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1 Introduction
In this paper, we consider the Cauchy problem of the D incompressible magneto-
micropolar fluid equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tu + u · ∇u – b · ∇b +∇(π + |b|) – χ∇ ×w = (μ + χ )�u, t ≥ ,x ∈ R
,

∂tw + u · ∇w – κ∇ divw + χw – χ∇ × u = γ�w, t ≥ ,x ∈R
,

∂tb + u · ∇b – b · ∇u = ν�b, t ≥ ,x ∈ R
,

divu = divb = , t ≥ ,x ∈ R
,

u(x, ) = u(x), w(x, ) = w(x), b(x, ) = b(x), x ∈ R
,

(.)

where u is the fluid velocity,w is themicro-rotational velocity, b is themagnetic field and π

is the pressure. Equations (.) describe the motion of a micropolar fluid which is moving
in the presence of amagnetic field (see []). The positive parametersμ,χ , γ , κ and ν in (.)
are associated with the properties of the materials: μ is the kinematic viscosity, χ is the
vortex viscosity, ν and κ are the spin viscosities and 

ν
is the magnetic Reynolds number.

Recently, Yuan [] investigated the local existence and uniqueness of the strong solutions
to the magneto-micropolar fluid equations (.) (see also [–] for the bounded domain
cases). Thus, the further problem at the center of the mathematical theory concerning
equations (.) is whether or not it has a global in time smooth solution for any prescribed
smooth initial data, which is still a challenging open problem. In the absence of a global
well-posedness theory, the development of regularity criteria is of major importance for
both theoretical and practical purposes. We would like to recall some related results in
this direction.
Note that if the micro-rotation effects and themagnetic filed are not taken into account,

i.e., w = b = , equations (.) reduce to the classical Navier-Stokes equations. The global
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regularity issue has been thoroughly investigated for the D Navier-Stokes equations and
many important regularity criteria have been established (see [–] and the references
therein). In particular, the first well-known regularity criterion is due to Serrin []: if the
Leray-Hopf weak solution u of the D Navier-Stokes equations satisfies

∫ T



∥∥u(·, t)∥∥q
Lp dt < ∞ with


q
+

p
=  and  < p ≤ ∞,

then u is regular on (,T]. Beirao da Veiga [] and Penel and Pokorny [] established
another regularity criteria by replacing the above conditions with the following ones:

∫ T



∥∥∇u(·, t)∥∥q
Lp dt <∞ with


q
+

p
=  and



< p≤ ∞,

or

∫ T



∥∥∂u(·, t)
∥∥q
Lp dt <∞ with


q
+

p

≤ 

and  ≤ p≤ ∞.

More recently, Cao and Titi [] established a regularity criterion in terms of only one of
the nine components of the gradient of a velocity field, that is, the solution u is regular on
[,T] if

∫ T



∥∥∂kuj(·, t)
∥∥q
Lp dt < ∞ with


q
+

p

≤ p + 
p

and  < p ≤ ∞,

where k, j = , ,  and k �= j, or

∫ T



∥∥∂juj(·, t)
∥∥q
Lp dt <∞ with


q
+

p

≤ (p + )
p

and  < p≤ ∞.

This result on ∂juj is stronger than a similar result of Zhou and Pokorny [] in the sense of
allowing for much smaller values of p. These regularity criteria are of physical relevance
since experimental measurements are usually obtained for quantities of the form ∂kuj.
The regularity criterion by imposing the growth conditions on the pressure field are also
examined by, for example, Berselli and Galdi [], Chae and Lee [] and Zhou [, ], i.e.,
if

∫ T



∥∥π (·, t)∥∥q
Lp dt < ∞ with


q
+

p
=  and



< p≤ ∞,

or

∫ T



∥∥∇π (·, t)∥∥q
Lp dt < ∞ with


q
+

p
=  and  < p≤ ∞,

then the solution u is regular on [,T] (see also [, ] for the Besov spaces cases). For
the D Navier-Stokes equations with boundary conditions, Cao and Titi first introduced
a regularity criterion in terms of only one component of the pressure gradient based on
the breakthrough of the global regularity of the D primitive equations []. Recently, Cao
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and Titi [] established a similar regularity criterion for the Cauchy problem of the D
Navier-Stokes equations, that is, the solution u is regular on [,T] if

∫ T



∥∥∂π (·, t)
∥∥q
Lp dt < ∞ with


q
+

p
<


,p >




and q ≥ .

When the micro-rotation effects are neglected, i.e., w = , equations (.) become the
usual magnetohydrodynamic (MHD) equations. Some of the regularity criteria estab-
lished for the Navier-Stokes equations can be extended to the DMHD equations bymak-
ing assumptions on both u and b (see [, ]). Moreover, He and Xin [, ] showed that
the velocity field u plays a dominant role in the regularity issue and derived a criterion in
terms of the velocity field u alone (see also [, ] for the Besov spaces cases). Recently,
Cao and Wu [] further proved that if

∫ T



∥∥∂u(·, t)
∥∥q
Lp dt <∞ with


q
+

p

≤  and p ≥ ,

or
∫ T



∥∥∂π (·, t)
∥∥q
Lp dt < ∞ with


q
+

p

≤ 

and p≥ 


,

then (u,b) is regular on [,T]. More recently, Liu, Zhao and Cui [] have adapted the
method of [] to establish a similar regularity criterion for the D nematic liquid crystal
flow.
If we ignore the magnetic filed, i.e., b = , equations (.) reduce to the micropolar fluid

equations. The theory of micropolar fluid has attractedmore andmore scholars’ attention
in recent years. In particular, Dong, Jia and Chen [] recently established a regularity
criterion via the pressure field, which says that if

∫ T



∥∥π (·, t)∥∥q
Lp dt < ∞ with


q
+

p
=  and  < p≤ ∞,

then (u,w) is regular on [,T] (see also [, ] for the Lorentz spaces cases).
For the full magneto-micropolar fluid equations (.), Yuan [] recently showed that

the solution (u,w,b) is regular on (,T] if

∫ T



∥∥u(·, t)∥∥q
Lp dt < ∞ with


q
+

p

≤  and  < p ≤ ∞, (.)

or
∫ T



∥∥∇u(·, t)∥∥q
Lp dt <∞ with


q
+

p

≤  and


< p ≤ ∞. (.)

For other regularity criteria of equations (.), we refer to Gala [], Geng, Chen and Gala
[], Wang, Hu and Wang [], Yuan [] and Zhang, Yao and Wang [].
In this paper, we establish two new regularity criteria for the D magneto-micropolar

fluid equations (.) in terms of one directional derivative of the velocity u or of the pres-
sure π and the magnetic field b by adapting the method of [].Without loss of generality,
we set the viscous coefficients μ + χ = γ = ν = κ = .
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We now state our main results as follows.

Theorem . Assume that (u,w,b) ∈ H(R) with divu = divb = . Let (u,w,b) be
the corresponding local smooth solution to the magneto-micropolar fluid equations (.) on
[,T) for some T > . If the velocity u satisfies

∫ T



∥∥∂u(·, t)
∥∥q
Lp dt :=M(T) < ∞ with


q
+

p

≤  and p≥ , (.)

then (u,w,b) can be extended beyond T .

Note that when p = , q = ∞ and thus the corresponding assumption in (.) should be
understood as esssup≤t≤T ‖∂u(·, t)‖L :=M(T) <∞.

Remark . Theorem . improves the regularity criterion in [] (see (.)) in the sense
that it depends only on one directional derivative of the velocity u.

Theorem . Assume that (u,w,b) ∈ H(R) ∩ L(R) with divu = divb = . Let
(u,w,b) be the corresponding local smooth solution to the magneto-micropolar fluid equa-
tions (.) on [,T) for some T > . If the pressure π and the magnetic field b satisfy

∫ T



∥∥∂
(
π (·, t) + |b|(·, t))∥∥q

Lp dt :=M(T) < ∞ with

q
+

p

≤ 

and




≤ p≤ , (.)

then (u,w,b) can be extended beyond T .

Remark . When b = , we also obtain a new regularity criterion for the micropolar
equations determined by one direction derivative of the pressure π alone.

We shall prove our results in the next section. For simplicity, we denote by ‖ · ‖p the
Lp norm and by (·, ·) the L inner product throughout the paper. The letter C denotes an
inessential constant which might vary from line to line, but does not depend on particular
solutions or functions.

2 Proof of themain results
In this section, we give the proof of Theorem . and Theorem .. The following lemma
plays an important role in our arguments. Its proof can be found in [] or [].

Lemma . Let the parameters r, r, r and r satisfy

 ≤ r, r, r, r < ∞ and  +

r
=


r

+

r

+

r
,

and suppose that ∂iϕ ∈ Lri (R) (i = , , ). Then there exists a constant C = C(r, r, r) > 
such that

‖ϕ‖r ≤ C‖∂ϕ‖ 

r‖∂ϕ‖ 


r‖∂ϕ‖ 


r .
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In particular, when r = r =  and r = p ∈ [,∞), there exists a constant C = C(p) such
that

‖ϕ‖p ≤ C‖∂ϕ‖ 

 ‖∂ϕ‖ 


 ‖∂ϕ‖ 


p

for any ϕ satisfying ∂ϕ, ∂ϕ ∈ L(R) and ∂ϕ ∈ Lp(R).

Proof of Theorem . Observe that for any (u,w,b) ∈ H(R) with divu = divb = ,
there exists a unique local smooth solution to equations (.) (see []). Let T be the max-
imum existence time. To prove Theorem ., it is sufficient to show that the assumption
(.) implies T < T. Indeed, we shall prove that under the condition (.), there exists a
constant C >  such that

lim sup
t→T–

(∥∥∇u(t)
∥∥
 +

∥∥∇w(t)
∥∥
 +

∥∥∇b(t)
∥∥


) ≤ C, (.)

which implies that T is not the maximum existence time and thus the solution (u,w,b)
can be extended beyond T by the standard arguments of continuation of local solutions.
Firstly, we derive the energy inequality. For this purpose, we take the L(R) inner prod-

uct of u, w and b with equations (.), respectively, sum the resulting equations and then
integrate by parts to obtain



d
dt

(∥∥u(t)∥∥
 +

∥∥w(t)∥∥
 +

∥∥b(t)∥∥


)
+

(∥∥∇u(t)
∥∥
 +

∥∥∇w(t)
∥∥
 +

∥∥∇b(t)
∥∥


)
+

∥∥divw(t)∥∥
 + χ

∥∥w(t)∥∥


= χ (u,∇ ×w) + χ (w,∇ × u)

≤ 

(∥∥∇u(t)

∥∥
 +

∥∥∇w(t)
∥∥


)
+C

(∥∥u(t)∥∥
 +

∥∥w(t)∥∥


)
,

where we used divu = divb =  in the first equality and Hölder’s inequality in the last
inequality. Thus,

d
dt

(∥∥u(t)∥∥
 +

∥∥w(t)∥∥
 +

∥∥b(t)∥∥


)
+

(∥∥∇u(t)
∥∥
 +

∥∥∇w(t)
∥∥
 +

∥∥∇b(t)
∥∥


)
+

∥∥divw(t)∥∥
 + χ

∥∥w(t)∥∥


≤ C
(∥∥u(t)∥∥

 +
∥∥w(t)∥∥



)
.

It follows from Gronwall’s inequality that

∥∥u(t)∥∥
 +

∥∥w(t)∥∥
 +

∥∥b(t)∥∥


+
∫ t



(∥∥∇u(τ )
∥∥
 +

∥∥∇w(τ )
∥∥
 +

∥∥∇b(τ )
∥∥
 +

∥∥divw(τ )∥∥
 + χ

∥∥w(τ )∥∥


)
dτ

≤ CeCt
(‖u‖ + ‖w‖ + +‖b‖

)
. (.)

Now we split the proof of the estimates (.) into two steps.
Step : Estimates for

∫ T
 (‖∇∂u(·, t)‖ + ‖∇∂w(·, t)‖ + ‖∇∂b(·, t)‖) dt.

http://www.boundaryvalueproblems.com/content/2012/1/139
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To this end, differentiating the first three equations in (.) with respect to x, taking the
L(R) inner product of ∂u, ∂w and ∂b with the resulting equations, respectively, and
then performing a space integration by parts, we get



d
dt

∥∥∂u(t)
∥∥
 + ‖∇∂u‖

= –(∂u, ∂u · ∇u) + (∂u, ∂b · ∇b) + (∂u,b · ∇∂b) + χ (∂u,∇ × ∂w),



d
dt

∥∥∂w(t)
∥∥
 + ‖∇∂w‖ + ‖div ∂w‖ + χ‖∂w‖

= –(∂w, ∂u · ∇w) + χ (∂w,∇ × ∂u),



d
dt

∥∥∂b(t)
∥∥
 + ‖∇∂b‖ = –(∂b, ∂u · ∇b) + (∂b, ∂b · ∇u) + (∂b,b · ∇∂u),

where we used the facts

(∂u,u · ∇∂u) =
(
∂u,∇∂

(
π + |b|)) = (∂w,u · ∇∂w) = (∂b,u · ∇∂b) = 

by divu = . Noticing that

(∂u,∇ × ∂w) = (∂w,∇ × ∂u) and (∂u,b · ∇∂b) + (∂b,b · ∇∂u) = 

by divb = , we can sum the above equations to obtain



d
dt

(∥∥∂u(t)
∥∥
 +

∥∥∂w(t)
∥∥
 +

∥∥∂b(t)
∥∥


)
+

(‖∇∂u‖ + ‖∇∂w‖ + ‖∇∂b‖
)
+ ‖div ∂w‖ + χ‖∂w‖

= –(∂u, ∂u · ∇u) + (∂u, ∂b · ∇b) – (∂w, ∂u · ∇w) + χ (∂w,∇ × ∂u)

– (∂b, ∂u · ∇b) + (∂b, ∂b · ∇u)

:= I + I + I + I + I + I.

We now estimate the above terms one by one. To bound I, we first integrate by parts
and then apply Hölder’s inequality to obtain

|I| =
∣∣(u, ∂u · ∇∂u)

∣∣ ≤ ‖∇∂u‖‖∂u‖ p
p–

‖u‖p. (.)

It follows from the Gagliardo-Nirenberg inequality that

‖∂u‖ p
p–

≤ C‖∇∂u‖

p
 ‖∂u‖–


p



and from Lemma . that

‖u‖p ≤ C‖∂u‖ 

 ‖∂u‖ 


 ‖∂u‖ 


p ≤ C‖∇u‖ 


 ‖∂u‖ 


p .
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Substituting these two estimates into (.) and then using Young’s inequality, we see that
for p > 

|I| ≤ C‖∇∂u‖+

p

 ‖∂u‖–

p

 ‖∇u‖ 

 ‖∂u‖ 


p

≤ 


‖∇∂u‖ +C‖∂u‖‖∇u‖
p

(p–)
 ‖∂u‖

p
(p–)
p

≤ 


‖∇∂u‖ +C‖∂u‖
(‖∇u‖ + ‖∂u‖

p
p–
p

)
, (.)

and that for p = 

|I| ≤ C‖∇∂u‖ 

 ‖∂u‖ 


 ‖∇u‖ 


 ‖∂u‖ 




≤ 


‖∇∂u‖ +C‖∂u‖
(‖∇u‖‖∂u‖

)
. (.)

For I, by Hölder’s inequality, the Gagliardo-Nirenberg inequality and Young’s inequal-
ity, we have for p > 

|I| ≤ ‖∇b‖‖∂u‖p‖∂b‖ p
p–

≤ C‖∇b‖‖∂u‖p‖∂b‖–

p

 ‖∇∂b‖

p


≤ 

‖∇∂b‖ +C‖∇b‖

p
p–
 ‖∂u‖

p
p–
p ‖∂b‖

p–
p–


≤ 

‖∇∂b‖ +C

(‖∇b‖ + ‖∂u‖
p
p–
p

)‖∂b‖ p–
p–


≤ 

‖∇∂b‖ +C

(‖∇b‖ + ‖∂u‖
p
p–
p

)(
 + ‖∂b‖

)
, (.)

and for p = 

|I| ≤ ‖∇b‖‖∂u‖‖∂b‖ ≤ C‖∇b‖‖∂u‖‖∇∂b‖
≤ 


‖∇∂b‖ +C‖∇b‖‖∂u‖. (.)

Applying similar procedure to I and I, we have for p < 

|I| ≤ 

‖∇∂w‖ +C

(‖∇w‖ + ‖∂u‖
p
p–
p

)(
 + ‖∂w‖

)
(.)

and

|I| ≤ 

‖∇∂b‖ +C

(‖∇b‖ + ‖∂u‖
p
p–
p

)(
 + ‖∂b‖

)
, (.)

and for p = 

|I| ≤ 

‖∇∂w‖ +C‖∇w‖‖∂u‖, |I| ≤ 


‖∇∂b‖ +C‖∇b‖‖∂u‖. (.)

http://www.boundaryvalueproblems.com/content/2012/1/139
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For the term I, by using Hölder’s inequality and Young’s inequality, it can be bounded
as follows:

|I| = χ (∂w,∇ × ∂u) ≤ 


‖∇∂u‖ +C‖∂w‖. (.)

Finally, we can follow the steps as in the bound of I to estimate I. Precisely, by integra-
tions by parts and Hölder’s inequality, we have

|I| =
∣∣(∂b, ∂b · ∇u)

∣∣ = ∣∣(u, ∂b · ∇∂b)
∣∣ ≤ ‖∇∂b‖‖∂b‖ p

p–
‖u‖p.

Then the Gagliardo-Nirenberg inequality, Lemma . and Young’s inequality yield that for
p < 

|I| ≤ C‖∇∂b‖+

p

 ‖∂b‖–

p

 ‖∇u‖ 

 ‖∂u‖ 


p

≤ 


‖∇∂b‖ +C‖∂b‖‖∇u‖
p

(p–)
 ‖∂u‖

p
(p–)
p

≤ 


‖∇∂b‖ +C‖∂b‖
(‖∇u‖ + ‖∂u‖

p
p–
p

)
, (.)

and for p = 

|I| ≤ C‖∇∂b‖


 ‖∂b‖



 ‖∇u‖ 


 ‖∂u‖ 




≤ 


‖∇∂b‖ +C‖∂b‖
(‖∇u‖‖∂u‖

)
. (.)

Combining the estimates (.)-(.), we see that for p > 

d
dt

(∥∥∂u(t)
∥∥
 +

∥∥∂w(t)
∥∥
 +

∥∥∂b(t)
∥∥


)
+

(‖∇∂u‖ + ‖∇∂w‖ + ‖∇∂b‖
)
+ ‖div ∂w‖ + χ‖∂w‖

≤ C
(
 + ‖∂u‖ + ‖∂w‖ + ‖∂b‖

)(
 + ‖∇u‖ + ‖∇w‖ + ‖∇b‖ + ‖∂u‖

p
p–
p

)
,

and that for p = 

d
dt

(∥∥∂u(t)
∥∥
 +

∥∥∂w(t)
∥∥
 +

∥∥∂b(t)
∥∥


)
+

(‖∇∂u‖ + ‖∇∂w‖ + ‖∇∂b‖
)
+ ‖div ∂w‖ + χ‖∂w‖

≤ C
(
 + ‖∂u‖ + ‖∂w‖ + ‖∂b‖

)(
 + ‖∇u‖ + ‖∇w‖ + ‖∇b‖

)(
 + ‖∂u‖

)
.

Thus, Gronwall’s inequality together with the energy inequality (.) and the assumption
(.) implies that for p > 

(∥∥∂u(t)
∥∥
 +

∥∥∂w(t)
∥∥
 +

∥∥∂b(t)
∥∥


)
≤ (

 + ‖∂u‖ + ‖∂w‖ + ‖∂b‖
)
eC

∫ t
(+‖∇u(τ )‖+‖∇w(τ )‖+‖∇b(τ )‖+‖∂u(τ )‖

p
p–
p ) dτ

http://www.boundaryvalueproblems.com/content/2012/1/139
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≤ (
 + ‖∂u‖ + ‖∂w‖ + ‖∂b‖

)
eCe

Ct (+‖u‖+‖w‖+‖b‖)+CM(t)q
*/qt–q

*/q

:=Gp
(
M(t)

)
< ∞ (t ≤ T)

with q* = p/(p – ), and

(∥∥∂u(t)
∥∥
 +

∥∥∂w(t)
∥∥
 +

∥∥∂b(t)
∥∥


)
≤ (

 + ‖∂u‖ + ‖∂w‖ + ‖∂b‖
)
eC

∫ t
(+‖∇u(τ )‖+‖∇w(τ )‖+‖∇b(τ )‖)(+‖∂u(τ )‖) dτ

≤ (
 + ‖∂u‖ + ‖∂w‖ + ‖∂b‖

)
eCe

Ct (+‖u‖+‖w‖+‖b‖)(t+M(t))

:=G
(
M(t)

)
< ∞ (t ≤ T).

Then

∫ T



(∥∥∇∂u(τ )
∥∥
 +

∥∥∇∂w(τ )
∥∥
 +

∥∥∇∂b(τ )
∥∥
 +

∥∥div ∂w(τ )
∥∥
 + χ

∥∥∂w(τ )
∥∥


)
dτ

≤ G̃
(
M(t)

)
< ∞, (.)

which is the desired estimates.
Step : Estimates for (‖∇u(t)‖ + ‖∇w(t)‖ + ‖∇b(t)‖).
For this purpose, taking the L(R) inner product of �u, �w and �b with the first three

equations in (.), respectively, and then performing a space integration by parts, we have



d
dt

∥∥∇u(t)
∥∥
 + ‖�u‖ = (�u,u · ∇u) – (�u,b · ∇b) – χ (�u,∇ ×w),



d
dt

∥∥∇w(t)
∥∥
 + ‖�w‖ + ‖∇ divw‖ + χ‖∇w‖ = (�w,u · ∇w) – χ (�w,∇ × u),



d
dt

∥∥∇b(t)
∥∥
 + ‖�b‖ = (�b,u · ∇b) – (�b,b · ∇u).

Noticing (�u,∇ ×w) = (�w,∇ ×u), we sum the above equations and integrate by parts
to obtain



d
dt

(∥∥∇u(t)
∥∥
 +

∥∥∇w(t)
∥∥
 +

∥∥∇b(t)
∥∥


)
+

(‖�u‖ + ‖�w‖ + ‖�b‖
)
+ ‖∇ divw‖ + χ‖∇w‖

= (�u,u · ∇u) – (�u,b · ∇b) + (�b,u · ∇b)

– (�b,b · ∇u) + (�w,u · ∇w) – χ (�w,∇ × u)

=

(
–

∑
k=

(∂ku, ∂ku · ∇u) +
∑

k=

(∂ku, ∂kb · ∇b) +
∑

k=

(∂kb, ∂kb · ∇u)

–
∑

k=

(∂kb, ∂ku · ∇b) –
∑

k=

(∂kw, ∂ku · ∇w)

)
– χ (�w,∇ × u)

≤ (‖∇u‖ + ‖∇u‖‖∇b‖ + ‖∇u‖‖∇w‖
)
+



‖�w‖ +C‖∇u‖. (.)
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By using the interpolation inequality and taking p =  in Lemma ., we have

‖∇u‖ ≤ C
(‖∇u‖ 


 ‖∇u‖ 



) ≤ C

(‖∇u‖ 

 ‖∇h∇u‖ 


 ‖∂∇u‖




),

where ∇h = (∂, ∂). Then Young’s inequality yields

‖∇u‖ ≤ 


‖∇h∇u‖ +C‖∇u‖‖∂∇u‖

≤ 


‖∇h∇u‖ +C
(‖∇u‖ + ‖∂∇u‖

)‖∇u‖.

Similarly,

‖∇u‖‖∇b‖ + ‖∇u‖‖∇w‖
≤ ‖∇u‖ + ‖∇b‖ + ‖∇w‖
≤ 


(‖∇h∇u‖ + ‖∇h∇b‖ + ‖∇h∇w‖

)
+C

(‖∇u‖ + ‖∂∇u‖
)‖∇u‖ +C

(‖∇b‖ + ‖∂∇b‖
)‖∇b‖

+C
(‖∇w‖ + ‖∂∇w‖

)‖∇w‖.

Substituting the above two estimates into (.), we have

d
dt

(∥∥∇u(t)
∥∥
 +

∥∥∇w(t)
∥∥
 +

∥∥∇b(t)
∥∥


)
+

(‖�u‖ + ‖�w‖ + ‖�b‖
)
+ ‖∇ divw‖ + χ‖∇w‖

≤ C
(
 + ‖∇u‖ + ‖∂∇u‖ + ‖∇w‖ + ‖∂∇w‖ + ‖∇b‖ + ‖∂∇b‖

)
× (‖∇u‖ + ‖∇w‖ + ‖∇b‖

)
.

By using Gronwall’s inequality, the energy inequality (.) and the estimate (.), we con-
clude that

(∥∥∇u(t)
∥∥
 +

∥∥∇w(t)
∥∥
 +

∥∥∇b(t)
∥∥


)
+

∫ t



(∥∥�u(τ )
∥∥
 +

∥∥�w(τ )
∥∥
 +

∥∥�b(τ )
∥∥
 +

∥∥∇ divw(τ )
∥∥
 + χ

∥∥∇w(τ )
∥∥


)
dτ

≤ (‖∇u‖ + ‖∇w‖ + ‖∇b‖
)

× eC
∫ t
(+‖∇u(τ )‖+‖∂∇u(τ )‖+‖∇w(τ )‖+‖∂∇w(τ )‖+‖∇b(τ )‖+‖∂∇b(τ )‖) dτ

≤ CG̃
(
M(t)

)
< ∞

for any t ≤ T , which implies that the desired estimates (.) hold and thus the solution
(u,w,b) can be extended beyond T . �

Now we turn our attention to proving Theorem .. We will first transform equations
(.) into a symmetric form.

http://www.boundaryvalueproblems.com/content/2012/1/139


Xiang and Yang Boundary Value Problems 2012, 2012:139 Page 11 of 14
http://www.boundaryvalueproblems.com/content/2012/1/139

Proof of Theorem . Following from Serrin type criteria (.) with p =  and q = ∞ on
the D magneto-micropolar fluid equations (.), it is sufficient to prove that

lim
t→T–

(∥∥u(t)∥∥ +
∥∥w(t)∥∥ +

∥∥b(t)∥∥

)
< ∞. (.)

To do this, we set

v+ = u + b, v– = u – b,

and then equations (.) are converted to the following symmetric form:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tv+ + v– · ∇v+ +∇(π + |b|) – χ∇ ×w = �v+, t ≥ ,x ∈R
,

∂tw + 
 (v

+ + v–) · ∇w –∇ divw + χw

– χ

 ∇ × (v+ + v–) = �w, t ≥ ,x ∈ R
,

∂tv– + v+ · ∇v– +∇(π + |b|) – χ∇ ×w = �v–, t ≥ ,x ∈R
,

div v+ = div v– = , t ≥ ,x ∈R
,

v+(x, ) = u(x) + b(x), w(x, ) = w(x),

v–(x, ) = u(x) – b(x), x ∈R
.

(.)

Firstly, taking the L(R) inner product of v+,w and v– with the above equations, respec-
tively, and integrating by parts, we can obtain the energy estimates similar to (.).
Next we take the L(R) inner product of |v+|v+, |w|w and |v–|v– with the first three

equations in (.), respectively, and then integrate by parts to obtain



d
dt

(∥∥v+(t)∥∥
 +

∥∥w(t)∥∥
 +

∥∥v–(t)∥∥


)
+


(∥∥∇∣∣v+∣∣∥∥

 +
∥∥∇|w|∥∥

 +
∥∥∇∣∣v–∣∣∥∥



)
+

(∥∥∣∣v+∣∣∇v+
∥∥
 +

∥∥|w|∇w
∥∥
 +

∥∥∣∣v–∣∣∇v–
∥∥


)
+ χ‖w‖ +

∥∥|w|divw∥∥


=
∫
R

(
π + |b|)(v+ · ∇∣∣v+∣∣ + v– · ∇∣∣v–∣∣)dx – ∫

R
(divw)

(
w · ∇|w|)dx

+ χ

∫
R

∣∣v+∣∣v+ · (∇ ×w) dx +
χ



∫
R

|w|w · (∇ × (
v+ + v–

))
dx

+ χ

∫
R

∣∣v–∣∣v– · (∇ ×w) dx

:= II + II + II + II + II.

We now bound the above terms one by one. For II, we have

|II| ≤
∥∥|w|∇w

∥∥


∥∥∇|w|∥∥ ≤ 

∥∥∇|w|∥∥

 +


∥∥|w|∇w

∥∥
.

It follows from the integration by parts, we see

|II| = χ

∣∣∣∣
∫
R

w · (∇ × ∣∣v+∣∣v+)dx∣∣∣∣ ≤ C‖w‖
∥∥∣∣v+∣∣∇v+

∥∥


∥∥v+∥∥

≤ 

∥∥∣∣v+∣∣∇v+

∥∥
 +C‖w‖ +C

∥∥v+∥∥
.
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Similarly, we have

|II| ≤ 

∥∥|w|∇w

∥∥
 +C‖w‖ +C

∥∥v+∥∥
 +C

∥∥v–∥∥


and

|II| ≤ 

∥∥∣∣v–∣∣∇v–

∥∥
 +C‖w‖ +C

∥∥v–∥∥
.

The process for estimating II is more subtle. It follows from Hölder’s inequality and
Lemma . that

|II| ≤ ∥∥(
π + |b|)∥∥

(∥∥v+∥∥

∥∥∇∣∣v+∣∣∥∥ +
∥∥v–∥∥

∥∥∇∣∣v–∣∣∥∥

)
≤ ∥∥∂

(
π + |b|)∥∥ 


p

∥∥∇(
π + |b|)∥∥ 


p

p–

(∥∥v+∥∥

∥∥∇∣∣v+∣∣∥∥ +
∥∥v–∥∥

∥∥∇∣∣v–∣∣∥∥

)
.

To estimate the term involving ∇(π + |b|), we take the divergence of the first equation of
(.) and find

π + |b| = (–�)–∇ · (v– · ∇v+
)

by div v+ = div(∇ × w) = . Then the Calderón-Zygmund inequality, Hölder’s inequality
and the interpolation inequality imply that

∥∥∇(
π + |b|)∥∥ p

p–
=

∥∥∇(–�)–∇ · (v– · ∇v+
)∥∥ p

p–

≤ ∥∥v– · ∇v+
∥∥ p

p–

≤ C
∥∥∇v+

∥∥


∥∥v–∥∥ p
p–

= C
∥∥∇v+

∥∥


∥∥∣∣v–∣∣∥∥ 

p

p–

≤ C
∥∥∇v+

∥∥


∥∥∣∣v–∣∣∥∥ p–
p


∥∥∇∣∣v–∣∣∥∥ –p

p
 .

Similarly, we have

∥∥∇(
π + |b|)∥∥ p

p–
≤ C

∥∥∇v–
∥∥


∥∥∣∣v+∣∣∥∥ p–
p


∥∥∇∣∣v+∣∣∥∥ –p

p
 .

If p > 
 , combining the above two estimates, we see

|II| ≤ C
∥∥∂

(
π + |b|)∥∥ 


p

∥∥∇v+
∥∥ 




∥∥v–∥∥ p–
p


∥∥∇∣∣v–∣∣∥∥ –p

p


∥∥v+∥∥

∥∥∇∣∣v+∣∣∥∥

+C
∥∥∂

(
π + |b|)∥∥ 


p

∥∥∇v–
∥∥ 




∥∥v+∥∥ p–
p


∥∥∇∣∣v+∣∣∥∥ –p

p


∥∥v–∥∥

∥∥∇∣∣v–∣∣∥∥

≤ 


∥∥∇∣∣v+∣∣∥∥
 +




∥∥∇∣∣v+∣∣∥∥


+C
∥∥∂

(
π + |b|)∥∥ p

(p–)
p

∥∥∇v+
∥∥ p

(p–)


∥∥v–∥∥ (p–)
(p–)


∥∥v+∥∥ p
p–


+C
∥∥∂

(
π + |b|)∥∥ p

(p–)
p

∥∥∇v–
∥∥ p

(p–)


∥∥v+∥∥ (p–)
(p–)


∥∥v–∥∥ p
p–
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≤ 


∥∥∇∣∣v+∣∣∥∥
 +




∥∥∇∣∣v+∣∣∥∥


+C
(∥∥∂

(
π + |b|)∥∥ p

p–
p +

∥∥∇v+
∥∥


)(∥∥v–∥∥ (p–)
(p–)
 +

∥∥v+∥∥


)
+C

(∥∥∂
(
π + |b|)∥∥ p

p–
p +

∥∥∇v–
∥∥


)(∥∥v+∥∥ (p–)
(p–)
 +

∥∥v–∥∥


)
≤ 


∥∥∇∣∣v+∣∣∥∥

 +



∥∥∇∣∣v+∣∣∥∥


+C
(∥∥∂

(
π + |b|)∥∥ p

p–
p +

∥∥∇v+
∥∥
 +

∥∥∇v–
∥∥


)(
 +

∥∥v–∥∥
 +

∥∥v+∥∥


)
.

The case p = 
 can be similarly dealt with.

Summarily, we conclude that



d
dt

(∥∥v+(t)∥∥
 +

∥∥w(t)∥∥
 +

∥∥v–(t)∥∥


)
≤ C

(
 +

∥∥∂
(
π + |b|)∥∥ p

p–
p +

∥∥∇v+
∥∥
 +

∥∥∇v–
∥∥


)(
 +

∥∥v–∥∥
 + ‖w‖ +

∥∥v+∥∥


)
.

Thus, Gronwall’s inequality together with the assumption (.) and the energy estimates
gives the desired L estimates (.) and thus the solution (u,w,b) can be extended be-
yond T . �
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