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1 Introduction
The aim of this paper is to establish existence results of two and three nontrivial solutions
for Sturm-Liouville problems with mixed conditions involving the ordinary p-Laplacian.
We consider the following problem:

⎧⎨
⎩
–(q|u′|p–u′)′ + r|u|p–u = λf (x,u) on ]a,b[,

u(a) = u′(b) = ,
(P)

with p > , q, r ∈ L∞([a,b]), with q = ess inf[a,b] q >  and r = ess inf[a,b] r ≥ . Here the
nonlinearity f : [a,b] × R → R is an L-Carathéodory function and λ is a real positive
parameter.
The existence of at least one solution for problem (P) has been obtained in [], where

only a unique algebraic condition on the nonlinear term is assumed (see [, Theorem .]).
In the present paper, first we obtain the existence of two solutions by combining an al-
gebraic condition on f of type contained in [] with the classical Ambrosetti-Rabinowitz
condition.
(AR): There exist ν > p and R >  such that

 < νF(x, t)≤ tf (x, t), for all |t| ≥ R and for all x ∈ [a,b].

The role of (AR) is to ensure the boundness of the Palais-Smale sequences for the Euler-
Lagrange functional associated to the problem. This is very crucial in the applications of
critical point theory. Subsequently, an existence result of three positive solutions is ob-
tained combining two algebraic conditions which guarantee the existence of two local
minima for the Euler-Lagrange functional and applying the mountain pass theorem as
given by Pucci and Serrin (see []) to ensure the existence of the third critical point.
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Many mathematical models give rise to problems for which only nonnegative solutions
make sense; therefore, many research articles on the theory of positive solutions have ap-
peared. For a complete overview on this subject, we refer to the monograph [].
In this paper, we also present, as a consequence of our main theorems, some results on

the existence of nonnegative solutions for a particular problem of type

⎧⎨
⎩
–u′′ = λα(x)g(u) on ]a,b[,

u(a) = u′(b) = ,
(P)

where α ∈ L([a,b]) is such that α(x) ≥  a.e. x ∈ [a,b], α �≡ , and g :R → R is a nonneg-
ative continuous function. In particular, we obtain for such a problem the existence of at
least three nonnegative solutions by requiring that the function g has a superlinear behav-
ior at zero, a sublinear behavior at infinity, and a particular growth in a suitable interval
[c,d]. By a similar approach, in [], the authors obtain the existence of multiple solutions
for a Neumann elliptic problem.
Multiplicity results for a mixed boundary value problem have been studied by several

authors (see, for instance, [–] and references therein). In [], the authors establish mul-
tiplicity results for problem (P), when p = , and, in particular, they obtain the existence
of three solutions, one of which can be trivial. On the contrary, our results (Theorems .
and .) guarantee the existence of three nonnegative and nontrivial solutions.
In [], by using a fixed point theorem, the existence of at least three solutions for a

mixed boundary problem with the equation (|u′|p–u′)′ = q(x)f (u) is obtained, by requir-
ing, among other things, the boundness of f in a right neighborhood of zero (hypothesis
(H), Theorem .), instead in our results (Theorems . and .) the nonlinearity can
blow up at zero.
Here, as an example, we present the following result which is a particular case of Theo-

rem ..

Theorem . Let g :R→R be a nonnegative continuous function such that

lim
ξ→+

g(ξ )
ξ

= +∞, lim
ξ→+∞

g(ξ )
ξ

=  (.)

and

∫ 


g(ξ )dξ <




∫ 


g(ξ )dξ . (.)

Then, for each λ ∈ ] ∫ 
 g(ξ )dξ

, 

∫ 
 g(ξ )dξ

[, the problem

⎧⎨
⎩
–u′′ = λg(u) in ], [,

u() = u′() = 

admits at least three classical nonnegative and nontrivial solutions.
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2 Preliminaries and basic notations
Our main tools are Theorems . and ., consequences of the existence result of a local
minimum [, Theorem .] which is inspired by the Ricceri variational principle (see []).
For more information on this topic see, for instance, [] and [].
Given a set X and two functionals �,� : X → R, put

β(r, r) = inf
v∈�–(]r,r[)

supu∈�–(]r,r[) �(u) –�(v)
r –�(v)

, (.)

ρ(r, r) = sup
v∈�–(]r,r[)

�(v) – supu∈�–(]–∞,r]) �(u)
�(v) – r

(.)

for all r, r ∈R, with r < r, and

ρ(r) = sup
v∈�–(]r,+∞[)

�(v) – supu∈�–(]–∞,r]) �(u)
�(v) – r

, (.)

for all r ∈ R.

Theorem . [, Theorem .] Let X be a reflexive real Banach space; � : X → R be a
sequentially weakly lower semicontinuous, coercive, and continuously Gâteaux differen-
tiable function whose Gâteaux derivative admits a continuous inverse on X*; � : X → R

be a continuously Gâteaux differentiable function whose Gâteaux derivative is compact.
Put Iλ = � – λ� and assume that there are r, r ∈R, with r < r, such that

β(r, r) < ρ(r, r), (.)

where β and ρ are given by (.) and (.).
Then, for each λ ∈ ] 

ρ(r,r)
, 

β(r,r)
[, there is u,λ ∈ �–(]r, r[) such that Iλ(u,λ) ≤ Iλ(u)

for all u ∈ �–(]r, r[) and I ′λ(u,λ) = .

Theorem. [, Theorem .] Let X be a real Banach space;� : X →R be a continuously
Gâteaux differentiable function whose Gâteaux derivative admits a continuous inverse on
X*;� : X →R be a continuouslyGâteaux differentiable functionwhoseGâteaux derivative
is compact. Fix infX � < r < supX � and assume that

ρ(r) > , (.)

where ρ is given by (.), and for each λ > 
ρ(r) , the function Iλ = � – λ� is coercive.

Then, for each λ > 
ρ(r) , there is u,λ ∈ �–(]r, +∞[) such that Iλ(u,λ) ≤ Iλ(u) for all u ∈

�–(]r, +∞[) and I ′λ(u,λ) = .

Now, consider problem (P) and assume that q, r ∈ L∞([a,b]) with

ess inf
[a,b]

q >  and ess inf
[a,b]

r ≥ .

Denote by X = {u ∈W ,p([a,b]) : u(a) = } endowed with the norm

‖u‖ =
(∫ b

a
q(x)

∣∣u′(x)
∣∣p dx +

∫ b

a
r(x)

∣∣u(x)∣∣p dx
) 

p
.
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Throughout the sequel, f : [a,b]×R→R is an L-Carathéodory function. We recall that
a function f : [a,b] × R → R is said to be an L-Carathéodory function if x → f (x, t) is
measurable for all t ∈ R, t → f (x, t) is continuous for almost every x ∈ [a,b], and for all
M > , one has sup|t|≤M |f (x, t)| ∈ L([a,b]). Clearly, if f is continuous in [a,b]×R, then it
is L-Carathéodory.
Put

F(x, ξ ) :=
∫ ξ


f (x, t)dt for all (x, ξ ) ∈ [a,b]×R.

Moreover, it is well known that (X,‖ · ‖) is compactly embedded in (C([a,b]),‖ · ‖∞)
and one has

‖u‖∞ <
(
b – a
q

) p–
p

‖u‖ for all u ∈ X. (.)

We use the following notations:

‖q‖∞ := ess sup
x∈[a,b]

q(x), ‖r‖∞ := ess sup
x∈[a,b]

r(x).

In order to study problem (P), we introduce the functionals �,� : X → R defined as fol-
lows:

�(u) =

p
‖u‖p and �(u) =

∫ b

a
F
(
x,u(x)

)
dx, ∀u ∈ X. (.)

Clearly, the critical points of the functional � – λ� on X are weak solutions of problem
(P). We recall that u : [a,b] → R is a weak solution of problem (P) if u ∈ X satisfies the
following condition:

∫ b

a
q(x)

∣∣u′(x)
∣∣p–u′(x)v′(x)dx +

∫ b

a
r(x)

∣∣u(x)∣∣p–u(x)v(x)dx

= λ

∫ b

a
f
(
x,u(x)

)
v(x)dx, for all v ∈ X.

Clearly, if f is continuous, q ∈ C([a,b]), and r ∈ C([a,b]), the weak solutions for (P) are
classical solutions.

3 Main results
In this section we present our main results.
Given two nonnegative constants c, d such that q̄cp �= r̄dp, where

q̄ =

p

(
q

b – a

)p–

and r̄ =

p

(


b – a

)p–[
‖q‖∞ +

p + 
p + 

(
b – a


)p

‖r‖∞
]
,

put

ad(c) :=

∫ b
a max|ξ |≤c F(x, ξ )dx –

∫ b
a+b

F(x,d)dx

q̄cp – r̄dp .

http://www.boundaryvalueproblems.com/content/2012/1/134
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Theorem . Under the following conditions:
(i) there exist three constants c, c, d, with

(
qp–
p–

) 
p
c < d <

(
qp–
p–

) 
p 

[‖q‖∞ + p+
p+ (

b–a
 )p‖r‖∞]


p
c, (.)

such that

ad(c) < ad(c),

and
∫ a+b


a F(x, t)dx≥  ∀t ∈ [,d];

(ii) there exist ν > p and R >  such that

 < νF(x, t)≤ tf (x, t), for all |t| ≥ R and for all x ∈ [a,b]. (AR)

For each λ ∈ ] 
ad(c)

, 
ad(c)

[, problem (P) admits at least two nontrivial weak solutions ū,

ū, with ū such that ( q
b–a )

p–
p c < ‖ū‖ < ( q

b–a )
p–
p c.

Proof The proof of this theorem is divided into two steps. In the first part, by applying
Theorem ., we prove the existence of a local minimum for the functional �–λ� , where
�(u) and �(u) are functionals given in (.) for all u ∈ X. Obviously, � and � satisfy
all regularity assumptions requested in Theorem ., and the critical points in X of the
functional � – λ� are exactly the weak solutions of problem (P). To this end, we verify
condition (.) of Theorem ..
Define the following function u ∈ X, by setting

u(x) =

⎧⎨
⎩

d
b–a (x – a) if x ∈ [a, a+b [,

d if x ∈ [ a+b ,b],

and estimate �(u) and �(u) as follows:

�(u) ≥
∫ b

a+b


F(x,d)dx, (.)

and

�(u) ≤ 
p

(


b – a

)p–[
‖q‖∞ +

p + 
p + 

(
b – a


)p

‖r‖∞
]
dp. (.)

Fix c, d, c satisfying (.) and put r = 
p (

q
b–a )

p–cp and r = 
p (

q
b–a )

p–cp.
From (.), one has r < �(u) < r.
Moreover, for all u ∈ X such that u ∈ �–(] –∞, r[), one has

�(u) =
∫ b

a
F
(
x,u(x)

)
dx≤

∫ b

a
max
|ξ |≤c

F(x, ξ )dx. (.)

http://www.boundaryvalueproblems.com/content/2012/1/134
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Hence,

sup
u∈�–(]–∞,r[)

�(u) ≤
∫ b

a
max
|ξ |≤c

F(x, ξ )dx. (.)

Now, arguing as before, we obtain

sup
u∈�–(]–∞,r])

�(u) ≤
∫ b

a
max
|ξ |≤c

F(x, ξ )dx. (.)

From hypothesis (i) and bearing in mind (.), (.), (.), and (.), we obtain

β(r, r) < ρ(r, r).

From Theorem ., for each λ ∈ ] 
ad(c)

, 
ad(c)

[, � – λ� admits at least one critical point ū
which is a local minimum such that

(
q

b – a

) p–
p
c < ‖ū‖ <

(
q

b – a

) p–
p
c.

Now, we prove the existence of the second local minimum distinct from the first one. To
this end, wemust show that the functional�–λ� satisfies the hypotheses of themountain
pass theorem.
Clearly, the functional � – λ� is of class C and (� – λ�)() = .
From the first part of the proof, we can assume that ū is a strict local minimum for

�– λ� in X. Therefore, there is ρ >  such that inf‖u–u‖=ρ(�– λ�)(u) > (�– λ�)(ū), so
condition [, (I), Theorem .] is verified.
Now, choosing any u ∈ X \ {}, from (ii) one has

(� – λ�)(tu) =

p
‖tu‖p – λ

∫ b

a
F
(
x, tu(x)

)
dx

≤ tp

p
‖u‖p – λtμa

∫ b

a
|u|μ + a(b – a) → –∞

as t → +∞, so condition [, (I), Theorem .] is verified. Moreover, by standard com-
putations, � – λ� satisfies the Palais-Smale condition. Hence, the classical theorem of
Ambrosetti and Rabinowitz ensures a critical point ū of �–λ� such that (�–λ�)(ū) >
(� – λ�)(ū). So, ū and ū are two distinct weak solutions of (P) and the proof is com-
plete. �

Remark . We observe that in literature the existence of at least one nontrivial solution
for differential problems is obtained associating to the classical Ambrosetti-Rabinowitz
condition a hypothesis on the nonlinear term of type f (x, t) = o(|t|) as t → . This im-
plies that the problem possesses also the trivial solution u ≡ . In Theorem ., we find a
nontrivial solution of the problem that actually is a proper local minimum of the Euler-
Lagrange functional associated to the problem different from zero.

Now, we present an application of Theorem . which we will use to obtain multiple
solutions.

http://www.boundaryvalueproblems.com/content/2012/1/134
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Theorem . Assume that there exist two constants c̄, d̄, with ( q
p–

p– )


p c̄ < d̄, such that

∫ b

a
max
|ξ |≤c̄

F(x, ξ )dx <
∫ b

a+b


F(x, d̄)dx, (.)

and

lim sup
|ξ |→+∞

F(x, ξ )
|ξ |p ≤  uniformly in X. (.)

Then, for each λ > λ̃, where

λ̃ =
r̄d̄p – q̄c̄p∫ b

a+b

F(x, d̄)dx –

∫ b
a max|ξ |≤c̄ F(x, ξ )dx

,

problem (P) admits at least one nontrivial weak solution ũ such that ‖ũ‖ > c̄

( q
b–a )

p–
p
.

Proof The functionals � and � satisfy all regularity assumptions requested in Theo-
rem .. Moreover, by standard computations, condition (.) implies that �– λ� , λ > ,
is coercive. So, our aim is to verify condition (.) of Theorem .. To this end, put

r =
c̄p

p

(
q

b – a

)p–

, and

u(x) =

⎧⎨
⎩

d̄
b–a (x – a) if x ∈ [a, a+b [,

d̄ if x ∈ [ a+b ,b].

Arguing as in the proof of Theorem ., we obtain that

ρ(r)≥
∫ b
a+b

F(x, d̄)dx –

∫ b
a max|ξ |≤c̄ F(x, ξ )dx


p (


b–a )p–d̄p[‖q‖∞ + p+

p+ (
b–a
 )p‖r‖∞] – 

p (
q
b–a )p–c̄p

.

So, from our assumption, it follows that ρ(r) > .
Hence, fromTheorem . for each λ > λ̃, the functional �–λ� admits at least one local

minimum ũ such that ‖ũ‖ > c̄

( q
b–a )

p–
p

and our conclusion is achieved. �

Remark . We point out that the same statement of above given result can be obtained
by using a classical direct methods theorem (see []), but in addition we get the location
of the solution, hence in particular the solution is nontrivial.

Now, we point out some results when the nonlinear term is with separable variables. To
be precise, let
• α ∈ L([a,b]) such that α(x)≥  a.e. x ∈ [a,b], α �≡ , and
• g :R →R be a nonnegative continuous function,

consider the following boundary value problem:
⎧⎨
⎩
–u′′ = λα(x)g(u) on ]a,b[,

u(a) = u′(b) = .
(P)

http://www.boundaryvalueproblems.com/content/2012/1/134
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We observe that the following results give the existence of multiple nonnegative solutions
since the nonlinear term is supposed to be nonnegative. In order to justify what has been
said above, we point out the following weak maximum principle.

Lemma . Suppose that ū ∈ X is a weak solution of problem (P), then ū is nonnegative.

Proof We claim that a weak solution ū is nonnegative. In fact, arguing by a contradiction
and setting A = {x ∈ [a,b] : ū(x) < }, one has A �= ∅. Put ū– = min{ū, }, one has ū– ∈ X
(see, for instance, [, Lemma .]). So, taking into account that ū is a weak solution and
by choosing v = ū–, one has

∫
A

∣∣ū′(x)
∣∣ū′(x)dx = λ

∫
A
α(x)g

(
ū(x)

)
ū(x)dx ≤ ,

that is, ‖ū‖W ,(A) =  which is absurd. Hence, our claim is proved. �

Corollary . Assume that
(i′) there exist three nonnegative constants c, c, d, with c <

√
d < c, such that

‖α‖L([a,b])G(c) – ‖α‖L([ a+b ,b])G(d)

c – d <
‖α‖L([ a+b ,b])G(d) – ‖α‖L([a,b])G(c)

d – c
; (.)

(ii′) there exist ν >  and R >  such that

 < νG(t)≤ tg(t), for all |t| ≥ R.

Then, for each λ ∈ 
, where


 =
]

d – c
(b – a)[‖α‖L([ a+b ,b])G(d) – ‖α‖L([a,b])G(c)]

,

c – d

(b – a)[‖α‖L([a,b])G(c) – ‖α‖L([ a+b ,b])G(d)]

[
,

problem (P) admits at least two nonnegative weak solutions ū and ū such that √
b–a

c <
‖ū‖ < √

b–a
c.

Theorem . Assume that there exist two positive constants c, d, with
√
d < c, such that

G(c)
c

<
(‖α‖L([ a+b ,b])

‖α‖L([a,b])

)
G(d)
d . (.)

Further, suppose that there exist ν >  and R >  such that

 < νG(t)≤ tg(t), for all |t| ≥ R.

Then, for each λ ∈ ] d
(b–a)‖α‖

L([ a+b ,b])
G(d) ,

c
(b–a)‖α‖L([a,b])G(c)

[, problem (P) admits at least

two nonnegative weak solutions.

http://www.boundaryvalueproblems.com/content/2012/1/134
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Proof Our aim is to apply Corollary .. To this end, we pick c =  and c = c. From (.),
one has

‖α‖L([a,b])G(c) – ‖α‖L([ a+b ,b])G(d)

c – d

<

c [c

‖α‖L([a,b])G(c) – d‖α‖L([a,b])G(c)]
c – d

=
‖α‖L([a,b])G(c)

c
.

On the other hand, one has

‖α‖L([ a+b ,b])G(d) – ‖α‖L([a,b])G(c)
d – c

=
‖α‖L([ a+b ,b])G(d)

d .

Hence, from Corollary . and taking (.) into account, the conclusion follows. �

A further consequence of Theorem . is the following result.

Theorem . Assume that

lim
t→+

g(t)
t

= +∞, (.)

and there are constants μ >  and R >  such that, for all |ξ | ≥ R, one has

 < μG(ξ )≤ ξg(ξ ). (AR)

Then, for each λ ∈ ],λ*[, where λ* = 
(b–a)‖α‖L([a,b])

supc>
c
G(c) , problem (P) admits at

least two nonnegative weak solutions.

Proof Fix λ ∈ ],λ*[. Then there is c >  such that λ < 
(b–a)‖α‖L([a,b])

c
G(c) . From (.), there

is d < c√
 such that

(b–a)‖α‖
L([ a+b ,b])

G(d)

d > 
λ
. Hence, Theorem . ensures the conclusion.

�

Next, as a consequence of Theorems . and ., the following theorem of the existence
of three solutions is obtained.

Theorem . Assume that

lim sup
|ξ |→+∞

G(ξ )
ξ  ≤ . (.)

Moreover, assume that there exist four positive constants c, d, c̄, d̄,with
√
d < c≤ c̄ <

√
d̄,

such that (.),

G(c̄) <
(‖α‖L([ a+b ,b])

‖α‖L([a,b])

)


G(d̄),

http://www.boundaryvalueproblems.com/content/2012/1/134
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and

G(c)
c

<
‖α‖L([ a+b ,b])G(d̄) – ‖α‖L([a,b])G(c̄)


b–a d̄ – 

(b–a) c̄
(.)

are satisfied.
Then, for each λ ∈ 
 = ]max{λ̃, d

(b–a)‖α‖
L([ a+b ,b])

G(d) }, c
(b–a)‖α‖L([a,b])G(c)

[, problem (P) ad-

mits at least three weak nonnegative solutions.

Proof First, we observe that 
 �= ∅ owing to (.). Next, fix λ ∈ 
. Theorem . ensures a
nontrivial weak solution ū such that ‖ū‖ < c which is a local minimum for the associated
functional � – λ� , as well as Theorem . guarantees a nontrivial weak solution ũ such
that ‖ũ‖ > c which is a local minimum for � – λ� . Hence, the mountain pass theorem as
given by Pucci and Serrin (see []) ensures the conclusion. �

Theorem . Assume that

lim sup
ξ→+

G(ξ )
ξ  = +∞, (.)

lim sup
ξ→+∞

G(ξ )
ξ  = . (.)

Further, assume that there exist two positive constants c̄, d̄, with c̄ <
√
d̄, such that

G(c̄)
c̄

<
(‖α‖L([ a+b ,b])

‖α‖L([a,b])

)
G(d̄)
d̄

. (.)

Then, for each λ ∈ ] d̄
(b–a)‖α‖

L([ a+b ,b])
G(d̄) ,

c̄
(b–a)‖α‖L([a,b])G(c̄)

[, problem (P) admits at least

three weak nonnegative solutions.

Proof Clearly, (.) implies (.). Moreover, by choosing d small enough and c = c̄, simple
computations show that (.) implies (.). Finally, from (.) we get (.) and also
(.). Hence, Theorem . ensures the conclusion. �

Finally, we present two examples of problems that admit multiple solutions owing to
Theorems . and ..

Example . Owing to Theorem ., for each λ ∈ ],  [, the problem

⎧⎨
⎩
–u′′ = λ(u + ) in ], [,

u() = u′() = 

admits at least two nonnegative solutions. In fact, one has limu→+
g(u)
u = limu→+

u+
u =

+∞ and (AR) is satisfied as a simple computation shows. Moreover, one has λ* =


(b–a)‖α‖ supc>
c
G(c) =


 .
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Example . Consider the following problem:

⎧⎨
⎩
–u′′ = 

 (
u
eu + ) in ], [,

u() = u′() = .
(PE)

It has three nonnegative solutions. In fact, let g :R→R be a function defined as

g(u) =

⎧⎨
⎩
( ueu + ) if u≥ ,

 if u < .

Owing to Theorem ., the following problem

⎧⎨
⎩
–u′′ = 

g(u) in ], [,

u() = u′() = 
(Pg)

admits three nonnegative classical solutions. In fact, one has

lim
u→+

g(u)
u

= lim
u→+

( ueu + )
u

= +∞ and lim
u→+∞

g(u)
u

= lim
u→+∞

( ueu + )
u

= .

Moreover, taking into account that G(u) = u –
∑

i=
!
i! u

i

eu + !, by choosing c̄ =  and d̄ = ,
one has G()

 < 

G()
 and 

G() <

 < 

G() .
So, it is clear that any nonnegative solution u of problem (Pg ) is also a solution of problem

(PE).
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