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Abstract
In this paper, the existence results of positive ω-periodic solutions are obtained for
the second-order functional differential equation

ü(t) = f (t,u(t), u̇(t – τ1(t)), . . . , u̇(t – τn(t))),

where f :R× [0,∞)×R
n →R is a continuous function which is ω-periodic in t,

τi ∈ C(R, [0,∞)) is a ω-periodic function, i = 1, 2, . . . ,n. Our discussion is based on the
fixed point index theory in cones.
MSC: 34C25; 47H10

Keywords: functional differential equation; positive periodic solution; cone; fixed
point index

1 Introduction
In this paper, we discuss the existence of positiveω-periodic solutions of the second-order
functional differential equation with the delay terms of first-order derivative in nonlinear-
ity,

ü(t) = f
(
t,u(t), u̇

(
t – τ(t)

)
, . . . , u̇

(
t – τn(t)

))
, t ∈R, ()

where f : R × [,∞) × R
n → R is a continuous function which is ω-periodic in t and

τi ∈ C(R, [,∞)) is a ω-periodic delay function, i = , , . . . ,n.
For the second-order differential equation without delay and the first-order derivative

term in nonlinearity,

ü(t) = f
(
t,u(t)

)
, t ∈R, ()

the existence problems of periodic solutions have attracted many authors’ attention and
concern. Many theorems and methods of nonlinear functional analysis have been applied
to research the periodic problems of Equation (), such as the upper and lower solutions
method and monotone iterative technique [–], the continuation method of topological
degree [–], variational method and critical point theory [–], the theory of the fixed
point index in cones [–], etc.
In recent years, the existence of periodic solutions for the second-order delayed differen-

tial equations have also been researched by many authors; see [–] and the references
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therein. In some practice models, only positive periodic solutions are significant. In [,
, ], the authors obtained the existence of positive periodic solutions for some delayed
second-order differential equations as a special form of the following equation:

ü(t) + b(t)u̇(t) + a(t)u(t) = f
(
t,u

(
t – τ(t)

)
, . . . ,u

(
t – τn(t)

))
, t ∈ R, ()

by using Krasnoselskii’s fixed point theorem of cone mapping or the theory of the fixed
point index in cones. In these works, the positivity of Green’s function of the correspond-
ing linear second-order periodic problems plays an important role. The positivity guaran-
tees that the integral operators of the second-order periodic problems are cone-preserving
in the cone

P =
{
u ∈ C[,ω] | u(t)≥ σ‖u‖, t ∈ [,ω]

}
()

in the Banach space C[,ω], where σ >  is a constant. Hence, the fixed point theorems of
cone mapping can be applied to periodic problems of the second-order delay equation ()
as well as Equation () (for Equation (), see [–]). However, few people consider the
existence of positive periodic solutions of Equation (). Since the nonlinearity of Equation
() explicitly contains the delayed first-order derivative term, the corresponding integral
operator has no definition on the cone P. Thus, the argument methods used in [, , ]
are not applicable to Equation ().
The purpose of this paper is to discuss the existence of positive periodic solutions of

Equation (). We will use a different method to treat Equation (). Our main results will be
given in Section . Some preliminaries to discuss Equation () are presented in Section .

2 Preliminaries
Let Cω(R) denote the Banach space of all continuous ω-periodic function u(t) with the
norm ‖u‖C = max≤t≤ω |u(t)|. Let C

ω(R) be the Banach space of all continuous differen-
tiable ω-periodic function u(t) with the norm

‖u‖C = ‖u‖C + ‖u̇‖C .

Generally, Cn
ω(R) denotes the nth-order continuous differentiable ω-periodic function

space for n ∈N. Let C+
ω(R) be the cone of all nonnegative functions in Cω(R).

Let M ∈ (, π

ω ) be a constant. For h ∈ Cω(R), we consider the linear second-order dif-
ferential equation

ü(t) +Mu(t) = h(t), t ∈R. ()

The ω-periodic solutions of Equation () are closely related to the linear second-order
boundary value problem

⎧⎨
⎩
ü(t) +Mu(t) = ,  ≤ t ≤ ω,

u() – u(ω) = , u̇() – u̇(ω) = ,
()
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see []. It is easy to see that problem () has a unique solution which is explicitly given by

U(t) =
cosβ(t – ω

 )
β sin βω



, ≤ t ≤ ω, ()

where β =
√
M. By [, Lemma ], we have

Lemma. LetM ∈ (, π

ω ).Then, for every h ∈ Cω(R), the linear equation () has a unique
ω-periodic solution u(t) which is given by

u(t) =
∫ t

t–ω

U(t – s)h(s)ds := Sh(t), t ∈R. ()

Moreover, S : Cω(R)→ C
ω(R) is a completely continuous linear operator.

Since U(t) > , for every t ∈ [,ω], by (), if h ∈ C+
ω(R) and h(t) 	≡ , then the ω-periodic

solution of Equation () u(t) >  for every t ∈ R, and we term it the positive ω-periodic
solution. Let

U = max
≤t≤ω

U(t) =


β sin βω



, U = min
≤t≤ω

U(t) =
cos βω



β sin βω



,

U = max
≤t≤ω

∣∣U̇(t)∣∣ = max
≤t≤ω

| sinβ(t – ω
 )|

 sin βω



=


,

σ =
U
U

= cos
βω


, C =

U

U
= β tan

βω


.

()

Define a set K in C
ω(R) by

K =
{
u ∈ C

ω(R) | u(t) ≥ σ‖u‖C ,
∣∣u̇(τ )∣∣ ≤ Cu(t), τ , t ∈R

}
. ()

It is easy to verify that K is a closed convex cone in C
ω(R).

Lemma . Let M ∈ (, π

ω ). Then, for every h ∈ C+
ω(R), the positive ω-periodic solution of

Equation () u = Sh ∈ K . Namely, S(C+
ω(R))⊂ K .

Proof Let h ∈ C+
ω(R), u = Sh. For every t ∈R, from () it follows that

u(t) =
∫ t

t–ω

U(t – s)h(s)ds≤U
∫ t

t–ω

h(s)ds = U
∫ ω


h(s)ds,

and therefore,

‖u‖C ≤ U
∫ ω


h(s)ds.

Using (), we obtain that

u(t) =
∫ t

t–ω

U(t – s)h(s)ds≥ U
∫ t

t–ω

h(s)ds = U
∫ ω


h(s)ds≥ σ‖u‖C .
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For every τ ∈R, since

u̇(τ ) =
∫ τ

τ–ω

U̇(τ – s)h(s)ds,

we have

∣∣u̇(τ )∣∣ ≤
∫ τ

τ–ω

∣∣U̇(τ – s)
∣∣h(s)ds≤ U

∫ τ

τ–ω

h(s)ds

= U

∫ ω


h(s)ds = CU

∫ ω


h(s)ds≤ Cu(t).

Hence, u ∈ K . �

Now we consider the nonlinear delay equation (). Hereafter, we assume that the non-
linearity f satisfies the condition
(F) There existsM ∈ (, π

ω ) such that

f (t,x, y, . . . , yn) +Mx≥ , x≥ , t ∈R, (y, . . . , yn) ∈R
n.

Let f(t,x, y, . . . , yn) = f (t,x, y, . . . , yn) + Mx, then f(t,x, y, . . . , yn) ≥  for x ≥ , t ∈ R,
(y, . . . , yn) ∈R

n, and Equation () is rewritten to

ü(t) +Mu(t) = f
(
t,u(t), u̇

(
t – τ(t)

)
, . . . , u̇

(
t – τn(t)

))
, t ∈R. ()

For every u ∈ K , set

F(u)(t) := f
(
t,u(t), u̇

(
t – τ(t)

)
, . . . , u̇

(
t – τn(t)

))
, t ∈R. ()

Then F : K → C+
ω(R) is continuous. We define an integral operator A : K → C

ω(R) by

Au(t) =
∫ t

t–ω

U(t – s)F(u)(s)ds = (S ◦ F)(t). ()

By the definition of the operator S, the positiveω-periodic solution of Equation () is equiv-
alent to the nontrivial fixed point of A. From assumption (F), Lemma . and Lemma .,
we easily see that

Lemma . A(K) ⊂ K and A : K → K is completely continuous.

We will find the non-zero fixed point ofA by using the fixed point index theory in cones.
We recall some concepts and conclusions on the fixed point index in [, ]. Let E be a
Banach space andK ⊂ E be a closed convex cone in E. Assume� is a bounded open subset
of E with the boundary ∂�, and K ∩� 	= ∅. Let A : K ∩� → K be a completely continuous
mapping. If Au 	= u for any u ∈ K ∩ ∂�, then the fixed point index i (A,K ∩ �,K) has a
definition. One important fact is that if i (A,K ∩ �,K) 	= , then A has a fixed point in
K ∩ �. The following two lemmas are needed in our argument.

Lemma . ([]) Let � be a bounded open subset of E with θ ∈ � and A : K ∩ � → K
be a completely continuous mapping. If λAu 	= u for every u ∈ K ∩ ∂� and  < λ ≤ , then
i (A,K ∩ �,K) = .

http://www.boundaryvalueproblems.com/content/2012/1/140


Li and Li Boundary Value Problems 2012, 2012:140 Page 5 of 11
http://www.boundaryvalueproblems.com/content/2012/1/140

Lemma. ([]) Let� be a bounded open subset of E and A : K ∩� → K be a completely
continuousmapping. If there exists an e ∈ K \{θ} such that u–Au 	= μe for every u ∈ K ∩∂�

and μ ≥ , then i (A,K ∩ �,K) = .

In the next section, we will use Lemma . and Lemma . to discuss the existence of
positive ω-periodic solutions of Equation ().

3 Main results
We consider the existence of positive ω-periodic solutions of the functional differential
equation (). Let f ∈ C(R × [,∞) × R

n) satisfy assumption (F) and f (t,x, y, . . . , yn) be
ω-periodic in t. Let C be the constant defined by () and I = [,ω]. For convenience, we
introduce the notations

f = lim inf
x→+

min
t∈I,|yi|≤C|x|,i=,...,n

(
f (t,x, y, . . . , yn)/x

)
,

f  = lim sup
x→+

max
t∈I,|yi|≤C|x|,i=,...,n

(
f (t,x, y, . . . , yn)/x

)
,

f∞ = lim inf
x→+∞ min

t∈I,|yi|≤C|x|,i=,...,n
(
f (t,x, y, . . . , yn)/x

)
,

f ∞ = lim sup
x→+∞

max
t∈I,|yi|≤C|x|,i=,...,n

(
f (t,x, y, . . . , yn)/x

)
.

Our main results are as follows.

Theorem. Let f ∈ C(R× [,∞)×R
n) and f (t,x, y, . . . , yn) beω-periodic in t, τ, . . . , τn ∈

C+
ω(R). If f satisfies assumption (F) and the condition
(F) f  < , f∞ > ,

then Equation () has at least one positive ω-periodic solution.

Theorem. Let f ∈ C(R×[,∞)×R
n) and f (t,x, y, . . . , yn) beω-periodic in t, τ, . . . , τn ∈

C+
ω(R). If f satisfies assumption (F) and the conditions
(F) f > , f ∞ < ,

then Equation () has at least one positive ω-periodic solution.

In Theorem ., the condition (F) allows f (t,x, y, . . . , yn) to be superlinear growth on x
and y, . . . , yn. For example,

f (t,x, y, . . . , yn) = x + y + · · · + yn –



π

ω

(
 + sin

π t
ω

)
x

satisfies (F) withM = 


π

ω and (F) with f  = – 


π

ω and f∞ = +∞.
In Theorem ., the condition (F) allows f (t,x, y, . . . , yn) to be sublinear growth on x

and y, . . . , yn. For example,

f (t,x, y, . . . , yn) =
√
x +

√|y| + · · · +√|yn| – 


π

ω

(
 + sin

π t
ω

)
x

satisfies (F) withM = 


π

ω and (F) with f = +∞ and f ∞ = – 


π

ω .
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Proof of Theorem . Choose the working space E = C
ω(R). Let K ⊂ C

ω(R) be the closed
convex cone in C

ω(R) defined by () andA : K → K be the operator defined by (). Then
the positive ω-periodic solution of Equation () is equivalent to the nontrivial fixed point
of A. Let  < r < R < +∞ and set

� =
{
u ∈ C

ω(R) | ‖u‖C < r
}
, � =

{
u ∈ C

ω(R) | ‖u‖C < R
}
. ()

We show that the operator A has a fixed point in K ∩ (� \ �) when r is small enough
and R is large enough.
By f  <  and the definition of f , there exist ε ∈ (,M) and δ >  such that

f (t,x, y, . . . , yn) ≤ –εx, t ∈ I,  ≤ x≤ δ, |yi| ≤ Cx, i = , . . . ,n. ()

Let r ∈ (, δ).We nowprove thatA satisfies the condition of Lemma . inK ∩∂�, namely
λAu 	= u for every u ∈ K ∩ ∂� and  < λ ≤ . In fact, if there exist u ∈ K ∩ ∂� and
 < λ ≤  such that λAu = u, then by the definition of A and Lemma ., u ∈ C

ω(R)
satisfies the delay differential equation

ü(t) +Mu(t) = λf
(
t,u(t), u̇

(
t – τ(t)

)
, . . . , u̇

(
t – τn(t)

))
, t ∈R. ()

Since u ∈ K ∩ ∂�, by the definitions of K and �, we have

 ≤ σ‖u‖C ≤ u(t)≤ ‖u‖C ≤ ‖u‖C = r < δ,
∣∣u̇(t – τi(t)

)∣∣ ≤ Cu(t), i = , . . . ,n, t ∈R.
()

Hence, from () it follows that

f
(
t,u(t), u̇

(
t – τ(t)

)
, . . . , u̇

(
t – τn(t)

)) ≤ –εu(t), t ∈ R.

By this, () and the definition of f, we have

ü(t) +Mu(t) ≤ λ
(
Mu(t) – εu(t)

) ≤ (M – ε)u(t), t ∈ R.

Integrating both sides of this inequality from  to ω and using the periodicity of u, we
obtain that

M
∫ ω


u(t)dt ≤ (M – ε)

∫ ω


u(t)dt.

Since
∫ ω

 u(t)dt ≥ ωσ‖u‖C > , it follows that M ≤ M – ε, which is a contradiction.
Hence, A satisfies the condition of Lemma . in K ∩ ∂�. By Lemma ., we have

i (A,K ∩ �,K) = . ()

On the other hand, since f∞ > , by the definition of f∞, there exist ε >  andH >  such
that

f (t,x, y, . . . , yn) ≥ εx, t ∈ I,x ≥ H , |yi| ≤ Cx, i = , . . . ,n. ()

http://www.boundaryvalueproblems.com/content/2012/1/140
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Choose R >max{ +C
σ

H , δ} and let e(t) ≡ . Clearly, e ∈ K \{θ}.We show thatA satisfies the
condition of Lemma . in K ∩ ∂�, namely u–Au 	= μv for every u ∈ K ∩ ∂� and μ ≥ .
In fact, if there exist u ∈ K ∩∂� andμ ≥  such that u –Au = μe, since u –μe = Au,
by the definition of A and Lemma ., u ∈ C

ω(R) satisfies the differential equation

ü(t) +M
(
u(t) –μ

)
= f

(
t,u(t), u̇

(
t – τ(t)

)
, . . . , u̇

(
t – τn(t)

))
, t ∈R. ()

Since u ∈ K ∩ ∂�, by the definition of K , we have

u(t) ≥ σ‖u‖C ,
∣∣u̇(τ )∣∣ ≤ Cu(t), τ , t ∈ I. ()

By the latter inequality of (), we have that ‖u̇‖C ≤ C‖u‖C . This implies that ‖u‖C =
‖u‖C + ‖u̇‖C ≤ ( +C)‖u‖C . Consequently,

‖u‖C ≥ 
 +C

‖u‖C . ()

By () and the former inequality of (), we have

u(t) ≥ σ‖u‖C ≥ σ

 +C
‖u‖C =

σR
 +C

>H , t ∈ I.

From this, the latter inequality of () and (), it follows that

f
(
t,u(t), u̇

(
t – τ(t)

)
, . . . , u̇

(
t – τn(t)

)) ≥ εu(t), t ∈ I.

By this inequality, () and the definition of f, we have

u(n)(t) +M
(
u(t) –μ

) ≥ (M + ε)u(t), t ∈ I.

Integrating this inequality on I and using the periodicity of u, we get that

M
∫ ω


u(t)dt –ωMμ ≥ (M + ε)

∫ ω


u(t)dt.

Since
∫ ω

 u(t)dt ≥ ωσ‖u‖C > , from this inequality it follows thatM ≥ M + ε, which is
a contradiction. This means that A satisfies the condition of Lemma . in K ∩ ∂�. By
Lemma .,

i (A,K ∩ �,K) = . ()

Now, by the additivity of fixed point index, () and (), we have

i
(
A,K ∩ (� \ �),K

)
= i (A,K ∩ �,K) – i (A,K ∩ �,K) = –.

Hence, A has a fixed-point in K ∩ (� \ �), which is a positive ω-periodic solution of
Equation (). �

http://www.boundaryvalueproblems.com/content/2012/1/140


Li and Li Boundary Value Problems 2012, 2012:140 Page 8 of 11
http://www.boundaryvalueproblems.com/content/2012/1/140

Proof of Theorem . Let�,� ⊂ C
ω(R) be defined by ().We prove that the operatorA

defined by () has a fixed point in K ∩ (� \�) if r is small enough and R is large enough.
By f >  and the definition of f, there exist ε >  and δ >  such that

f (t,x, y, . . . , yn) ≥ εx, t ∈ I,  < x ≤ δ, |yi| ≤ Cx, i = , . . . ,n. ()

Let r ∈ (, δ) and e(t)≡ .We prove thatA satisfies the condition of Lemma . inK ∩∂�,
namely u – Au 	= μe for every u ∈ K ∩ ∂� and μ ≥ . In fact, if there exist u ∈ K ∩ ∂�

and μ ≥  such that u – Au = μe, since u – μe = Au, by the definition of A and
Lemma ., u ∈ C

ω(R) satisfies the delay differential equation

ü(t) +M
(
u(t) –μ

)
= f

(
t,u(t), u̇

(
t – τ(t)

)
, . . . , u̇

(
t – τn(t)

))
, t ∈R. ()

Since u ∈ K ∩ ∂�, by the definitions of K and �, u satisfies (). From () and () it
follows that

f
(
t,u(t), u̇

(
t – τ(t)

)
, . . . , u̇

(
t – τn(t)

)) ≥ εu(t), t ∈ R.

By this, () and the definition of f, we have

u′′
(t) +Mu(t) = f

(
t,u(t), u̇

(
t – τ(t)

)
, . . . , u̇

(
t – τn(t)

))
+Mμ

≥ (M + ε)u(t), t ∈R.

Integrating this inequality on [,ω] and using the periodicity of u(t), we obtain that

M
∫ ω


u(t)dt ≥ (M + ε)

∫ ω


u(t)dt.

Since
∫ ω

 u(t)dt ≥ ωσ‖u‖C > , from this inequality it follows that M ≥ M + ε, which is
a contradiction. Hence, A satisfies the condition of Lemma . in K ∩ ∂�. By Lemma .,
we have

i (A,K ∩ �,K) = . ()

Since f ∞ < , by the definition of f ∞, there exist ε ∈ (,M) and H >  such that

f (t,x, y, . . . , yn) ≤ –εx, t ∈ I,x ≥ H , |yi| ≤ Cx, i = , . . . ,n. ()

Choosing R >max{ +C
σ

H , δ}, we show that A satisfies the condition of Lemma . in K ∩
∂�, namely λAu 	= u for every u ∈ K ∩ ∂� and  < λ ≤ . In fact, if there exist u ∈
K ∩ ∂� and  < λ ≤  such that λAu = u, then by the definition of A and Lemma .,
u ∈ C

ω(R) satisfies the differential equation

ü(t) +Mu(t) = λf
(
t,u(t), u̇

(
t – τ(t)

)
, . . . , u̇

(
t – τn(t)

))
, t ∈R. ()

http://www.boundaryvalueproblems.com/content/2012/1/140
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Since u ∈ K ∩ ∂�, by the definition of K , u satisfies (). From the second inequality of
(), it follows that () holds. By () and the first inequality of (), we have

u(t) ≥ σ‖u‖C ≥ σ

( +C)
‖u‖C =

σR
( +C)

>H , t ∈ R.

From this, the second inequality of () and (), it follows that

f
(
t,u(t), u̇

(
t – τ(t)

)
, . . . , u̇

(
t – τn(t)

)) ≤ –εu(t), t ∈R.

By this and (), we have

ü(t) +Mu(t)≤ λ
(
Mu(t) – εu(t)

) ≤ (M – ε)u(t), t ∈R.

Integrating this inequality on [,ω] and using the periodicity of u(t), we obtain that

M
∫ ω


u(t)dt ≤ (M – ε)

∫ ω


u(t)dt.

Since
∫ ω

 u(t)dt ≥ ωσ‖u‖C > , from this inequality it follows thatM ≤ M – ε, which is
a contradiction. This means that A satisfies the condition of Lemma . in K ∩ ∂�. By
Lemma .,

i (A,K ∩ �,K) = . ()

Now, from () and (), it follows that

i
(
A,K ∩ (� \ �),K

)
= i (A,K ∩ �,K) – i (A,K ∩ �,K) = .

Hence, A has a fixed-point in K ∩ (� \ �), which is a positive ω-periodic solution of
Equation (). �

Example  Consider the following second-order differential equation with delay:

ü(t) = a(t)u(t) + a(t)u(t) + a(t)u̇(t –ω/), t ∈ R, ()

where ai(t) ∈ Cω(R), i = , , . If –π

ω < a(t) <  and a(t),a(t) >  for t ∈ [,ω], we can
verify that

f (t,x, y) = a(t)x + a(t)x + a(t)y

satisfies the conditions (F) and (F) for n = . By Theorem ., the delay equation () has
at least one positive ω-periodic solution.

Example  Consider the functional differential equation

ü(t) = c(t)u(t) + c(t) 
√
u(t) + c(t) 

√
u̇

(
t – τ (t)

)
, t ∈ R, ()

http://www.boundaryvalueproblems.com/content/2012/1/140
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where ci(t) ∈ Cω(R), i = , , , and τ ∈ C+
ω(R). If –

π

ω < c(t) <  and c(t), c(t) >  for
t ∈ [,ω]. We easily see that

f (t,x, y) = c(t)x + c(t)|x|/ + c(t)|y|/

satisfies the conditions (F) and (F) for n = . By Theorem ., the functional differential
equation () has a positive ω-periodic solution.
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