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Abstract

The unsteady flow of a generalized Burgers’ fluid, between two infinite coaxial
circular cylinders, is studied by means of the Laplace and finite Hankel transforms.
The motion of the fluid is produced by the inner cylinder that, after the initial
moment, applies a longitudinal time dependent shear to the fluid. The solutions that
have been obtained, presented in series form in terms of usual Bessel functions,
satisfy all imposed initial and boundary conditions. Moreover, the corresponding
solutions for Burgers’ fluids appear as special cases of present results. For large values
of t, these solutions are going to the steady solutions that are the same for both
kinds of fluids. Finally, the influence of the material parameters on the fluid motion,
as well as a comparison between models, is shown by graphical illustrations.
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1 Introduction
Recently, considerable attention has been focused to study the behavior of non-Newto-

nian fluids. Many substances of multi-phase nature and/or of high molecular weight

are frequently encountered in disciplinary fields such as chemical engineering, food

stuff, bio-medicine and so forth, and are also closely related to industrial processes.

Typical non-Newtonian characteristics include shear-thinning, shear-thickening, viscoe-

lasticity, viscoplasticity (i.e., the exhibition of an apparent yield stress) and so on. In

particular, polymer melts and solutions, liquid crystals or biological fluids exhibit such

properties which lead to non-linear viscoelastic behavior that cannot be simply

described by the classical Navier-Stokes theory. Non-Newtonian fluids form a broad

class of fluids in which the relation connecting the shear stress and shear rate is non-

linear and hence there is no universal constitutive model available which exhibits the

characteristics of all non-Newtonian fluids. Moreover, due to the flow behavior of

these fluids, the governing equations become more complex to handle as additional

non-linear terms appear in the equations of motion. Numerous models have been pro-

posed to describe the response corresponding to non-Newtonian fluids. They are

usually classified as fluids of differential, rate and integral type. Amongst the non-New-

tonian fluids, the rate type fluids are those which take into account the elastic and

memory effects. The simplest subclasses of rate type fluids are those of Maxwell and
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Oldroyd-B fluids. But these fluid models do not exhibit rheological properties of many

real fluids such as asphalt in geomechanics and cheese in food products.

Recently, a thermodynamic framework has been put into place to develop the 1D

rate type model known as Burgers’ model [1] to the frame-indifferent 3D form by

Krishnan and Rajagopal [2]. This model has been successfully used to describe the

motion of the earth’s mantle. The Burgers’ model is the preferred model to describe

the response of asphalt and asphalt concrete [3]. This model is mostly used to model

other geological structures, such as Olivine rocks [4] and the propagation of seismic

waves in the interior of the earth [5]. In the literature, the vast majority of the flows of

the rate type models has been discussed using Maxwell and Oldroyd-B models. How-

ever, the Burgers’ model has not received much attention in spite of its diverse applica-

tions. We here mention some of the studies [6-12] made by using Burgers’ model. The

most of the above mentioned studies dealt with problems in which the velocity is

given on the boundary. The motion of a fluid due to translating or rotating cylinder is

of great interest to both theoretical and practical domains. The first exact solutions for

motions of non-Newtonian fluids due to a circular cylinder that applies a longitudinal

or rotational shear stress to the fluid are those of Bandelli and Rajagopal [13, Sects. 4

and 5]. These solutions, for rotational shear stresses, have been recently extended to

generalized Burgers fluids [11,12].

The aim of this note is to extend the results of Bandelli and Rajagopal [13, Sect. 4] to

Burgers and generalized Burgers fluids. More exactly, we study the motion of a gener-

alized Burgers’ fluid between two infinite coaxial circular cylinders. The motion of the

fluid is induced by the inner cylinder that applies a longitudinal time dependent shear

to the fluid. The solutions that have been obtained satisfy both the governing equations

and all imposed initial and boundary conditions. They can immediately be reduced to

the similar solutions for Burgers’ fluids. As a check of the results, the equivalence of

general solutions (for small values of the material parameters l2 and l4) with the

known solutions for Oldroyd-B fluids is shown by graphical illustrations. Furthermore,

in order to reveal some relevant physical aspects of these results, the diagrams of the

velocity and shear stress are depicted against r for different values of pertinent

parameters.

2 Basic governing equations
The equations governing the flow of an incompressible fluid include the continuity

equation and the momentum equation. In the absence of body forces, they are

∇ · V = 0,
∂V
∂t

+ (V · ∇)V =
1
ρ
(∇ · T), (1)

where r and V are, respectively, the fluid density and velocity vector and ∇ repre-

sents the gradient operator.

The Cauchy stress tensor T for an incompressible generalized Burgers’ fluid is char-

acterized by the following constitutive equations [10-12]

T = −pI + S,S + λ1
δS
δt

+ λ2
δ2S
δt2

= μ

[
A + λ3

δA
δt

+ λ4
δ2A
δt2

]
, (2)

Jamil and Fetecau Boundary Value Problems 2012, 2012:14
http://www.boundaryvalueproblems.com/content/2012/1/14

Page 2 of 15



where -pI denotes the indeterminate spherical stress, S is the extra-stress tensor, A =

L + LT is the first Rivlin-Ericksen tensor (L being the velocity gradient), μ is the

dynamic viscosity, l1 and l3(< l1) are relaxation and retardation times, l2 and l4 are

new material parameters of the generalized Burgers’ fluid (having the dimension of t2),

and δ/δt denotes the upper convected derivative defined by [10]

δS
δt

=
dS
dt

− LS − SLT ,
δ2S
δt2

=
δ

δt

(
δS
δt

)
.

Into above relation, d/dt is the usual material time derivative.

This model includes as special cases the Burgers’ model (for l4 = 0), Oldroyd-B

model (for l2 = l4 = 0), Maxwell model (for l2 = l3 = l4 = 0) and the linearly viscous

fluid model when l1 = l2 = l3 = l4 = 0. In some special flows, like that to be here

considered, the governing equations corresponding to generalized Burgers’ fluids also

resemble those for second grade fluids. However, closed form expressions for the simi-

lar solutions corresponding to Oldroyd-B, Maxwell, second grade and Newtonian fluids

cannot be obtained as limiting cases of general solutions.

For the problem under consideration we assume a velocity field V and an extra-

stress tensor S of the form

V = V(r, t) = v(r, t)ez, S = S(r, t), (3)

where ez is the unit vector in the z-direction of a cylindrical coordinate system r, θ, z.

For these flows the constraint of incompressibility is automatically satisfied.

Substituting Eq. (3) into Eq. (2), and assuming that the fluid is at rest up to the

moment t = 0, i.e.:

V(r, 0) =
∂V(r, 0)

∂t
=

∂2V(r, 0)
∂t2

= 0, S(r, 0) =
∂S(r, 0)

∂t
= 0, (4)

it results that Srr = Srθ = Sθθ = Sθz = 0 for all time and [10](
1 + λ1

∂

∂t
+ λ2

∂2

∂t2

)
τ (r, t) = μ

(
1 + λ3

∂

∂t
+ λ4

∂2

∂t2

)
∂v(r, t)

∂r
, (5)

where τ(r, t) = Srz(r, t) is the non-trivial tangential stress. The equations of motion, in

the absence of body forces, reduce to [14]

∂p

∂r
=

∂p

∂θ
= 0 and − ∂p

∂z
+

∂τ (r, t)
∂r

+
τ (r, t)

r
= ρ

∂v(r, t)
∂t

. (6)

Assuming that there is no applied pressure gradient along the axial direction, Eqs. (5)

and (6) lead to the following governing equation for velocity(
1 + λ1

∂

∂t
+ λ2

∂2

∂t2

)
∂v(r, t)

∂t
= ν

(
1 + λ3

∂

∂t
+ λ4

∂2

∂t2

)(
∂2

∂r2
+
1
r

∂

∂r

)
v(r, t), (7)

where ν = μ/r is the kinematic viscosity of the fluid and r is its constant density.

3 Starting flow due to a time dependent shear stress
Let us consider an incompressible generalized Burgers’ fluid at rest in an annular pipe

between two coaxial circular cylinders of radii R1 and R2(>R1). At time t = 0+, a time

dependent longitudinal shear stress
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τ (R1, t) = f
[
1 − p2ep1t − p1ep2t

p2 − p1

]
, p1, p2 =

−λ1 ±
√

λ2
1 − 4λ2

2λ2
, (8)

and f is a constant, is applied to the inner cylinder. Due to the shear, the fluid is gra-

dually moved. Its velocity is of the form (3) while the governing equations are given by

Eqs. (5) and (7). The appropriate initial and boundary conditions are

v(r, 0) =
∂v(r, 0)

∂t
=

∂2v(r, 0)
∂t2

= 0; τ (r, 0) =
∂τ (r, 0)

∂t
= 0; r ∈ (R1,R2], (9)

(
1 + λ1

∂

∂t
+ λ2

∂2

∂t2

)
τ (r, t)

∣∣∣∣
r=R1

= μ

(
1 + λ3

∂

∂t
+ λ4

∂2

∂t2

)
∂v(r, t)

∂r

∣∣∣∣
r=R1

= f ; t > 0, (10a)

and

v(R2, t) = 0; t > 0. (10b)

It is easy to see that τ(R1,t) given by Eq. (8) is just the solution of Eq. (10a)1. Further-

more, making l1, l2 and l4 ® 0, Eq. (10a) reduces to the boundary condition (4.3)

used by Bandelli and Rajagopal [13]. It corresponds to a problem with a constant shear

stress on a part of the boundary, namely

τ (R1, t) = μ

(
1 + λ3

∂

∂t

)
∂v(r, t)

∂r

∣∣∣∣
r=R1

= f , v(R2, t) = 0; t > 0. (11)

In order to solve the partial differential equations (7) and (5), with the initial and

boundary conditions (9) and (10), we shall use the Laplace and finite Hankel

transforms.

3.1 Calculation of the velocity field

Applying the Laplace transform to Eq. (7) and having in mind the initial and boundary

conditions (9) and (10), we find that

(q + λ1q
2 + λ2q

3)v̄(r, q) = ν(1 + λ3q + λ4q
2)

(
∂2

∂r2
+
1
r

∂

∂r

)
v̄(r, q); r ∈ (R1,R2), (12)

where the image function v̄(r, q) = L{v(r, t)} has to satisfy the conditions

∂ v̄(R1, q)
∂r

=
f
μ

1
q(1 + λ3q + λ4q2)

, v̄(R2, q) = 0. (13)

In the following, we denote by [15,16]

v̄H(rn, q) =
∫ R2

R1

rv̄(r, q)B(r, rn)dr; n = 1, 2, 3, . . . (14)

the Hankel transform of v̄(r, q), where

B(r, rn) = J0(rrn)Y1(R1rn) − J1(R1rn)Y0(rrn), (15)

rn are the positive roots of the transcendental equation B(R2,r) = 0 and Jp(•) and Yp

(•) are Bessel functions of the first and second kind of order p. Multiplying both sides

of Eq. (12) by rB(r, rn), integrating with respect to r from R1 to R2 and taking into
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account the conditions (13) and the identity [17, Eq. (19)]∫ R2

R1

r
[

∂2v̄(r, q)
∂r2

+
1
r

∂ v̄(r, q)
∂r

]
B(r, rn)dr =

2
πrn

∂ v̄(R1, q)
∂r

− r2n v̄H(rn, q), (16)

we find that

v̄H(rn, q) =
2f

ρπrn

1
q[λ2q3 + (λ1 + λ4νr2n)q2 + (1 + λ3νr2n)q + νr2n ]

. (17)

For a suitable presentation of the final results, we rewrite Eq. (17) in the following

equivalent form

v̄H(rn, q) =
2f

πμr3n

1
q

− 2f
πμr3n

λ2q2 + (λ1 + λ4νr2n)q + 1 + λ3νr2n
λ2q3 + (λ1 + λ4νr2n)q2 + (1 + λ3νr2n)q + νr2n

, (18)

and use the known results (see for instance [15-17])

v̄(r, q) =
π2

2

∞∑
n=1

r2n J
2
0(R2rn)B(r, rn)

J21(R1rn) − J20(R2rn)
v̄H(rn, q),

∫ R2

R1

r ln
(

r
R2

)
B(r, rn)dr =

2
πR1r3n

, (19)

In order to obtain the velocity field v(r, t) = L−1{v̄(r, q)}, we apply the inverse

Laplace transform to Eq. (18) and use the identities (19) and Eq. (A1) from the Appen-

dix. As a result, we find for the velocity field, the simple expression

v(r, t) =
f
μ
R1 ln

(
r
R2

)
+

π f
ρλ2

∞∑
n=1

rnJ20(R2rn)B(r, rn)

J21(R1rn) − J20(R2rn)

×
[

eq1nt

q1n(q1n − q2n)(q1n − q3n)
+

eq2nt

q2n(q2n − q1n)(q2n − q3n)
+

eq3nt

q3n(q3n − q1n)(q3n − q2n)

]
,

(20)

where

qin = sin − λ1 + λ4νr2n
3λ2

, i = 1, 2, 3.

In above relations (see the Cardano’s formulae [18])

s1n =
3

√√√√−β1n

2
+

√
β2
1n

4
+

α3
1n

27
+

3

√√√√−β1n

2
−

√
β2
1n

4
+

α3
1n

27
,

s2n = ω
3

√√√√−β1n

2
+

√
β2
1n

4
+

α3
1n

27
+ ω2 3

√√√√−β1n

2
−

√
β2
1n

4
+

α3
1n

27
,

s3n = ω2 3

√√√√−β1n

2
+

√
β2
1n

4
+

α3
1n

27
+ ω

3

√√√√−β1n

2
−

√
β2
1n

4
+

α3
1n

27
,

are the roots of the algebraic equations X3 + a1nX + b1n = 0, where

α1n = −(λ1 + λ4νr2n)
2

3λ2
2

+
1 + λ3νr2n

λ2
,

β1n =
νr2n
λ2

+
2(λ1 + λ4νr2n)

3

27λ3
2

− (λ1 + λ4νr2n)(1 + λ3νr2n)

3λ2
2

,
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and

ω =
−1 + i

√
3

2
.

From the Routh-Hurwitz’s principle [19], we get Re(qin) < 0, if

λ1λ3 − λ2 + λ4 > −2
√

λ1λ3λ4, provided l1, l2, l3, l4 > 0.

3.2 Calculation of the shear stress

Applying the Laplace transform to Eq. (5), we find that

τ̄ (r, q) = μ
1 + λ3q + λ4q2

1 + λ1q + λ2q2
∂ v̄(r, q)

∂r
, (21)

where

∂ v̄(r, q)
∂r

=
R1f
μr

1
q(1 + λ3q + λ4q2)

+
π f
μ

∞∑
n=1

J20(R2rn)̃B(r, rn)

[J21(R1rn) − J20(R2rn)]

× 1 + λ1q + λ2q2

(1 + λ3q + λ4q2){λ2q3 + (λ1 + λ4νr2n)q2 + (1 + λ3νr2n)q + νr2n}
,

(22)

has been obtained from Eq. (18) applying the inverse Hankel transform and using

Eqs. (19)2 and (A2). Into above relation

B̃(r, rn) = J1(rrn)Y1(R1rn) − J1(R1rn)Y1(rrn). (23)

Finally, following the same way as in [11,12], we find that

τ (r, t) = f
(
R1

r

)[
1 − p2ep1t − p1ep2t

p2 − p1

]
+

π f
λ2

∞∑
n=1

J20(R2rn)̃B(r, rn)

J21(R1rn) − J20(R2rn)

×
[

eq1nt

(q1n − q2n)(q1n − q3n)
+

eq2nt

(q2n − q1n)(q2n − q3n)
+

eq3nt

(q3n − q1n)(q3n − q2n)

]
.

(24)

By making l4 ® 0 into Eqs. (20) and (24) the similar solutions for a Burgers’ fluid

performing the same motion are obtained. As a check of our results, let us remember

the solutions [20, Eqs. (15) and (18)]

vOB(r, t) =
f
μ
R1 ln

(
r
R2

)
− π f

μ

∞∑
n=1

J20(R2rn)B(r, rn)

rn[J21(R1rn) − J20(R2rn)]

q5neq4nt − q4neq5nt

q5n − q4n
, (25)

and the shear stress

τOB(r, t) = f
(
R1

r

)
[1 − e−t/λ1 ] +

π f
λ1

∞∑
n=1

J20(R2rn)̃B(r, rn)

J21(R1rn) − J20(R2rn)

eq5nt − eq4nt

q5n − q4n
, (26)

corresponding to an Oldroyd-B fluid performing the same motion. These solutions

correspond to the boundary condition

τ (R1, t) = f (1 − e
−

t
λ1 ),

(27)
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obtained form Eq. (8) for l2 ® 0, and

q4n, q5n =
−(1 + λ3νr2n) ±

√
(1 + λ3νr2n)

2 − 4νλ1r2n
2λ1

By now letting l1 and l3 ® 0 into Eqs. (25) and (26), the similar solutions (see [13,

Eq. (4.35)]) with a = 0 for velocity only)

vN(r, t) =
f
μ
R1 ln

(
r
R2

)
− π f

μ

∞∑
n=1

J20(R2rn)B(r, rn)

rn[J21(R1rn) − J20(R2rn)]
e−νr2n t, (28)

τN(r, t) = f
(
R1

r

)
+ π f

∞∑
n=1

J20(R2rn)̃B(r, rn)

J21(R1rn) − J20(R2rn)
e−νr2n t, (29)

corresponding to Newtonian fluids are recovered. They correspond to a constant

shear stress τ(R1,t) = f on the inner cylinder.

Figures 1 and 2 clearly show that the diagram of v(r, t) and τ(r, t) given by Eqs. (20)

and (24), as it was to be expected, are almost identical to those corresponding to Old-

royd-B and Newtonian fluids for small values of l2 and l4, respectively l1, l2, l3, and
l4. This is a veritable check on the corrections of general solutions presented in the

simple forms (20) and (24).

4 Steady and transient solutions
The solutions (28) and (29), as well as those for second grade fluids resulting from Eqs.

(25) and (26) for l1 ® 0, correspond to a constant shear stress on the boundary. For

large values of time t these solutions tend to the steady solutions

vS(r) =
f
μ
R1 ln

(
r
R2

)
, τS(r) = f

(
R1

r

)
, (30)

which are the same for all types of fluids. Indeed, making t ® ∞ into Eqs. (20), (24),

(25), and (26) we attain to Eqs. (30). This is not a surprise, because for large values of

t the boundary condition (8) is identical to that corresponding to second grade and

Figure 1 Profiles of the velocity v(r,t) and the shear stress τ(r,t) for generalized Burgers and
Oldroyd-B fluids, for R1 = 0.3, R2 = 0.6, f = -2, ν = 0.005, μ = 5, l1 = 8, l2 = 0.00001, l3 = 4, l4 =
0.00001 and different values of t.
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Newtonian fluids. In conclusion, after some time, the behavior of a non-Newtonian

fluid can be well enough described by that of a Newtonian fluid. This time, depending

of the material parameters and the constant f, can easily be determined by graphical

illustrations. In order to show this, the decay of the transient solutions

vT(r, t) =
π f
ρλ2

∞∑
n=1

rnJ20(R2rn)Bv(r, rn)

J21(R1rn) − J20(R2rn)

×
[

eq1nt

q1n(q1n − q2n)(q1n − q3n)
+

eq2nt

q2n(q2n − q1n)(q2n − q3n)
+

eq3nt

q3n(q3n − q1n)(q3n − q2n)

]
,

(31)

τT(r, t) = f
(
R1

r

)[
p1ep2t − p2ep1t

p2 − p1

]
+

π f
λ2

∞∑
n=1

J20(R2rn)̃Bv(r, rn)

J21(R1rn) − J20(R2rn)

×
[

eq1nt

(q1n − q2n)(q1n − q3n)
+

eq2nt

(q2n − q1n)(q2n − q3n)
+

eq3nt

(q3n − q1n)(q3n − q2n)

]
,

(32)

in time, is depicted in Figures 3, 4, and 5 for different values of l1, l3 and ν. These

figures clearly show that the required time to reach the steady state is an increasing

Figure 2 Profiles of the velocity v(r,t) and the shear stress τ(r,t) for generalized Burgers and
Newtonian fluids, for R1 = 0.3, R2 = 0.6, f = -2, ν = 0.005, μ = 5, l1 = 0.00001, l2 = 0.00001, l3 =
0.00001, l4 = 0.00001 and different values of t.

Figure 3 Decay of the transient components for the velocity v(r,t) and the shear stress τ(r,t) of
generalized Burgers’ fluid given by Eqs. (31) and (32), for R1 = 0.3, R2 = 0.6, r = 0.5 f = -2, ν =
0.005, μ = 5, l2 = 3, l3 = 5, l4 = 2, and different values of l1.
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function with respect to l1 and a decreasing one with regard to l3 and ν. A simple

analysis shows that the required time to reach the steady state for Maxwell fluids, for

instance, is higher in comparison with Newtonian fluids. According to Figure 4, it also

results that the required time to reach the steady state is lower for second grade fluids

in comparison with Newtonian fluids.

5 Numerical results and discussion
In the previous sections, we have presented exact analytical solutions for a flow pro-

blem of a generalized Burgers’ fluid. In order to verify and capture relevant physical

effects of the obtained results, several graphs are depicted in this section. The numeri-

cal results illustrate the velocity as well as shear stress profiles for the axial flow

induced by the inner cylinder. We interpret these results with respect to the variations

of emerging parameters of interest.

For large values of t, all solutions tend to the steady solutions vS(r,t) and τS(r,t) which

are the same for all kinds of fluids although the motion of rate type fluids (generalized

Burgers, Burgers, Oldroyd-B, and Maxwell) is due to a time dependent shear stress on

Figure 4 Decay of the transient components for the velocity v(r,t) and the shear stress τ(r,t) of
generalized Burgers’ fluid given by Eqs. (31) and (32), for R1 = 0.3, R2 = 0.6, r = 0.5 f = -2, ν =
0.005, μ = 5, l1 = 15, l2 = 5, l4 = 2, and different values of l3.

Figure 5 Decay of the transient components for the velocity v(r,t) and the shear stress τ(r,t) of
generalized Burgers’ fluid given by Eqs. (31) and (32), for R1 = 0.3, R2 = 0.6, r = 0.5 f = -2, r =
1000, l1 = 5, l2 = 3, l3 = 5, l4 = 2 and different values of ν.

Jamil and Fetecau Boundary Value Problems 2012, 2012:14
http://www.boundaryvalueproblems.com/content/2012/1/14

Page 9 of 15



the boundary. However, this is not a surprise because, for large times, the boundary

shear stress corresponding to rate type fluids, as it results from Eqs. (8) and (29), tends

to the same constant f corresponding to Newtonian and second grade fluids.

From Figures 1 and 2 it also results that both the velocity and the shear stress (in

absolute value) are increasing functions with respect to t. Moreover, they are decreas-

ing functions with respect to r. Figures 6 and 7 are prepared to show the influence of

the relaxation time l1 and the rheological parameter, l2 on the fluid motion. The two

parameters, as expected, have opposite effects on the fluid motion. Both the velocity

field and the shear stress (in absolute value) are decreasing functions with respect to

relaxation time l1 and increasing ones with respect to l2 on the whole flow domain.

Figures 8 and 9 are depicted to show the effects of retardation time l3 and rheological

parameter l4 on the fluid motion. It is observed that greater the retardation time l3,
the more rapidly decay the velocity, however the shear stress is grown up faster. The

influence of the rheological parameter l4 on the fluid motion is shown by Figure 9. Its

effect is opposite to that of l3. The influence of the kinematic viscosity ν on the fluid

motion is shown in Figure 10. From these figures, we can see that the velocity

decreases and the shear stress increases by increasing ν.

Finally, for comparison, the profiles of velocity and shear stress corresponding to the

motion of the three types of fluids (Newtonian, Oldroyd-B and generalized Burgers)

are together depicted in Figure 11 for different values of t and of common material

parameters. The Newtonian fluid, as it results from Figure 11a1, is the swiftest and the

generalized Burgers’ fluid is the slowest on the whole flow domain. The shear stress

corresponding to the Newtonian fluid in absolute value is also higher on the whole

flow domain. Moreover, Figure 11-a2,b2,a3,b3 show that for large values of t, the velo-

city as well as the shear stress corresponding to generalized Burgers and Oldryd-B

fluids, as it was to be expected, are going to those belonging to a Newtonian fluid.

Consequently, the non-Newtonian effects disappear in time. The units of the material

constants are SI units in all figures and the roots rn have been approximated by (2n -

1)π/[2(R2 - R1)].

Figure 6 Profiles of the velocity v(r,t) and the shear stress τ(r,t) given by Eqs. (20) and (24), for R1 =
0.3, R2 = 0.6, f = -2, ν = 0.005, μ = 5, l2 = 3, l3 = 5, l4 = 2, t = 20s and different values of l1.
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Figure 7 Profiles of the velocity v(r,t) and the shear stress τ(r,t) given by Eqs. (20) and (24), for R1 =
0.3, R2 = 0.6, f = -2, ν = 0.005, μ = 5, l1 = 3, l3 = 2, l4 = 12, t = 20s and different values of l2.

Figure 8 Profiles of the velocity v(r,t) and the shear stress τ(r,t) given by Eqs. (20) and (24), for R1 =
0.3, R2 = 0.6, f = -2, ν = 0.005, μ = 5, l1 = 9, l2 = 3, l4 = 2, t = 20s and different values of l3.

Figure 9 Profiles of the velocity v(r,t) and the shear stress τ(r, t) given by Eqs. (20) and (24), for R1
= 0.3, R2 = 0.6, f = -2, ν = 0.005, μ = 5, l1 = 3, l2 = 3, l3 = 2, t = 20s and different values of l4.
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Figure 10 Profiles of the velocity v(r,t) and the shear stress τ(r,t) given by Eqs. (20) and (24), for R1
= 0.3, R2 = 0.6, f = -2, r = 1000, l1 = 4, l2 = 3, l3 = 3, l4 = 2, t = 20s and different values of ν.

Figure 11 Profiles of the velocity v(r,t) and the shear stress τ(r,t) for generalized Burgers’, Oldroyd-
B and Newtonian fluids, for R1 = 0.3, R2 = 0.6, f = -2, ν = 0.005, μ = 5, l1 = 5, l2 = 12, l3 = 2, l4 =
2 and different values of t.
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6 Concluding remarks
In this article, the velocity v(r,t) and the shear stress τ(r,t) corresponding to the

flow of an incompressible generalized Burgers’ fluid, between two infinite coaxial

circular cylinders, have been determined by means of Laplace and finite Hankel

transforms. The motion of the fluid is produced by the inner cylinder that, after

the initial moment, applies a time dependent longitudinal shear to the fluid. The

solutions that have been obtained, written in series form in terms of Bessel func-

tions J0(•), J1(•), Y0(•), and Y1(•), satisfy all imposed initial and boundary conditions.

They can easily be reduced to the similar solutions for Burgers fluids. For large

values of t, all solutions are going to the steady solutions vS(r) and τS(r), which are

the same for all kinds of fluids. The following conclusions may be extracted from

graphical results.

• The required time to reach the steady-state increases with respect to l1 and

decreases with regard to l3 and ν. Consequently, the required time to reach the steady

state for Newtonian fluids is lower/higher in comparison with Maxwell, respectively,

second grade fluids.

• For small values of l3 and l4 or l1, l2, l3, and l4 the general solutions (20) and

(24), as expected, are equivalent to those corresponding to Oldroyd-B, respectively,

Newtonian fluids.

• The relaxation parameters l1 and l2, as well as the retardation parameters l3 and

l4, have opposite effects on the fluid motion. More exactly, the velocity v(r,t) and the

shear stress τ(r,t) in absolute value are decreasing functions with respect to l1 and l3
and increasing ones with regard to l2 and l4.
• It is observed that the increase of the kinematic viscosity ν leads to a decay of velo-

city and grown up the shear stress.

• The Newtonian fluid is the swiftest and the generalized Burgers’ fluid is the

slowest.

• The non-Newtonian effects disappear in time.

Appendix

L−1
{

λ2q2 + (λ1 + λ4νr2n)q + 1 + λ3νr2n
λ2q3 + (λ1 + λ4νr2n)q2 + (1 + λ3νr2n)q + νr2n

}
=

1
λ2

L−1
{

λ2q2 + (λ1 + λ4νr2n)q + 1 + λ3νr2n
(q − q1n)(q − q2n)(q − q3n)

}
=

1
λ2

L−1
{

λ2q21n + (λ1 + λ4νr2n)q1n + 1 + λ3νr2n
(q1n − q2n)(q1n − q3n)(q − q1n)

+
λ2q22n + (λ1 + λ4νr2n)q2n + 1 + λ3νr2n
(q2n − q1n)(q2n − q3n)(q − q2n)

+
λ2q23n + (λ1 + λ4νr2n)q3n + 1 + λ3νr2n
(q3n − q1n)(q3n − q2n)(q − q3n)

}
=

−νr2n
λ2

[
eq1nt

q1n(q1n − q2n)(q1n − q3n)
+

eq2nt

q2n(q2n − q1n)(q2n − q3n)

+
eq3nt

q3n(q3n − q1n)(q3n − q2n)

]
,

(A1)

d
dr

B(r, rn) = −rnB̃(r, rn), (A2)
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L−1
{

1
q(λ2q2 + λ1q + 1)

}
=

1
λ2

L−1
{

1
q(q − p1)(q − p2)

}
=

1
λ2

L−1
{

1
p1p2q

+
1

p1(p1 − p2)(q − p1)
+

1
p2(p2 − p1)(q − p2)

}
= 1 − p2ep1t − p1ep2t

p2 − p1
,

(A3)

L−1
{

1
λ2q3 + (λ1 + λ4νr2n)q2 + (1 + λ3νr2n)q + νr2n

}
=

1
λ2

L−1
{

1
(q − q1n)(q − q2n)(q − q3n)

}
=

1
λ2

L−1
{

1
(q1n − q2n)(q1n − q3n)(q − q1n)

+
1

(q2n − q1n)(q2n − q3n)(q − q2n)

+
1

(q3n − q1n)(q3n − q2n)(q − q3n)

}
=

1
λ2

{
eq1nt

(q1n − q2n)(q1n − q3n)
+

eq2nt

(q2n − q1n)(q2n − q3n)

+
eq3nt

(q3n − q1n)(q3n − q2n)

}
,

(A4)

L−1
{

λ1q + 1 + λ3νr2n
λ1q2 + (1 + λ3νr2n)q + νr2n

}
=

1
λ1

L−1
{

λ1q + 1 + λ3νr2n
(q − q7)(q − q8)

}
=

1
λ1

L−1
{

λ1q1n + 1 + λ3νr2n
(q7n − q8n)(q − q7n)

+
λ1q2 + 1 + λ3νr2n

(q8n − q7n)(q − q8n)

}
=
q8neq7nt − q7neq8nt

q8n − q7n
,

(A5)

L−1
{

1
q(1 + λ1q)

}
= L−1

{
1
q

− λ1

1 + λ1q

}
= 1 − e

−
t

λ1 , (A6)

L−1
{

1
λ1q2 + (1 + λ3νr2n)q + νr2n

}
=

1
λ1

L−1
{

1
(q − q7n)(q − q8n)

}
=

1
λ1

L−1
{ −1
(q8n − q7n)(q − q7n)

+
1

(q8n − q7n)(q − q8n)

}
=

1
λ1

eq8nt − eq7nt

q8n − q7n
.

(A7)
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