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Abstract
By energy estimates and by establishing a local (PS) condition, we obtain the
multiplicity of solutions to a class of Brezis-Nirenberg-type problem with singular
coefficients via minimax methods and the Krasnoselskii genus theory.
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1 Introduction andmain results
This paper is concerned with multiple solutions for the semilinear Brezis-Nirenberg-type
problem with singular coefficients

{
–div( Du

|x|a ) = λ
|u|*–u
|x|*b + β

|u|q–u
|x|α , x ∈ �;

u = , x ∈ ∂�,
()

where � ⊂ Rn is a bounded smooth domain, and  ∈ �, –∞ < a < n–
 , a ≤ b < a + ,

* = n
n–d , d = a +  – b ∈ (, ],  < q < , α < ( + a)q + n( – q

 ). β > , λ >  are two real
parameters.
The starting point of the variational approach to the problem is the Caffarelli-Kohn-

Nirenberg inequality (see []): There is a constant Ca,b >  such that

(∫
Rn

|x|–*b|u|* dx
)/*

≤ Ca,b

∫
Rn

|x|–a|Du| dx, ()

for all u ∈ C∞
 (Rn), where

–∞ < a <
n – 


, a ≤ b < a + , * =
n

n – d
, d = a +  – b.

LetD,
a (�) be the completion of C∞

 (Rn) with respect to the weighted norm ‖ ·‖ defined
by

‖u‖ =
(∫

�

|x|–a|Du| dx
)/

.
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From the boundedness of � and the standard approximation arguments, it is easy to see
that () holds for any u ∈D,

a (�) in the sense:

(∫
�

|x|–α|u|r dx
)/r

≤ C
∫

�

|x|–a|Du| dx ()

for  ≤ r ≤ * = n
n– ,

α
r ≤ ( + a) + n( r –


 ), that is, the embedding D,

a (�) ↪→ Lr(�, |x|–α)
is continuous, where Lr(�, |x|–α) is the weighted Lr space with the norm

‖u‖r,α := ‖u‖Lr (�,|x|–α ) =
(∫

�

|x|–α|u|r dx
)/r

.

On D,
a (�), we can define the energy functional

J(u) =



∫
�

|x|–a|Du| dx – λ

*

∫
�

|x|–*b|u|* dx – β

q

∫
�

|x|–α|u|q dx. ()

From (), J is well defined in D,
a (�), and J ∈ C(D,

a (�),R). Furthermore, the critical
points of J are weak solutions of problem ().
Breiz-Nirenberg-type problems have been generalized to many situations such as

{
–div( Du

|x|a ) –μ u
|x|(a+) =

|u|*–u
|x|*b + λ u

|x|(a+)–c , x ∈ �,
u = , x ∈ ∂�.

()

Xuan et al. [] derived the explicit formula for the extremal functions of the best embed-
ding constant by applying the Bliss lemma []. They got a nontrivial solution for problem
() including the resonant and nonresonant cases by variational methods. He and Zou []
studied problem () and obtained the multiplicity of solutions with the aid of a pseudo-
index theory. In [], problem () has been extended to the p-Laplace case by Xuan.
The purpose of this paper is to study the multiplicity of solutions for the Breiz-

Nirenberg-type problem () with the aid of a minimax method. We obtain multiple non-
trivial solutions of () by proving the local (PS) condition and energy estimates.
Our main results are the following.

Theorem . Suppose  < q < , then
(i) ∀β > , ∃λ >  such that if  < λ < λ, problem () has a sequence of solutions {um}

with J(um) <  and J(um) →  as m → ∞.
(ii) ∀λ > , ∃β >  such that if  < β < β, problem () has a sequence of solutions {um}

with J(um) <  and J(um) →  as m → ∞.

2 Preliminary results
Lemma . [] Suppose that � ⊂ Rn is an open bounded domain with C boundary and
 ∈ �, –∞ < a < (n – )/. The embedding D,

a (�) ↪→ Lr(�, |x|–α) is compact if  ≤ r < *,
α < ( + a)r + n( – r

 ).

Lemma . (Concentration compactness principle []) Let –∞ < a < (n – )/, a ≤ b ≤
a + , * = n/(n – d), d =  + a – b ∈ [, ], and M(Rn) be the space of bounded measures
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on Rn. Suppose that {um} ⊂ D,
a (Rn) is a sequence such that

um ⇀ u in D,
a

(
Rn),

μm :=
∣∣|x|–aDum∣∣ dx⇀ μ in M

(
Rn),

νm :=
∣∣|x|–bum∣∣*dx ⇀ ν in M

(
Rn),

um → u a.e. on Rn.

Then there are the following statements:
() There exists some at most countable set I , a family {x(i) : i ∈ I} of distinct points in Rn,

and a family {ν(i) : i ∈ I} of positive numbers such that

ν =
∣∣|x|–bu∣∣* dx +∑

i∈I
ν(i)δx(i) , ()

where δx is the Dirac-mass of mass  concentrated at x ∈ Rn.
() The following inequality holds

μ ≥ ∣∣|x|–aDu∣∣ dx +∑
i∈I

μ(i)δx(i) ()

for some family {μ(i) >  : i ∈ I} satisfying

S
(
ν(i))/* ≤ μ(i) for all i ∈ I, ()

where S := infu∈D,
a (Rn)\{} Ea,b(u) to be the best embedding constants, and

Ea,b(u) =
∫
Rn |x|–a|Du| dx

(
∫
Rn |x|–*b|u|* dx)/* .

In particular,
∑

i∈I(ν(i))/* <∞.

Lemma . Assume {un} is a (PS)c sequence with c < ,  < q < , then
() ∀λ > , there exists β >  such that for any  < β < β, {un} has a convergent

subsequence in D,
a (�).

() ∀β > , there exists λ >  such that for any  < λ < λ, {un} has a convergent
subsequence in D,

a (�).

Proof () The boundedness of (PS)c sequence.
For {un} is a (PS)c sequence, then

J(un) =



∫
�

|x|–a|Dun| dx – λ

*

∫
�

|x|–*b|un|* dx – β

q

∫
�

|x|–α|un|q dx, ()

〈
J ′(un),un

〉
=

∫
�

|x|–a|Dun| dx – λ

∫
�

|x|–*b|un|* dx – β

∫
�

|x|–α|un|q dx. ()

http://www.boundaryvalueproblems.com/content/2012/1/137


Yang et al. Boundary Value Problems 2012, 2012:137 Page 4 of 8
http://www.boundaryvalueproblems.com/content/2012/1/137

So, we get

o()
(
 + ‖un‖

)
+ |c| ≥ J(un) –


*

〈
J ′(un),un

〉

=
d
n

‖un‖ –
(

q
–


*

)
β

∫
�

|un|q
|x|α dx

≥ d
n

‖un‖ –
(

q
–


*

)
βCα‖un‖q.

We have the boundedness of {un} for  < q < , then there exists a subsequence, we still
denote it by {un}, such that

un ⇀ u in D,
a (�),

un ⇀ u in L*
(
�, |x|–*b),

un → u in Lr
(
�, |x|–α

)
,∀ ≤ r <

n
n – 

,α < ( + a)r + n
(
 –

r


)
,

un → u a.e. on �.

From the concentration compactness principle, there exist nonnegativemeasuresμ, ν and
a countable family {xi} ⊂ � such that

|x|–*b|un|* dx⇀ ν = |x|–*b|u|* dx +
∑
i∈I

ν(i)δx(i) ,

|x|–a|Dun| dx ⇀ μ ≥ |x|–a|Du| dx + S
∑
i∈I

(
ν(i))/*δx(i) .

() Up to a subsequence, un → u in L* (�, |x|–*b).
Since {un} is bounded in D,

a (�), we may suppose, without loss of generality, that there
exists T ∈ (L′ (�, |x|–a))n such that

Dun ⇀ T in
(
L

′(
�, |x|–a))n.

On the other hand, |un|*–un is also bounded in L′
* (�, |x|–*b) and

|un|*–un ⇀ |u|*–u in L
′
*
(
�, |x|–*b).

Note that

o()‖ϕ‖ = 〈
J ′(un),ϕ

〉
=

∫
�

|x|–aDunDϕ dx – λ

∫
�

|x|–*b|un|*–unϕ dx

– β

∫
�

|x|–α|un|q–unϕ dx, ()

taking n → ∞ in (), we have
∫

�

|x|–aTDϕ dx = λ

∫
�

|x|–*b|u|*–uϕ dx + β

∫
�

|x|–α|u|q–uϕ dx ()
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for any ϕ ∈D,
a (�). Let ϕ = ψun in (), where ψ ∈ C(�), then it follows that

∫
�

|x|–aDununDψ dx +
∫

�

|x|–a|Dun|ψ dx

= λ

∫
�

|x|–*b|un|*ψ dx + β

∫
�

|x|–α|un|qψ dx. ()

Taking n→ ∞ in (), we have

∫
�

|x|–auTDψ dx +
∫

�

ψ dμ = λ

∫
�

ψ dν + β

∫
�

|x|–α|u|qψ dx. ()

Let ϕ = ψu in (), then it follows that

∫
�

|x|–aTψudx +
∫

�

|x|–aTudψ = λ

∫
�

|x|–*b|u|*ψ dx + β

∫
�

|x|–α|u|qψ dx. ()

Thus, it implies that

∫
�

ψ dμ = λ
∑
i∈I

νiψ(xi) +
∫

�

|x|–aTDuψ dx, ()

which implies that

S(νi)/* ≤ μi = λνi.

Hence, νi ≥ (λ–S)n/d if νi �= .
On the other hand,

 > c = lim
n→∞

(
J(un) –


*

〈
J ′(un),un

〉)

= lim
n→∞

(
d
n

‖un‖ – β

(

q
–


*

)∫
�

|x|–α|un|q dx
)

≥ d
n

‖u‖ – βC‖u‖q,

then ‖u‖q ≤ Cβq/(–q), so that

 > c = lim
n→∞

(
J(un) –


*

〈
J ′(un),un

〉)

= lim
n→∞

(
d
n

‖un‖ – β

(

q
–


*

)∫
�

|x|–α|un|q dx
)

≥ d
n

μi – βCβq/(–q)

≥ d
n
S

n
d

(
λ–) n–d

d –Cβ


–q .

However, if β >  is given, we can choose λ >  so small that for every  < λ < λ, the last
term on the right-hand side above is greater than , which is a contradiction. Similarly, if
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λ >  is given, we can take β >  so small that for every  < β < β, the last term on the
right-hand side above is greater than . Then νi =  for each i.
Up to now, we have shown that

lim
n→∞

∫
�

|x|–*b|un|* dx =
∫

�

|x|–*b|u|* dx.

So, by the Breiz-Lieb lemma,

o()‖un‖ = ‖un‖ – λ

∫
�

|x|–*b|un|* dx – β

∫
�

|x|–α|un|q dx

= ‖un – u‖ – ‖u‖ – λ

∫
�

|x|–*b|u|* dx – β

∫
�

|x|–α|u|q dx

= ‖un – u‖ + o()‖u‖

since J ′(u) = . Thus, we prove that {un} strongly converges to u in D,
a (�). �

3 Existence of infinitely many solutions
In this section, we use the minimax procedure to prove the existence of infinitely many
solutions. Let  be the class of subsets of D,

a (�) \ {}, which are closed and symmetric
with respect to the origin. For A ∈ , we define the genus γ (A) by

γ (A) =min
{
k ∈N : ∃φ ∈ C

(
A,Rk \ {}),φ(x) = –φ(–x)

}
.

Assume that  < q < , then we obtain

J(u) =



∫
�

|x|–a|Du| dx – λ

*

∫
�

|x|–*b|u|* dx – λ

q

∫
�

|x|–α|u|q dx

≥ 

‖u‖ – Cbλ

*
‖u‖* – βCα

q
‖u‖q.

Define

h(t) =


t – λCt* – βCtq.

Then, given β > , there exists λ >  so small that for every  < λ < λ, there exists  < T <
T such that h(t) <  for  < t < T, h(t) >  for T < t < T, h(t) <  for t > T. Similarly,
given λ > , we can choose β >  with the property that T, T as above exist for each
 < β < β. Clearly, h(T) = h(T) = . Following the same idea as in [–], we consider the
truncated functional

J̃(u) =



∫
�

|x|–a|Du| dx – λ

*
ψ(u)

∫
�

|x|–*b|u|* dx – λ

q

∫
�

|x|–α|u|q dx,

where ψ(u) = τ (‖u‖), and τ : R+ → [, ] is a nonincreasing C∞ function such that τ (t) = 
if t ≤ T and τ (t) =  if t ≥ T. The main properties of J̃ are the following.

http://www.boundaryvalueproblems.com/content/2012/1/137
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Lemma .
() J̃ ∈ C and J̃ is bounded below.
() If J̃(u)≤ , then ‖u‖ ≤ T and J̃(u) = J(u).
() For any λ > , there exists β =min{β,β} such that if  < β < β and c < , then J̃

satisfies (PS)c condition.
() for any β > , there exists λ =min{λ,λ} such that if  < λ < λ and c < , then J̃

satisfies (PS)c condition.

Proof () and () are immediate. To prove () and (), observe that all (PS)c sequences for
J̃ with c < must be bounded. Similar to the proof of Lemma ., there exists a convergent
subsequence. �

Lemma . Given m ∈N , there is εm <  such that

γ
({
u ∈D,

a (�) : J̃(u) ≤ εm
}) ≥ m.

Proof Fix m and let Hm be an m-dimensional subspace of D,
a (�). Take u ∈ Hm, u �= ,

write u = rmv with v ∈ Hm, ‖v‖ =  and rm = ‖u‖. Thus, for  < rm < T, since all the norms
are equivalent, we have

J̃(u) = J(u) =



∫
�

|x|–a|Du| dx – λ

*

∫
�

|x|–*b|u|* dx – λ

q

∫
�

|x|–α|u|q dx

≤ 

‖u‖ – λC

*
‖u‖* – λC

q
‖u‖q

=


rm –

λC

*
r*m –

λC

q
rqm := εm.

Therefore, we can choose rm ∈ (,T) so small that J̃(u) ≤ εm < . Let Srm = {u ∈ D,
a (�) :

‖u‖ = rm}, then Srm ∩Hm ⊂ J̃εm . Hence, γ (J̃εm ) ≥ γ (Srm ∩Hm) =m. Denote �m = {A ∈  :
γ (A) ≥ m} and let

cm = inf
A∈�m

sup
u∈A

J̃(u).

Then –∞ < cm ≤ εm <  because J̃εm ∈ �m and J̃ is bounded from below. �

Lemma . Let λ, β be as in () or () of Lemma .. Then all cm are critical values of J̃ as
cm → .

Proof It is clear that cm ≤ cm+, cm < . Hence, cm → c ≤ . Moreover, since all cm are
critical values of J̃ , we claim that c = . If c < , because Kc is compact and Kc ∈ , it
follows that γ (Kc) =N < +∞ and there exists δ >  such that γ (Kc) = γ (Nδ(Kc)) = N. By
the deformation lemma there exist ε >  (c + ε < ) and an odd homeomorphism η such
that

η
(
J̃ c+ε \Nδ(Kc)

) ⊂ J̃ c–ε .

http://www.boundaryvalueproblems.com/content/2012/1/137
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Since cm is increasing and converges to c, there exists m ∈ N such that cm > c – ε and
cm+N ≤ c and there exists A ∈ �m+N such that supu∈A J̃(u) < c + ε. By the properties of γ ,
we have

γ
(
A \Nδ(Kc)

) ≥ γ (A) – γ
(
Nδ(Kc)

) ≥ m, γ
(
A \Nδ(Kc)

) ≥ m.

Therefore,

η
(
A \Nδ(Kc)

) ∈ �m.

Consequently,

sup
u∈η(A\Nδ (Kc))

J̃(u) ≥ cm > c – ε,

a contradiction, hence cm → . �

With Lemma . to Lemma ., we have proved Theorem ..
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