(t)

)
dt,

where h(t) ∈ (, ). Therefore, by Lemma . and the Hölder inequality, one has∫
R

(
Wq

(
t,q(t) + h(t)v(t)

)
, v(t)

)
dt –

∫
R

(
Wq

(
t,q(t)

)
, v(t)

)
dt

=
∫
R

(
Wq

(
t,q(t) + h(t)v(t)

)
–Wq

(
t,q(t)

)
, v(t)

)
dt →  ()

as v →  in E. Combining () and (), we see that () holds. It remains to prove that I ′
is continuous. Suppose that q → q in E and note that

I ′(q)v – I ′(q)v =
∫
R

(
Wq

(
t,q(t)

)
–Wq

(
t,q(t)

)
, v(t)

)
dt.

By Lemma . and the Hölder inequality, we obtain that

I ′(q)v – I ′(q)v→ ,

as q → q, which implies the continuity of I ′ and I ∈ C(E,R).

http://www.boundaryvalueproblems.com/content/2012/1/132
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Lastly, we check that critical points of I are classical solutions of (HS) satisfying q(t) → 
and q̇(t)→  as |t| → +∞. We know that E ⊂H(R,Rn) ⊂ C(R,Rn), the space of contin-
uous functions q on R such that q(t) →  as |t| → +∞. Moreover, if q is one critical point
of I , by () we have

q̈(t) = L(t)q –Wq(t,q),

which yields that q ∈ C(R,Rn), i.e., q is a classical solution of (HS). Since q is one critical
point of I , we have

I ′(q)q =
∫
R

[(
q̇(t), q̇(t)

)
+

(
L(t)q(t),q(t)

)
–

(
Wq

(
t,q(t)

)
,q(t)

)]
dt = .

It follows from q(t) →  as |t| → +∞ and the above equality that

∫
R

(
q̇(t), q̇(t)

)
dt → , as |t| → +∞.

Hence, q satisfies q̇(t) →  as |t| → +∞. This proof is complete. �

Lemma . Under the assumptions of Theorem ., I satisfies the (PS) condition.

Proof In fact, assume that {qj}j∈N ⊂ E is a sequence such that {I(qj)}j∈N is bounded and
I ′(qj) →  as j → ∞. Then there exists a constant C >  such that

∣∣I(qj)∣∣ ≤ C,
∥∥I ′(qj)∥∥E* ≤ C ()

for every j ∈N .
We firstly prove that {qj}j∈N is bounded in E. By () and (), we have



‖qj‖ = I(qj) +

∫
R

W
(
t,qj(t)

)
dt

≤ C +


(
√

β)γ
‖f‖ 

–γ
‖qj‖γ +

√
β

‖f‖‖qj‖. ()

Combining () and (), we obtain that



‖qj‖ – 

(
√

β)γ
‖f‖ 

–γ
‖qj‖γ –

√
β

‖f‖‖qj‖ ≤ C. ()

Since  < γ < , the above inequality shows that {qj}j∈N is bounded in E. By Lemma .,
the sequence {qj}j∈N has a subsequence, again denoted by {qj}j∈N , and there exists q ∈ E
such that

qj ⇀ q, weakly in E,
qj → q, strongly in L(R,Rn).

Hence,

(
I ′(qj) – I ′(q),qj – q

) → ,

http://www.boundaryvalueproblems.com/content/2012/1/132
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∫
R

(
Wq

(
t,qj(t)

)
–Wq

(
t,q(t)

)
,qj(t) – q(t)

)
dt → 

as j → +∞. Moreover, an easy computation shows that

(
I ′(qj) – I ′(q),qj – q

)
= ‖qj – q‖ –

∫
R

(
Wq

(
t,qj(t)

)
–Wq

(
t,q(t)

)
,qj(t) – q(t)

)
dt.

So, ‖qj – q‖ →  as j → +∞, i.e., I satisfies the Palais-Smale condition. �

Now, we can give the proof of Theorem ..

Proof of Theorem . By () and (), for every r ∈R \ {} and q ∈ E \ {}, we have

I(rq) =
r


‖q‖ –

∫
R

W
(
t, rq(t)

)
dt

≥ r


‖q‖ –

∫
R

[
f(t)

∣∣rq(t)∣∣γ + f(t)
∣∣rq(t)∣∣]dt

≥ r


‖q‖ – |r|γ 

(
√

β)γ
‖f‖ 

–γ
‖q‖γ – |r| √

β
‖f‖‖q‖. ()

Since  < γ < , () implies that I(rq) → +∞ as |r| → +∞. Consequently, I is a functional
bounded from below. By Lemmas . and ., I possesses a critical value c = infq∈E I(q),
i.e., there is a q ∈ E such that

I(q) = c, I ′(q) = .

On the other hand, take c ∈R
n with |c| �= , and let ϕ ∈ E be given by

ϕ(t) =

{
c sin( π

t–t
(t – t)) if t ∈ [t, t],

 if t ∈ R \ [t, t],

where –∞ < t < t < +∞. Then we obtain that

I(rϕ) =
r


‖ϕ‖ –

∫
R

W
(
t, rϕ(t)

)
dt

≤ r


‖ϕ‖ – |r|γ

∫
R

a(t)
∣∣ϕ(t)∣∣γ dt,

which yields that I(rϕ) <  as |r| small enough since  < γ < , i.e., the critical point ob-
tained above is nontrivial. �
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