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Abstract
In the first part of the paper, the authors obtain the asymptotics of Green’s function of
the first boundary value problem for the heat equation in anm-dimensional cone K .
The second part deals with the first boundary value problem for the heat equation in
the domain K ×R

n–m. Here the right-hand side f of the heat equation is assumed to
be an element of a weighted Lp,q-space. The authors describe the behavior of the
solution near the (n –m)-dimensional edge of the domain.

Introduction
The paper is concerned with the first boundary value problem for the heat equation

∂u
∂t

–�u = f inD ×R, ()

u =  on (∂D\M)×R ()

in the domain

D =
{
x =

(
x′,x′′) : x′ ∈ K ,x′′ ∈R

n–m}
,

where K = {x′ = (x, . . . ,xm) : x′/|x′| ∈ �} is a cone in R
m,  ≤ m ≤ n, � denotes a sub-

domain of the unit sphere, and M = {x = (x′,x′′) : x′ = } is the (n –m)-dimensional edge
ofD.We are interested in the asymptotics of solutions in the class of the weighted Sobolev
spacesW ,

p,q;β (D×R). Here the spaceW l,l
p,q;β (D×R) is defined for an arbitrary integer l ≥ 

and real p > , q > , β as the set of all function u(x, t) on D ×R with the finite norm

‖u‖Wl,l
p,q;β (D×R) =

(∫
R

(∫
D

∑
|α|+k≤l

∣∣x′∣∣p(β–l+k+|α|)∣∣∂k
t ∂

α
x u(x, t)

∣∣p dx
)q/p

dt
)/q

. ()

In the case l = , we writeW ,
p,q;β = Lp,q;β . If, moreover, β = , then we write Lp,q; = Lp,q.

For the case of smooth boundary ∂� (of class C∞), the asymptotics of solutions was
obtained in our previous paper []. For the particular case p = q = , m = n, we refer also
to the paper [] by Kozlov and Maz’ya, and for the case p = q �= , m = n = , to the paper
[] by de Coster and Nicaise. The goal of the present paper is to describe the asymptotics
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of solutions with a remainder in W ,
p,q;β (D × R) under minimal smoothness assumptions

on the boundary. Throughout the paper, we assume that ∂� ∈ C,.
The paper consists of two parts. The first part (Section ) deals with the asymptotics of

theGreen function for the heat equation in the coneK .We obtain the samedecomposition

G
(
x′, y′, t

)
=

∑
λ+j <σ

mj∑
k=

∂k
t cj(y′, t)|x′|λ+j +kφj(ωx)

kk!(σj + k)(k)
+ Rσ

(
x′, y′, t

)

as in [, ] (for the definition of λ+
j , φj,mj, cj and σ(k), see Section .). However, the proof in

[, ] does not work if ∂� is only of the classC,.We give a new proof, which is completely
different from that in [, ]. Our tools are estimates for solutions of the Dirichlet problem
for the Laplace equation in a cone in weighted Lp Sobolev spaces and asymptotic formu-
las for solutions of this problem which were obtained in the papers [, ] by Maz’ya and
Plamenevskĭı. Moreover, we use the estimates of the Green function in the recent paper
[] by Kozlov and Nazarov. In contrast to the case ∂� ∈ C∞, the estimates for the second
order x′- and y′-derivatives of the remainder Rσ contain an additional factor (|x′|–d(x′))–ε

with a negative exponent –ε. Here, d(x′) is the distance from the boundary of ∂K .
In the second part of the paper (Section ), we apply the results of Section  in order to

obtain the asymptotics of solutions of the problem (), () for f ∈ Lp,q;β (D ×R). We show
that, under a certain condition on β , there exists a solution of the form

u(x, t) =
∑

λ+j <–β–m/p

mj∑
k=

(∂t –�x′′ )kHj(x, t)
kk!(σj + k)(k)

∣∣x′∣∣λ+j +kφj(ωx) +w(x, t)

with a remainder w ∈W ,
p,q;β (D ×R). Here, Hj is an extension of the function

hj
(
x′′, t

)
=

∫ t

–∞

∫
D
cj
(
y′, t – τ

)


(
x′′, y′′, t – τ

)
f (y, τ )dydτ ,

 denotes the fundamental solution of the heat equation in R
n–m. The proof of this result

(Theorem .) is essentially the same as in []. However, the proofs of some lemmas in []
have to be modified under our weaker assumptions on ∂�.
At the end of the paper, we show that the extensions of the functions hj can be defined as

Hj(x, t) = (Ehj)(x, t) =
∫ ∞



∫
Rn–m

T(τ )R
(
z′′)hj(x′′ – rz′′, t – rτ

)
dz′′ dτ ,

where T and R are certain smooth functions on R+ and R
n–m, respectively (see the begin-

ning of Section  for their definition). This extends the result of [, Corollary .] to the
case p �= q.

1 The Green function of the heat equation in a cone
We start with the problem

∂u
∂t

–�x′u = f in K ×R, ()

u =  on
(
∂K\{}) ×R. ()
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Let G(x′, y′, t) be the Green function for the problem (), (). It is defined for every y′ ∈ K
as the solution of the problem

∂G(x′, y′, t)
∂t

–�x′G
(
x′, y′, t

)
= δ

(
x′ – y′)δ(t) in K ×R,

G
(
x′, y′, t

)
=  for x′ ∈ ∂K\{}, t ∈R, G

(
x′, y′, t

)
=  for t < .

Furthermore, ( – ζ )G(·, y′, ·) ∈ W ,
;β (K × R) if λ–

 <  – β –m/ < λ+
 (λ±

 are defined be-
low), and ζ is a function in C∞

 (K × R) equal to one in a neighborhood of the point
(x′, t) = (y′, ). Here W ,

,β (K × R) is the space of all functions u = u(x′, t) on K × R such
that |x′|β–+k+|α|∂k

t ∂
α
x′u ∈ L(K ×R) for k + |α| ≤ . The goal of this section is to describe

the behavior of the Green function for |x′| <√
t.

1.1 Asymptotics of Green’s function
Let {�j}∞j= be the nondecreasing sequence of eigenvalues of the Beltrami operator –δ on
� (with the Dirichlet boundary condition) counted with their multiplicities, and let {φj}∞j=
be an orthonormal (in L(�)) sequence of eigenfunctions corresponding to the eigenval-
ues �j. Furthermore, we define

λ±
j =

 –m


±
√
( –m/) +�j and σj = λ+

j –  +
m

.

Thismeans that λ±
j are the solutions of the quadratic equationλ(m–+λ) =�j. Obviously,

λ+
j >  and λ–

j <  –m for j = , , . . . .
By [, Theorem ],

∣∣∂k
t ∂

α
x′∂

γ

y′G
(
x′, y′, t

)∣∣ ≤ ct–k–(m+|α|+|γ |)/
( |x′|

|x′| +√
t

)λ+ –|α|–ε( |y′|
|y′| +√

t

)λ+ –|γ |–ε

×
(
d(x′)
|x′|

)–εα
(
d(y′)
|y′|

)–εγ

exp

(
–

κ|x′ – y′|
t

)
()

for |α| ≤ , |γ | ≤ . Here d(x′) denotes the distance of the point x′ from the boundary ∂K .
Furthermore, εα is defined as zero for |α| ≤ , while εα is an arbitrarily small positive real
number if |α| = . Actually, the estimate () is proved in [] only for k = , but for a more
general class of operators, parabolic operators with discontinuous in time coefficients.
If the coefficients in [] do not depend on t, then one can use the same argument as in
the proof of [, Theorem ] when treating the derivatives along the edge of the domain
D = K × R

n–m. This argument shows that the kth derivative with respect to t will bring
only an additional factor t–k to the right-hand side of ().
The following lemma will be applied in the proof of Lemma .. Here and in the sequel,

we use the notation r = |x′| and ωx = x′/|x′|.

Lemma . Let G(x′, y′, t) be the Green function introduced above, and let Gj(r,ρ, t) denote
the Green function of the initial-boundary value problem

∂tU(r, t) – r–
(
(r∂r) + (m – )r∂r –�j

)
U(r, t) =  for r > , t > ,

U(, t) =  for t > , U(r, ) = (r) for r > .

http://www.boundaryvalueproblems.com/content/2012/1/142
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Then
∫

�

G
(
x′, y′, t

)
φj(ωx)dωx =

∣∣y′∣∣–mGj
(∣∣x′∣∣, ∣∣y′∣∣, t)φj(ωy). ()

Proof The solution of the problem

(∂t –�x′ )u
(
x′, t

)
=  for x′ ∈ K , t > , ()

u
(
x′, t

)
=  for x′ ∈ ∂K , t > , u

(
x′, 

)
= φ

(
x′) ()

is given by the formula

u
(
x′, t

)
=

∫
K
G

(
x′, y′, t

)
φ
(
y′)dy′.

We define

Uj(r, t) =
∫

�

u
(
x′, t

)
φj(ωx)dωx.

Then it follows from () and () that

∂tUj(r, t) – r–
(
(r∂r) + (m – )r∂r –�j

)
Uj(r, t)

=
∫

�

(
∂t – r–

(
(r∂r) + (m – )r∂r –�j

))
u
(
x′)φj(ωx)dωx

=
∫

�

(∂t –�x′ )u
(
x′)φj(ωx)dωx = .

Furthermore,

Uj(r, ) = j(r)
def=

∫
�

φ
(
x′)φj(ωx)dωx.

Therefore,

Uj(r, t) =
∫ ∞


Gj(r,ρ, t)j(ρ)dρ =

∫ ∞



∫
�

Gj(r,ρ, t)φj(ωy)φ
(
y′)dωy dρ

=
∫
K
Gj

(
r,

∣∣y′∣∣, t)φj(ωy)φ
(
y′)∣∣y′∣∣–m dy′.

Comparing this with the formula

Uj(r, t) =
∫

�

u
(
x′, t

)
φj(ωx)dωx =

∫
K

∫
�

G
(
x′, y′, t

)
φj(ωx)dωxφ

(
y′)dy′,

we get (). �

In the sequel, σ is an arbitrary real number satisfying the conditions

σ > λ–
 , σ �= λ+

j for all j. ()

http://www.boundaryvalueproblems.com/content/2012/1/142
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We define Gσ (x′, y′, t) =  for σ < λ+
 , while

Gσ

(
x′, y′, t

)
=

∑
λ+j <σ

u(mj)
j

(
x′, ∂t

)
cj
(
y′, t

)
for σ > λ+

 , ()

where

u(k)j
(
x′, ∂t

)
= rλ

+
j φj(ωx)

k∑
μ=

rμ∂
μ
t

μμ!(σj +μ)(μ)
, ()

cj
(
y′, t

)
=


�( + σj)

∣∣y′∣∣λ–j –( |y′|
t

)σj+

φj(ωy) exp
(
–

|y′|
t

)
, ()

andmj = [
σ–λ+j
 ]. Here, we used the notation

σ(μ) = σ (σ – ) · · · (σ –μ + ) for μ = , , . . . and σ() = .

We define Vl
p,β (K) as the weighted Sobolev space with the norm

‖u‖Vl
p,β (K ) =

(∫
K

∑
|α|≤l

rp(β–l+|α|)∣∣∂α
x u(x)

∣∣p dx
)/p

for  < p < ∞ and integer l ≥ .

Lemma . Suppose that σ is a real number such that σ > λ–
 and (σ –λ+

j )/ is not integer
for λ+

j ≤ σ . Furthermore, let  < p < ∞ and β =  – σ –m/p. Then

G
(
x′, y′, t

)
=Gσ

(
x′, y′, t

)
+ Rσ

(
x′, y′, t

)
,

where ∂k
t ∂

γ

y′Rσ (·, y′, t) ∈ V 
p,β (K) for y′ ∈ K , t > , |γ | ≤ .

Proof We prove the lemma by induction inm = [(σ – λ+
 )/].

First, let λ–
 < σ < λ+

 . Then it follows from [, Corollary . and Theorem .] (see also
[, Theorem .]) that ∂k

t ∂
γ

y′G(·, y′, t) ∈ V 
p,β (K) for all y′ ∈ K , t > , |γ | ≤ , where β =

 – σ –m/p. Thus, the assertion of the lemma is true for σ < λ+
 .

Suppose the assertion is proved for σ < λ+
 + l. Now let λ+

 + l < σ < λ+
 + (l + ). We

set σ ′ = σ – if l >  and σ ′ = λ+
 – ε if l = , where ε is a sufficiently small positive number.

Then

[
σ ′ – λ+

j



]
=

[
σ – λ+

j



]
–  =mj –  for λ+

j < σ ′.

By the induction hypothesis, we have

G
(
x′, y′, t

)
=Gσ ′

(
x′, y′, t

)
+ Rσ ′

(
x′, y′, t

)
,

where Gσ ′ is given by () (with σ ′ instead of σ andmj –  instead ofmj), ∂k
t ∂

γ

y′Rσ ′ (·, y′, t) ∈
V 
p,β ′ (K), β ′ =  – σ ′ –m/p. The coefficients cj(y′, t) in Gσ ′ are given by () and satisfy the

http://www.boundaryvalueproblems.com/content/2012/1/142


Kozlov and Rossmann Boundary Value Problems 2012, 2012:142 Page 6 of 30
http://www.boundaryvalueproblems.com/content/2012/1/142

equation (∂t –�y′ )cj(y′, t) = . Therefore,

(∂t –�y′ )Rσ ′
(
x′, y′, t

)
= 

for x′, y′ ∈ K , t > . Obviously, Gσ ′ (ax′,ay′,at) = a–mGσ ′ (x′, y′, t) for a > . Using the same
equality for the Green function G(x′, y′, t), we obtain

Rσ ′
(
ax′,ay′,at

)
= a–mRσ ′

(
x′, y′, t

)
for a > .

Furthermore,

�x′Rσ ′
(
x′, y′, t

)
= �x′G

(
x′, y′, t

)
–�x′Gσ ′

(
x′, y′, t

)
= (∂t –�x′ )Gσ ′

(
x′, y′, t

)
+ ∂tRσ ′

(
x′, y′, t

)

= (∂t –�x′ )
∑
λ+j <σ ′

mj–∑
k=

∂k
t cj(y′, t)

kk!(σj + k)(k)
rλ

+
j +kφj(ωx) + ∂tRσ ′

(
x′, y′, t

)
.

Using the formula

�x′rλ
+
j +kφj(ω) = k(σj + k)rλ

+
j +k–φj(ωx),

we get

�x′Rσ ′
(
x′, y′, t

)
=

∑
λ+j <σ ′

∂
mj
t cj(y′, t)rλ

+
j +mj–φj(ωx)

mj–(mj – )!(σj +mj – )(mj–)
+ ∂tRσ ′

(
x′, y′, t

)

= �x′�′ + ∂tRσ ′
(
x′, y′, t

)
, ()

where

�′ =
∑
λ+j <σ ′

∂
mj
t cj(y′, t)

mjmj!(σj +mj)(mj)
rλ

+
j +mjφj(ωx)

(�′ =  for l = ). Let χ be a smooth function with compact support on [,∞) such that
χ (r) =  for r < . Using the notation r = |x′|, the function χ can be also considered as
a function in K . Since σ ′ < λ+

j + mj < σ for λ+
j < σ ′, we have χ∂k

t ∂
γ

y′�
′(·, y′, t) ∈ V 

p,β ′ (K)
and ( – χ )∂k

t ∂
γ
y �′(·, y′, t) ∈ V 

p,β (K) for all y′ ∈ K , t > . Consequently, ∂k
t ∂

γ

y′ (Rσ ′ (·, y′, t) –
χ�′(·, y′, t)) ∈ V 

p,β ′ (K) and

�x′∂k
t ∂

γ

y′
(
Rσ ′

(·, y′, t
)
– χ�′(·, y′, t

))
= ∂k+

t ∂
γ

y′Rσ ′
(·, y′, t

)
+�x′∂k

t ∂
γ

y′ ( – χ )�′(·, y′, t
) ∈ V 

p,β (K).

Applying [, Theorem .], we obtain

∂k
t ∂

γ

y′
(
Rσ ′

(
x′, y′, t

)
– χ (r)�′(x′, y′, t

))

=
∑

σ ′<λ+μ<σ

cμ,k,γ
(
y′, t

)
rλ

+
μφμ(ω) + vk,γ

(
x′, y′, t

)
, ()

http://www.boundaryvalueproblems.com/content/2012/1/142
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where vk,γ (·, y′, t) ∈ V 
p,β (K). The coefficients cμ,k,γ are given by the formula

cμ,k,γ
(
y′, t

)
=

∫
K

∂k
t ∂

γ

y′
(
∂tRσ ′

(
x′, y′, t

)
+�x′ ( – χ )�′(x′, y′, t

))
vμ

(
x′)dx′, ()

where vμ(x′) = – 
σμ

rλ
–
μφμ(ωx). The integral in () is well defined, since

∂k
t ∂

γ

y′
(
∂tRσ ′

(·, y′, t
)
+�x′ ( – χ )�′(·, y′, t

)) ∈ V 
p,β (K)∩V 

p,β ′ (K)

and vμ ∈ V 
p′ ,–β

(K) + V 
p′ ,–β ′ (K), p′ = p/(p – ), for σ ′ < λ+

μ < σ . The remainder vk,γ and the
coefficients cμ,k,γ in () satisfy the estimate

∥∥vk,γ (·, y′, t
)∥∥

V
p,β (K ) +

∑
σ ′<λ+μ<σ

∣∣cμ,k,γ (
y′, t

)∣∣

≤ c
∥∥∂k

t ∂
γ

y′
(
∂tRσ ′

(·, y′, t
)
+�x′ ( – χ )�′(·, y′, t

))∥∥
V
p,β (K )∩V

p,β′ (K ). ()

Obviously, cμ,k,γ (y′, t) = ∂k
t ∂

γ

y′cμ(y
′, t) = ∂k

t ∂
γ

y′cμ,,(y
′, t). This means that

Rσ ′
(
x′, y′, t

)
– χ (r)�′(x′, y′, t

)
=

∑
σ ′<λ+μ<σ

cμ
(
y′, t

)
rλ

+
μφμ(ωx) + v

(
x′, y′, t

)
,

where ∂k
t ∂

γ

y′v(·, y′, t) = vk,γ (·, y′, t) ∈ V 
p,β (K). Consequently,

Rσ ′
(
x′, y′, t

)
= �

(
x′, y′, t

)
+ Rσ

(
x′, y′, t

)
, ()

where

�
(
x′, y′, t

)
= �′(x′, y′, t

)
+

∑
σ ′<λ+μ<σ

cμ
(
y′, t

)
rλ

+
μφμ(ωx) =

∑
λ+j <σ

∂
mj
t cj(y′, t)rλ

+
j +mjφj(ωx)

mjmj!(σj +mj)(mj)

and Rσ (x′, y′, t) = v(x′, y′, t) + (χ – )�′(x′, y′, t). Obviously, ∂k
t ∂

γ

y′Rσ (·, y′, t) ∈ V 
p,β (K) for

|γ | ≤ . Using () and the equality

Gσ ′
(
x′, y′, t

)
+�

(
x′, y′, t

)
=Gσ

(
x′, y′, t

)
,

we conclude that

G
(
x′, y′, t

)
=Gσ ′

(
x′, y′, t

)
+ Rσ ′

(
x′, y′, t

)
=Gσ

(
x′, y′, t

)
+ Rσ

(
x′, y′, t

)
.

It remains to show that the coefficients

cμ
(
y′, t

)

= –


σμ

∫ ∞



∫
�

(
∂tRσ ′

(
x′, y′, t

)
+�x′ ( – χ )�′(x′, y′, t

))
φμ(ωx)dωxrλ

–
μ+m– dr ()

http://www.boundaryvalueproblems.com/content/2012/1/142
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in () have the form () for σ ′ < λ+
μ < σ . First, note that

(∂t –�y′ )cμ
(
y′, t

)
=  for y′ ∈ K , t > ,

since (∂t –�y′ )Rσ ′ (x, y, t) =  and (∂t –�y′ )�′(x, y, t) = .
Obviously, the functions ∂tGσ ′ (x′, y′, t) and

�x( – χ )�′(x′, y′, t
)

= r–
(
(r∂r)( – χ )�′(x′, y′, t

)
+ (m – )∂r( – χ )�′(x′, y′, t

)
+ ( – χ )δω�′)

contain only functions φj(ωx) with λ+
j < σ ′. Thus, the orthogonality of the functions φj

implies

∫
�

(
∂tRσ ′

(
x′, y′, t

)
+�x′ ( – χ )�′(x′, y′, t

))
φμ(ωx)dωx

=
∫

�

∂tG
(
x′, y′, t

)
φμ(ωx)dωx ()

for λ+
μ > σ ′. Applying Lemma ., we conclude that cμ(y′, t) has the form

cμ
(
y′, t

)
= ρ–mφμ(ωy)fμ(ρ, t), ()

where ρ = |y′|. SinceRσ ′ (ax′,ay′,at) = a–mRσ ′ (x′, y′, t) and�′(ax′,ay′,at) = a–m�′(x′, y′, t)
for all a > , it follows from () that

∑
σ ′<λ+μ<σ

(
aλ+μcμ

(
ay′,at

)
– a–mcμ

(
y′, t

))
rλ

+
μφμ(ωx) = a–mRσ

(
x′, y′, t

)
– Rσ

(
ax′,ay′,at

)
.

The function on the right-hand side belongs to V 
p,β (K) for all y′ ∈ K , t > , a > , while the

left-hand side belongs only to V 
p,β (K) if

cμ
(
ay′,at

)
= a–m–λ+μcμ

(
y′, t

)
.

Combining the last equality with (), we get the representation

cμ
(
y′, t

)
= ρ–m–λ+μφμ(ωy)hμ

(
ρ

t

)
= ρλ–μ–φμ(ωy)hμ

(
ρ

t

)
.

Inserting this into the equation (∂t –�y′ )cμ(y′, t) = , we obtain

rh′′
μ(r) + (r – σμ – )rh′

μ(r) + (σμ + )hμ(r) = .

The substitution hμ(r) = e–rrσμ+u(r) leads to the differential equation

ru′′(r) + (σμ +  – r)ru′(r) = 

http://www.boundaryvalueproblems.com/content/2012/1/142
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which has the solution

u(r) = d + d
∫ 

r
s–σμ–es ds

with arbitrary constants d and d. Consequently,

cμ
(
y′, t

)
= ρλ–μ–φμ(ωy)

(
ρ

t

)σμ+

exp

(
–

ρ

t

)(
d + d

∫ 

ρ/(t)
s–σμ–es ds

)
. ()

Using () and (), one gets the estimate

∣∣∂k
t cμ

(
y′, t

)∣∣ ≤ Ck(t)ρλ+ –ε

with certain functions Ck for ρ = |y| < √
t. Thus, the constant d in () must be zero.

Integrating (), we get

∫ ∞


cμ

(
y′, t

)
dt = –vμ

(
y′) = 

σμ

ρλ–μφμ(ωy)

by means of (). Hence,

dρλ–μ–φμ(ωy)
∫ ∞



(
ρ

t

)σμ+

exp

(
–

ρ

t

)
dt =


σμ

ρλ–μφμ(ωy).

The integral on the left-hand side is equal to 
ρ�(σμ). Thus, we get u(r) = d = /�(σμ+)

and

hμ(r) =


�(σμ + )
rσμ+e–r .

This means that the formula () is valid for the coefficients cj if σ ′ < λ+
j < σ . The proof of

the lemma is complete. �

1.2 Point estimates for the remainder in the asymptotics of Green’s function
We are interested in point estimates for the remainder Rσ (x′, y′, t) in Lemma . in the case
|x′| < √

t. For this, we need the following lemma.

Lemma . Suppose that u ∈ Lp,β (K) and d∇u ∈ Lp,β (K), where p >m. Then

sup
x∈K

d
(
x′)m/pr(x)β

∣∣u(
x′)∣∣ ≤ c

(∫
K
rpβ

(∣∣d(
x′)∇u

(
x′)∣∣p + ∣∣u(

x′)∣∣p)dx′
)/p

with a constant c independent of u.

Proof Let x′
 be a point int K , and let B be a ball centered at x′

 with radius d/ = d(x′
)/.

We introduce the new coordinates y′ = d–
 x′ and set v(y′) = u(dy′) = u(x′). Obviously, the

point y′
 = d–

 x′
 has the distance  from ∂K . Hence,

∣∣v(y′

)∣∣p ≤ c

∫
|y′–y′|</

(∣∣∇y′v
(
y′)∣∣p + ∣∣v(y′)∣∣p)dy′.

http://www.boundaryvalueproblems.com/content/2012/1/142
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This implies

∣∣u(
x′

)∣∣p ≤ cd–m



∫
B

(∣∣d∇x′u
(
x′)∣∣p + ∣∣u(

x′)∣∣p)dx′.

Since d/ < d(x′) < d/ and r(x′
)/ < r(x′) < r(x′

)/ for x′ ∈ B, we obtain

dm
 r

(
x′

)pβ ∣∣u(

x′

)∣∣p ≤ c

∫
B
rpβ

(∣∣d(
x′)∇x′u

(
x′)∣∣p + ∣∣u(

x′)∣∣p)dx′.

The result follows. �

Using the last two lemmas, we can prove the following theorem.

Theorem . Suppose that σ is a real number satisfying (). Then

G
(
x′, y′, t

)
=Gσ

(
x′, y′, t

)
+ Rσ

(
x′, y′, t

)
,

where

∣∣∂k
t ∂

α
x′∂

γ

y′Rσ

(
x′, y′, t

)∣∣ ≤ ct–k–(m+|α|+|γ |)/
( |x′|√

t

)σ–|α|( |y′|
|y′| +√

t

)λ+ –|γ |–ε

×
(
d(x′)
|x′|

)–εα
(
d(y′)
|y′|

)–εγ

exp

(
–

κ|y′|
t

)
()

for |x′| <√
t, |α| ≤ , |γ | ≤ .Here εα =  for |α| ≤ ,while εα is an arbitrarily small positive

real number if |α| = .

Proof SinceGσ =Gσ+ε for small positive ε, wemay assume, without loss of generality, that
(σ –λ+

j )/ is not integer for λ+
j < σ .We prove the theoremby induction inm = [(σ –λ+

 )/].
If λ–

 < σ < λ+
 , then the assertion of the theorem follows from [, Theorem ]. Suppose

that λ+
 + l < σ < λ+

 + (l + ), l ≥ , and that the theorem is proved for σ < λ+
 + l. We

set σ ′ = σ –  if l > . In the case l = , let σ ′ be an arbitrary real number satisfying the
inequalities λ–

 < σ ′ < λ+
 and σ ′ ≥ σ – . By the induction hypothesis, we have

G
(
x′, y′, t

)
=Gσ ′

(
x′, y′, t

)
+ Rσ ′

(
x′, y′, t

)
,

whereGσ ′ is given by () (with σ ′ instead of σ andmj – instead ofmj). SinceGσ ′ =Gσ ′+δ

for sufficiently small δ, it follows from the induction hypothesis that

∣∣∂k
t ∂

α
x′∂

γ

y′Rσ ′
(
x′, y′, t

)∣∣ ≤ ct–k–(m+|α|+|γ |)/
( |x′|√

t

)σ ′+δ–|α|( |y′|
|y′| +√

t

)λ+ –|γ |–ε

×
(
d(x′)
|x′|

)–εα
(
d(y′)
|y′|

)–εγ

exp

(
–

κ|y′|
t

)
()

for |x′| < 
√
t, |α| ≤ , |γ | ≤ . As was shown in the proof of Lemma ., the remainder

Rσ ′ admits the decomposition

Rσ ′
(
x′, y′, t

)
= �

(
x′, y′, t

)
+ Rσ

(
x′, y′, t

)
,

http://www.boundaryvalueproblems.com/content/2012/1/142
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where

�
(
x′, y′, t

)
=

∑
λ+j <σ

rλ
+
j +mjφj(ωx)∂

mj
t cj(y′, t)

mjmj!(σj +mj)(mj)

and ∂k
t ∂

γ

y′Rσ (·, y′, t) ∈ V 
p,β (K) for t > , y′ ∈ K , |γ | ≤ . Here β =  – σ –m/p. Furthermore

(cf. ()),

�x′Rσ

(
x′, y′, t

)
= �x′

(
Rσ ′

(
x′, y′, t

)
–�

(
x′, y′, t

))
= �x′

(
Rσ ′

(
x′, y′, t

)
–�′(x′, y′, t

))
= ∂tRσ ′

(
x′, y′, t

)
.

Let χ be a smooth cut-off function on the interval [,∞), χ =  in [, ) and χ =  on
(,∞). We define χ(x′, t) = χ (t–/|x′|) for x′ ∈ K , t > . Then

�x′
(
χ

(
x′, t

)
∂

γ

y′∂
k
t Rσ

(
x′, y′, t

))
= f

(
x′, y′, t

)
,

where

f = χ∂
γ

y′∂
k+
t Rσ ′ + ∇x′χ · ∇x′∂γ

y′∂
k
t (Rσ ′ –�) + (�x′χ)∂γ

y′∂
k
t (Rσ ′ –�).

Thus, by [, Theorem .], there exists a constant c such that

∥∥χ(·, t)∂γ

y′∂
k
t Rσ

(·, y′, t
)∥∥

V
p,β (K ) ≤ c

∥∥f (·, y′, t
)∥∥

V
p,β (K ) ()

for all y′ ∈ K , t > , |γ | ≤ . We estimate the norm of f . Using (), we get

∥∥χ∂
k+
t ∂

γ

y′Rσ ′
(·, y′, t

)∥∥
V
p,β (K ) ≤ ct–k––(m+|γ |+σ ′+δ)/

( |y′|
|y′| +√

t

)λ+ –|γ |–ε

exp

(
–

κ|y′|
t

)

×
(
d(y′)
|y′|

)–εγ
(∫

|x′|<√t
|x′|p(β+σ ′+δ) dx′

)/p

.

Here, p(β + σ ′ + δ) > –m. Thus,

∥∥χ∂
k+
t ∂

γ

y′Rσ ′
(·, y′, t

)∥∥
V
p,β (K )

≤ ct–k–(m+|γ |+σ )/
( |y′|

|y′| +√
t

)λ+ –|γ |–ε(d(y′)
|y′|

)–εγ

exp

(
–

κ|y′|
t

)
.

Since ∇x′χ vanishes outside the region
√
t < |x′| < 

√
t and |∂α

x′χ(x′, t)| ≤ ct–|α|/, the es-
timate () also yields

∥∥∇x′χ · ∇x′∂γ

y′∂
k
t Rσ ′

(·, y′, t
)∥∥

V
p,β (K ) +

∥∥(�x′χ)∂γ

y′∂
k
t Rσ ′

(·, y′, t
)∥∥

V
p,β (K )

≤ ct–k–(m+|γ |+σ )/
( |y′|

|y′| +√
t

)λ+ –|γ |–ε(d(y′)
|y′|

)–εγ

exp

(
–

κ|y′|
t

)
.

http://www.boundaryvalueproblems.com/content/2012/1/142
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Finally, it follows from the inequality

∣∣∂γ

y′∂
k
t cμ

(
y′, t

)∣∣ ≤ ct–k–(m+|γ |+λ+μ)/
( |y′|√

t

)λ+μ–|γ |
exp

(
–

|y′|
t

)

that

∥∥∇x′χ · ∇x′∂γ

y′∂
k
t �

(·, y′, t
)∥∥

V
p,β (K ) +

∥∥(�x′χ)∂γ

y′∂
k
t �

(·, y′, t
)∥∥

V
p,β (K )

≤ c
∑
λ+j <σ

t–k–(m+|γ |+σ )/
( |y′|√

t

)λ+j –|γ |
exp

(
–

|y′|
t

)

≤ ct–k–(m+|γ |+σ )/
( |y′|

|y′| +√
t

)λ+ –|γ |
exp

(
–

|y′|
t

)
.

Consequently, by (),

∥∥χ(·, t)∂γ

y′∂
k
t Rσ

(·, y′, t
)∥∥

V
p,β (K ) ≤ ct–k–(m+|γ |+σ )/

( |y′|
|y′| +√

t

)λ+ –|γ |–ε

×
(
d(y′)
|y′|

)–εγ

exp

(
–

κ|y′|
t

)
()

with a positive constant κ . Applying the estimate

∑
|α|≤

∣∣x′∣∣β–+|α|+m/p∣∣∂α
x′χ

(
x′, t

)
∂

γ

y′∂
k
t Rσ

(
x′, y′, t

)∣∣ ≤ c
∥∥χ∂

γ

y′∂
k
t Rσ

(·, y′, t
)∥∥

V
p,β (K )

for p >m (cf. [, Lemma ..]), we obtain () for |α| ≤ .
It remains to prove the estimate () for |α| = . Let ρ(x′) be the “regularized distance” of

the point x′ to the boundary ∂K , i.e., ρ is a smooth function in K satisfying the inequalities

cd
(
x′) ≤ ρ

(
x′) ≤ cd

(
x′)

with positive constants c and c (cf. [, Chapter VI, § .]). Moreover, ρ satisfies the
inequality

∣∣∂α
x′ρ

(
x′)∣∣ ≤ cr

(
x′)–|α|. ()

We consider the function

v
(
x′, y′, t

)
= χ

(
x′, t

)
ρ
(
x′)∂xj∂γ

y′∂
k
t Rσ

(
x′, y′, t

)

for  ≤ j ≤ m. It follows from the equation �x′Rσ = ∂tRσ ′ that

�x′v = f + f + f,

http://www.boundaryvalueproblems.com/content/2012/1/142
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where f = χρ∂xj∂
γ

y′∂
k+
t Rσ ′ , f = (�x′ (χρ))∂xj∂

γ

y′∂
k
t Rσ and f = ∇x′ (χρ) · ∇x′∂xj∂

γ

y′∂
k
t Rσ .

Using () and (), we obtain

∥∥f(·, y′, t
)∥∥

V
p,β (K ) ≤ ct–k–(m+|γ |+σ )/

( |y′|
|y′| +√

t

)λ+ –|γ |–ε(d(y′)
|y′|

)–εγ

exp

(
–

κ|y′|
t

)
.

Let χ(x′, t) = χ (|x′|/(√t)). The inequalities |�x′ (χρ)| ≤ cr– and |∇x′ (χρ)| ≤ c yield

∥∥f(·, y′, t
)∥∥

V
p,β (K ) +

∥∥f(·, y′, t
)∥∥

V
p,β (K )

≤ c
∥∥χ(·, t)∂γ

y′∂
k
t Rσ

(·, y′, t
)∥∥

V
p,β (K )

≤ ct–k–(m+|γ |+σ )/
( |y′|

|y′| +√
t

)λ+ –|γ |–ε(d(y′)
|y′|

)–εγ

exp

(
–

κ|y′|
t

)

(see ()). Consequently by [, Theorem .], the function v = χρ∂xj∂
γ

y′∂
k
t Rσ satisfies the

estimate

∥∥v(·, y′, t
)∥∥

V
p,β (K ) ≤ c‖f + f + f‖V

p,β (K )

≤ ct–k–(m+|γ |+σ )/
( |y′|

|y′| +√
t

)λ+ –|γ |–ε(d(y′)
|y′|

)–εγ

exp

(
–

κ|y′|
t

)
.

Applying Lemma . to the function u(x′, y′, t) = χ(x′, t)∂α
x′∂

γ

y′∂
k
t Rσ (x′, y′, t) with an arbi-

trary multi-index α with length |α| = , we get

sup
x′∈K

d
(
x′)m/p∣∣x′∣∣β ∣∣χ

(
x′, t

)
∂α
x′∂

γ

y′∂
k
t Rσ

(
x′, y′, t

)∣∣

≤ c
(∫

K
rpβ

(∣∣(ρ∇x′χ∂
α
x′∂

γ

y′∂
k
t Rσ

)(
x′, y′, t

)∣∣p + ∣∣(χ∂
α
x′∂

γ

y′∂
k
t Rσ

)(
x′, y′, t

)∣∣p)dx′
)/p

≤ c
(∥∥(

χρ∇x′∂γ

y′∂
k
t Rσ

)(·, y′, t
)∥∥

V
p,β (K ) +

∥∥(
χ∂

γ

y′∂
k
t Rσ

)(·, y′, t
)∥∥

V
p,β (K )

)

≤ ct–k–(m+|γ |+σ )/
( |y′|

|y′| +√
t

)λ+ –|γ |–ε(d(y′)
|y′|

)–εγ

exp

(
–

κ|y′|
t

)

for |α| = , |γ | ≤ , p >m. Since p can be chosen arbitrarily large, the estimate () holds
in the case |α| = . The proof is complete. �

2 Asymptotics of solutions of the problem inD
Now we consider the problem (), () in the domain D. Throughout this section, it is
assumed that f ∈ Lp,q;β (D ×R), where p and β satisfy the inequalities

 – β –m/p > λ–
 =  –m – λ+

 and  – β –m/p �= λ+
j for j = , , . . . , ()

and q is an arbitrary real number > . Let G(x′, y′, t) be the Green function of the problem
(), (). Furthermore, let


(
x′′, y′′, t

)
= (π t)(m–n)/ exp

(
–

|x′′ – y′′|
t

)

http://www.boundaryvalueproblems.com/content/2012/1/142
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be the fundamental solution of the heat equation in R
n–m. Then

G(x, y, t) =G
(
x′, y′, t

)


(
x′′, y′′, t

)

is the Green function of the problem (), (). We consider the solution

u(x, t) =
∫ t

–∞

∫
D
G(x, y, t – τ )f (y, τ )dydτ ()

of the problem (), ().
We again denote by Gσ (x′, y′, t) the function () introduced in Section . In the sequel,

σ is an arbitrary real number such that

σ >  – β –m/p, λ+
j /∈ [ – β –m/p,σ ] for all j ()

and

mj =
[

σ – λ+
j



]
=

[ – β – λ+
j –m/p



]
for λ+

j <  – β –m/p. ()

Then Gσ (x′, y′, t) =G–β–m/p(x′, y′, t). Let χ be an infinitely differentiable function on R+ =
(,∞) equal to one on the interval (, ) and vanishing on (,∞). We define

χ
(
x′, y′) = χ

( |x′|
|y′|

)
, χ

(
x′, t, τ

)
= χ

( |x′|√
t – τ

)
.

Obviously,

u = � + v,

where

�(x, t) =
∫ t

–∞

∫
D

χχGσ

(
x′, y′, t – τ

)


(
x′′, y′′, t – τ

)
f (y, τ )dydτ , ()

v(x, t) =
∫ t

–∞

∫
D

(
G

(
x′, y′, t – τ

)
– χχGσ

(
x′, y′, t – τ

))

× 
(
x′′, y′′, t – τ

)
f (y, τ )dydτ . ()

We also consider the decomposition

u = �′ +w,

where

�′ =
∑

λ+j <–β–m/p

u(mj)
j

(
x′, ∂t –�x′′

)
Hj(x, t) ()

and

Hj(x, t) =
∫ t

–∞

∫
D

χ
(
x′, y′)χ

(
x′, t, τ

)
cj
(
y′, t – τ

)


(
x′′, y′′, t – τ

)
f (y, τ )dydτ ()

http://www.boundaryvalueproblems.com/content/2012/1/142
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is an extension of the function

hj
(
x′′, t

)
=

∫ t

–∞

∫
D
cj
(
y′, t – τ

)


(
x′′, y′′, t – τ

)
f (y, τ )dydτ ()

with cj defined by (). Our goal is to show that both remainders v and w are elements of
the spaceW ,

p,q;β (D ×R). We start with the case p = q.

2.1 Estimates in weighted Lp Sobolev spaces
LetW l,l

p,q;β (D ×R) be the weighted Sobolev space with the norm (). Furthermore, let

W l,l
p;β (D ×R) =W l,l

p,p;β (D ×R), Lp;β (D ×R) =W ,
p;β (D ×R).

In this subsection, we assume that f ∈ Lp;β (D × R), where p and β satisfy (). First, we
prove that � –�′ ∈ W ,

p;β (D ×R). This was shown in [, Corollary .] for the case ∂� ∈
C∞. In the case ∂� ∈ C,, we must keep in mind that the second-order derivatives of the
eigenfunctions φj must not be bounded. Then we have the estimate

∣∣∂α
x′φj(ωx)

∣∣ ≤ c
∣∣x′∣∣–|α|

(
d(x′)
|x′|

)–εα

()

for |α| ≤ , where εα =  for |α| ≤  and εα is an arbitrarily small positive real number if
|α| ≤ . However, this requires only a small modification of the proof in [].

Lemma . Suppose that f ∈ Lp,β (D ×R). Then ∂α
x ∂k

t (� –�′) ∈ Lp;β–+|α|+k(D ×R) and

∥∥∂α
x ∂k

t
(
� –�′)∥∥

Lp;β–+|α|+k (D×R) ≤ c‖f ‖Lp,β (D×R)

for |α| ≤  and all k.

Proof A simple calculation (see the proof of [, Corollary ]) yields

� –�′ = –
∑
λ+j <σ

∫ t

–∞

∫
D

χ
(
x′, y′)([u(mj)

j
(
x′, ∂t

)
,χ

]
cj
(
y′, t – τ

))

× 
(
x′′, y′′, t – τ

)
f (y, τ )dydτ ,

where [u(mj)
j (x′, ∂t),χ] = u(mj)

j (x′, ∂t)χ – χu
(mj)
j (x′, ∂t) denotes the commutator of

u(mj)
j (x′, ∂t) and χ. Obviously, the inequalities

∣∣x′∣∣ ≤ 
∣∣y′∣∣ and

√
t – τ ≤ ∣∣x′∣∣ ≤ 

√
t – τ

are satisfied on the support of the kernel

Kj(x, y, t, τ ) = χ
(
x′, y′)([u(mj)

j
(
x′, ∂t

)
,χ

]
cj
(
y′, t – τ

))


(
x′′, y′′, t – τ

)
. ()

Since, moreover, the eigenfunctions φj satisfy the inequality () for |α| ≤ , we obtain

∣∣∂α
x ∂k

t Kj(x, y, t, τ )
∣∣ ≤ c(t – τ )–n/

(
d(x′)
|x′|

)–ε∣∣x′∣∣–|α|–k–σ ∣∣y′∣∣σ exp
(
–

|y′| + |x′′ – y′′|
(t – τ )

)
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for |α| ≤ . Using Hölder’s inequality, we obtain

∣∣∂α
x ∂k

t
(
� –�′)(x, t)∣∣ ≤ c

(
d(x′)
|x′|

)–ε∣∣x′∣∣–|α|–k–σA/pB/p′
,

where

A =
∫ t–|x′|/

t–|x′|

∫
D
(t – τ )–n/

∣∣y′∣∣pβ ∣∣f (y, τ )∣∣p exp
(
–

|y′| + |x′′ – y′′|
(t – τ )

)
dydτ

and

B =
∫ t–|x′|/

t–|x′|

∫
D

|y′|>|x′|/
(t – τ )–n/

∣∣y′∣∣p′(σ–β)
exp

(
–

|y′| + |x′′ – y′′|
(t – τ )

)
dydτ .

The substitution y′ = z′√t – τ , y′′ = x′′ + z′′√t – τ yields

B ≤ c
∫ t–|x′|/

t–|x′|
(t – τ )p

′(σ–β)/ dτ

∫
|z′|>/

∣∣z′∣∣p′(σ–β)
exp

(
–

|z′|


)
dz′

×
∫
Rn–m

exp

(
–

|z′′|


)
dz′′,

i.e., B ≤ c|x′|p′(σ–β)+. Consequently,

∫
R

∫
D

∣∣x′∣∣p(β–+|α|+k)∣∣∂α
x ∂k

t
(
� –�′)(x, t)∣∣p dxdt

≤ c
∫
R

∫
D

∣∣x′∣∣–(d(x′)
|x′|

)–pε∣∣A(x, t)∣∣dxdt

≤ c
∫
R

∫
D

∣∣y′∣∣pβ ∣∣f (y, τ )∣∣pD(y, τ )dydτ ,

where

D(y, τ ) =
∫ τ+|y′|

τ

∫
D√

t–τ<|x′|<√t–τ

∣∣x′∣∣–(d(x′)
|x′|

)–pε

(t – τ )–n/

× exp

(
–

|y′| + |x′′ – y′′|
(t – τ )

)
dxdt.

Substituting x′ = z′√t – τ and x′′ = y′′ + z′′√t – τ , we obtain

D(y, τ ) =
∫ τ+|y′|

τ

(t – τ )– exp
(
–

|y′|
(t – τ )

)
dt

∫
K

<|z′|<

∣∣z′∣∣–(d(z′)
|z′|

)–pε

dz′.

This means that D(y, τ ) is a constant. This proves the lemma. �

Next, we estimate the first-order x-derivatives of the remainder v. For this, we employ
the following lemma (cf. [, Lemma A.]).
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Lemma . Let K be the integral operator

(Kf )(x, t) =
∫ t

–∞

∫
Rn

K(x, y, t, τ )f (y, τ )dydτ ()

with a kernel K(x, y, t, τ ) satisfying the estimate

|K | ≤ c(t – τ )–(n+–r)/
( |x′|

|x′| +√
t – τ

)a+r( |y′|
|y′| +√

t – τ

)b |x′|μ–r
|y′|μ exp

(
–κ|x – y|

t – τ

)
,

where κ > ,  < r ≤ , a + b > –m, –m
p – a < μ < m – m

p + b. Then K is bounded on
Lp(Rn ×R).

In the proof of the following assertion, we use another decomposition of the remainder
v as in [, Lemma .]. This allows us to apply directly the estimate in Theorem ..

Lemma . Let p and β satisfy the condition (). Furthermore, let v be the function (),
where f ∈ Lp;β (D ×R),  < p < ∞. Then ∂α

x v ∈ Lp;β–+|α|(D ×R) for |α| ≤  and

∑
|α|≤

∥∥∂α
x v

∥∥
Lp;β–+|α|(D×R) ≤ c‖f ‖Lp;β (D×R)

with a constant c independent of f . The same is true for the function w.

Proof Obviously,

v =
∑
j=

∫ t

–∞

∫
D

�j(x, y, t, τ )f (y, τ )dydτ ,

where

�(x, y, t, τ ) = χ
(
x′, t, τ

)
(G –Gσ )

(
x′, y′, t – τ

)


(
x′′, y′′, t – τ

)
,

�(x, y, t, τ ) =
(
 – χ

(
x′, t, τ

))
G

(
x′, y′, t – τ

)


(
x′′, y′′, t – τ

)

and

�(x, y, t, τ ) =
(
 – χ

(
x′, y′))χ

(
x′, t, τ

)
Gσ

(
x′, y′, t – τ

)


(
x′′, y′′, t – τ

)
.

We show that the integral operators with the kernels

K (α)
j (x, y, t, τ ) =

∣∣x′∣∣β–+|α|∣∣y′∣∣–β
∂α
x �j(x, y, t, τ )

are bounded in Lp(D ×R) for j = , ,  and |α| ≤ . Using Theorem ., we get

∣∣K (α)
 (x, y, t, τ )

∣∣ ≤ c
|x′|β–+|α|

|y′|β (t – τ )–(n+|α|)/
( |x′|√

t – τ

)σ–|α|( |y′|
|y′| +√

t – τ

)λ+ –ε

× exp

(
–

κ|x – y|
t – τ

)
,
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where ε is an arbitrarily small positive number. Applying Lemma .with r = – |α|,μ = β ,
a = σ – , b = λ+

 – ε, we conclude that the integral operator with the kernel K (α)
 (x, y, t, τ )

is bounded in Lp(D ×R) for |α| ≤ .
Since |x′| ≤ |x′| +√

t – τ ≤ |x′| on the support of K (α)
 , the estimate () implies

∣∣K (α)
 (x, y, t, τ )

∣∣ ≤ c
|x′|β–+|α|

|y′|β (t – τ )–(n+|α|)/
( |x′|

|x′| +√
t – τ

)a( |y′|
|y′| +√

t – τ

)λ+ –ε

× exp

(
–

κ|x – y|
t – τ

)

with arbitrary real a. Thus, by Lemma ., the integral operatorwith the kernelK(x, y, t, τ )
is bounded in Lp(D ×R) for |α| ≤ .
We consider the kernel K (α)

 . Since Gσ (x′, y′, t) has the form

Gσ

(
x′, y′, t

)
=

∑
λ+j <σ

mj∑
k=

cj,k
∣∣x′∣∣λ+j +k∣∣y′∣∣λ+j φj(ωx)φj(ωy)∂k

t t
–λ+j –m/ exp

(
–

|y′|
t

)
,

we get the representation

K (α)


(
x′, y′, t, τ

)
=

∑
λ+j <σ

mj∑
k=

Kj,k(x, y, t, τ ),

where

∣∣Kj,k(x, y, t, τ )
∣∣ ≤ c

|x′|β–+|α|

|y′|β
∣∣x′∣∣λ+j +k–|α|∣∣y′∣∣λ+j (t – τ )–k–λ+j –n/ exp

(
–

κ|x – y|
t – τ

)
.

Here we used the fact that |y′| ≤ |x′| ≤ 
√
t – τ on the support of the function ( – χ)χ.

The inequalities |y′| ≤ |x′| ≤ 
√
t – τ and λ+

j + k ≤ σ imply

∣∣Kj,k(x, y, t, τ )
∣∣ ≤ c

|x′|β–+|α|

|y′|β (t – τ )–(n+|α|)/
( |x′|√

t – τ

)σ–|α|( |y′|√
t – τ

)λ+ –σ

× exp

(
–

κ|x – y|
t – τ

)
.

It is no restriction to assume that σ < λ+
 + m – β – m/p in addition to () and ().

Therefore, we can apply Lemma . with r =  – |α|, a = σ –  and b = λ+
 – σ to the

integral operator with the kernel Kj,k . It follows that the integral operator with the kernel
K (α)
 (x, y, t, τ ) is bounded in Lp(D×R) for |α| ≤ . Consequently, the integral operator with

the kernel

K (α)(x, y, t, τ ) =
∑
j=

K (α)
j (x, y, t, τ ) =

|x′|β–+|α|

|y′|β
∑
j=

∂α
x �j(x, y, t, τ )

is bounded in Lp(D ×R) for |α| ≤ . This proves the lemma. �
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Furthermore, the assertions of [, Lemmas ., ., Theorem .] are also valid if ∂�

is only of the class C,. The proof under this weaker assumption on � does not require
any modifications of the method in []. We give here only the formulation of [, Theo-
rem .].

Theorem . Let f ∈ Lp;β (D × R), where p and β satisfy the condition (). Then there
exists a solution of the problem (), () which has the form

u =
∑

λ+j <–β–m/p

u(mj)
j

(
x′, ∂t –�x′′

)
Hj(x, t) +w,

where w ∈ W ,
p;β (D × R) and u(k)j , mj, Hj are given by (), () and (), respectively. The

functions Hj depend only on |x′|, x′′ and t and satisfy the estimates

∥∥∂k
t ∂

γ

x′′Hj
∥∥
Lp;β+λ+j +k+|γ |–(D×R) ≤ ck,γ ‖f ‖Lp;β (D×R) ()

for k + |γ | >  – β – λ+
j –m/p and

∥∥∂k
t ∂

α
x′∂

γ

x′′Hj
∥∥
Lp;β+λ+j +k+|α|+|γ |–(D×R) ≤ ck,α,γ ‖f ‖Lp;β (D×R) ()

for all k, α, γ , |α| ≥ .

2.2 Weighted Lp,q estimates for the remainder
We assume now that f ∈ Lp,q;β (D ×R) and consider the decomposition

u = �′ +w

of the solution (), where�′ is defined by (). Our goal is to show thatw ∈W ,
p,q;β (D×R)

if p and β satisfy the condition (). For the proof, we will use the next lemma which
follows directly from [, Theorem .].

Lemma . Suppose that K is a linear operator on Lp(Rn × R) satisfying the following
conditions:

(i) ‖Kh‖Lp(Rn×R) ≤ c‖h‖Lp(Rn×R) for all h ∈ Lp(Rn ×R),
(ii)

∫
|t–t|>δ ‖(Kh)(·, t)‖Lp(Rn) dt ≤ c

∫
R

‖h(·, t)‖Lp(Rn) dt for all δ >  and for all functions
h with support in the layer |t – t| < δ such that

∫
R
h(x, t)dt ≡  .

Then the inequality

‖Kh‖Lp,q(Rn×R) ≤ c‖h‖Lp,q(Rn×R)

holds for arbitrary q,  < q < p. Here the constant c depends only on c, c, p and q.

The condition (ii) of the last lemma can be verified in some cases by means of the fol-
lowing lemma (cf. [, Lemma ]).
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Lemma . Suppose that the kernel of the integral operator () satisfies the estimate

∣∣K(x, y, t, τ )
∣∣

≤ c
δ

(t – τ )(n+–r)/

( |x′|
|x′| +√

t – τ

)a+r( |y′|
|y′| +√

t – τ

)b(d(x′)
|x′|

)–ε(d(y′)
|y′|

)–ε

× |x′|μ–r
|y′|μ exp

(
–κ|x – y|

t – τ

)

for t > t + δ, |τ – t| ≤ δ, where κ > ,  ≤ r ≤ , a + b > –m, –m
p – a < μ < m – m

p + b,
 ≤ ε < /p,  ≤ ε <  – /p. Then

∫ ∞

t+δ

∥∥(Kh)(·, t)∥∥Lp(D) dt ≤ c‖h‖Lp,(D×R)

for all h ∈ Lp,(D×R) with support in the layer |t – t| ≤ δ.Here, the constant c is indepen-
dent of t and δ.

It is more easy to estimate the remainder v = u –�, where � is defined by (). For this
reason, we estimate the difference � –�′ first.

Lemma . Let � and �′ be the functions () and (), respectively. If f ∈ Lp,q;β (D×R),
then ∂k

t ∂
α
x (� –�′) ∈ Lp,q;β–+k+|α|(D ×R) and

∥∥∂k
t ∂

α
x
(
� –�′)∥∥

Lp,q;β–+k+|α|(D×R) ≤ ck,α‖f ‖Lp;β (D×R)

for all k and α, |α| ≤ .Here, the constants ck,α are independent of f . In particular,�–�′ ∈
W ,

p,q;β (D ×R).

Proof We have

� –�′ = –
∑
λ+j <σ

∫ t

–∞

∫
D
Kj(x, y, t, τ )f (y, τ )dydτ ,

where Kj is given by (). Let Kj,k,α be the integral operator with the kernel

Kj,k,α(x, y, t, τ ) =
∣∣x′∣∣β–+k+|α|∣∣y′∣∣–β

∂α
x ∂k

t Kj(x, y, t, τ ),

where |α| ≤ . As was shown in the proof of Lemma ., this operator is bounded in
Lp(D ×R). Now let h be a function in Lp,(D × R) with support in the layer |t – t| ≤ δ

satisfying the condition
∫
R
h(x, t)dt ≡ . Then

(Kj,k,αh)(x, t) =
∫ t

–∞

∫
D

(∫ τ

t

∂

∂s
Kj,k,α(x, y, t, s)ds

)
h(y, τ )dydτ .

Analogously to the proof of Lemma ., we obtain

∣∣∣∣ ∂

∂s
Kj,k,α(x, y, t, s)

∣∣∣∣ ≤ c(t – s)––n/
(
d(x′)
|x′|

)–ε |x′|β–σ–

|y′|β–σ
exp

(
–

|x – y|
(t – s)

)
()
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for |α| ≤ . Since |x′| ≤ |x′|+√
t – s ≤ |x′| and |y′| ≤ |y′|+√

t – s ≤ |y′| on the support of
Kj,k,α(x, y, t, s), we can append the factors

( |x′|
|x′| +√

t – s

)a

and
( |y′|

|y′| +√
t – s

)b

with arbitrary exponents a and b on the right-hand side of (). For t > t +δ and |τ – s| <
|τ – t| < δ, we obviously have (t – τ )/ < t – s < (t – τ ). Consequently,

∣∣∣∣
∫ τ

t

∂

∂s
Kj,k,α(x, y, t, s)ds

∣∣∣∣ ≤ c
δ

(t – τ )+n/

(
d(x′)
|x′|

)–ε |x′|β–σ–

|y′|β–σ

×
( |x′|

|x′| +√
t – τ

)a( |y′|
|y′| +√

t – τ

)b

exp

(
–

|x – y|
(t – s)

)

for t > t+δ and |τ –t| < δ, where a and b are arbitrary real numbers and ε is an arbitrarily
small positive real number. Hence, by Lemmas . and ., the operator Kj,k,α is bounded
in Lp,q(D ×R) for  < q ≤ p.
We consider the operator K̃j,k,α with the kernel

K̃j,k,α(x, y, t, τ ) = Kj,k,α(y,x, –τ , –t) = (–)k
|y′|β–+k+|α|

|x′|β ∂k
τ ∂α

y Kj(y,x, –τ , –t).

It follows from the boundedness of the operator Kj,k,α in Lp that K̃j,k,α is bounded in
Lp′ (D ×R), p′ = p/(p – ). Furthermore, one can check that

∣∣∣∣
∫ τ

t

∂

∂s
K̃j,k,α(x, y, t, s)ds

∣∣∣∣ ≤ c
δ

(t – τ )+n/

(
d(y′)
|y′|

)–ε |x′|σ–β

|y′|σ–β+

×
( |x′|

|x′| +√
t – τ

)a( |y′|
|y′| +√

t – τ

)b

exp

(
–

|x – y|
(t – s)

)

with arbitrary a and b. Thus, as in the first part of the proof, we conclude that K̃j,k,α (and
therefore also the adjoint operator ofKj,k,α) is bounded in Lp′ ,q′ (D×R) for  < q′ < p′. This
means that Kj,k,α is bounded in Lp,q(D ×R) for all p,q > . The lemma is proved. �

By means of Lemma ., it is also possible to prove the assertion of [, Theorem .]
under the weaker assumption on � of the present paper.

Theorem . Let f ∈ Lp,q;β (D × R), where p and β satisfy the condition () and q is an
arbitrary real number,  < q <∞. Then there exists a solution of the problem (), () which
has the form

u =
∑

λ+j <–β–m/p

u(mj)
j

(
x′, ∂t –�x′′

)
Hj(x, t) +w,

where u(mj)
j , Hj are given by () and (), respectively, and w ∈ W ,

p,q;β (D × R). The func-
tions Hj are extensions of the functions () depending only on |x′|, x′′ and t and satisfy the
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estimate

∥∥∂k
t ∂

α
x′∂

γ

x′′Hj
∥∥
Lp,q;β+λ+j +k+|α|+|γ |–(D×R) ≤ ck,α,γ ‖f ‖Lp,q;β (D×R) ()

for all k,α,γ such that |α| ≥  or k + |γ | >  – β – λ+
j –m/p.

Proof We have to show that the integral operator K(k,α) with the kernel

K (k,α)(x, y, t, τ ) =
|x′|β–+k+|α|

|y′|β ∂k
t ∂

α
x (G – χχGσ )

(
x′, y′, t – τ

)


(
x′′, y′′, t – τ

)

is bounded in Lp,q(D × R) for k + |α| ≤ . For p = q this is true by Theorem .. Let �,
�, and � be the same functions as in the proof of Lemma . and let

K (k,α)
j (x, y, t, τ ) =

∣∣x′∣∣β–+k+|α|∣∣y′∣∣–β
∂α
x ∂k

t �j(x, y, t, τ ).

Then K (k,α) = K (k,α)
 + K (k,α)

 + K (k,α)
 . We show that the operators K (k,α)

j satisfy the condi-
tion (ii) of Lemma.. Let h be a function in Lp,(D×R) with support in the layer |t–t| ≤ δ

satisfying the condition
∫
R
h(x, t)dt =  for all x. Then

(
K(k,α)

j h
)
(x, t) =

∫ t

–∞

∫
D

(∫ τ

t

∂

∂s
K (k,α)
j (x, y, t, s)ds

)
h(y, τ )dydτ .

Using Theorem ., we get

∣∣∂sK (k,α)
 (x, y, t, s)

∣∣

≤ c(t – s)–k––(n+|α|)/
( |x′|

|x′| +√
t – s

)σ–|α|( |y′|
|y′| +√

t – s

)λ+ –ε

×
(
d(x′)
|x′|

)–ε |x′|β–+k+|α|

|y′|β exp

(
–

κ|x – y|
t – s

)
.

Thus,

∣∣∣∣
∫ τ

t

∂

∂s
K (k,α)
 (x, y, t, s)ds

∣∣∣∣

≤ c
δ

(t – τ )(n+k+|α|+)/

( |x′|
|x′| +√

t – τ

)σ–|α|( |y′|
|y′| +√

t – τ

)λ+ –ε

×
(
d(x′)
|x′|

)–ε |x′|β–+k+|α|

|y′|β exp

(
–

κ|x – y|
(t – τ )

)

for t > t + δ and |τ – t| < δ. Applying Lemma . with r = –k – |α|, a = σ +k – and
b = λ+

 – ε, we conclude that

∫ ∞

t+δ

∥∥(
K(k,α)

j h
)
(·, t)∥∥Lp(D) dt ≤ c‖h‖Lp,(D×R) ()
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for j =  and k + |α| ≤ . Analogously, the estimate () yields

∣∣∣∣
∫ τ

t

∂

∂s
K (k,α)
 (x, y, t, s)ds

∣∣∣∣ ≤ c
δ

(t – τ )(n+k+|α|+)/

( |x′|
|x′| +√

t – τ

)a( |y′|
|y′| +√

t – τ

)λ+ –ε

×
(
d(x′)
|x′|

)–ε |x′|β–+k+|α|

|y′|β exp

(
–

κ|x – y|
(t – τ )

)

for t > t + δ and |τ – t| < δ, where a is an arbitrary real number. Here, we used the fact
that |x′| ≤ |x′|+√

t – τ ≤ |x′| on the support of K (k,α)
 . Thus, by Lemma ., the inequality

() holds for j =  and k + |α| ≤ .
Analogously to the estimation of the kernel K (α)

 in the proof of Lemma ., we obtain
the estimate

∣∣∣∣
∫ τ

t

∂

∂s
K (k,α)
 (x, y, t, s)ds

∣∣∣∣ ≤ c
δ

(t – τ )(n++k+|α|)/

( |x′|√
t – τ

)σ–|α|( |y′|√
t – τ

)λ+ –σ

×
(
d(x′)
|x′|

)–ε |x′|β–+k+|α|

|y′|β exp

(
–

κ|x – y|
t – τ

)

by means of (). We may assume, without loss of generality, that σ < λ+
 +m – β –m/p

in addition to () and (). Then we conclude from Lemma . that () is valid for j = 
and k + |α| ≤ . Hence, by Lemma ., the operator K(k,α) is bounded in Lp,q(D ×R) for
 < q ≤ p if k + |α| ≤ .
In order to prove this for q > p, we consider the adjoint operator. Let K̃(k,α) and K̃(k,α)

j be
the integral operators with the kernels

K̃ (k,α)(x, y, t, τ ) = K (k,α)(y,x, –τ , –t) and K̃ (k,α)
j (x, y, t, τ ) = K (k,α)

j (y,x, –τ , –t),

respectively. From the boundedness ofK(k,α) in Lp(D×R) it follows that K̃(k,α) is bounded
in Lp′ (D ×R), p′ = p/(p – ). We show that

∫
|t–t|>δ

∥∥(
K̃(k,α)

j h
)
(·, t)∥∥Lp(D) dt ≤ c

∫
R

∥∥h(·, t)∥∥Lp(D) dt ()

for all δ > , j = , ,  and for all functions h with support in the layer |t – t| < δ such that∫
R
h(·, t)dt = . Let h be such a function. Then

(
K̃(k,α)

j h
)
(x, t) =

∫ t

–∞

∫
D

(∫ τ

t

∂

∂s
K̃ (k,α)
j (x, y, t, s)ds

)
h(y, τ )dydτ .

By means of ., we obtain

∣∣∣∣
∫ τ

t

∂

∂s
K̃ (k,α)
 (x, y, t, s)ds

∣∣∣∣

≤ c
δ

(t – τ )(n++k+|α|)/

( |x′|
|x′| +√

t – τ

)λ+ –ε( |y′|
|y′| +√

t – τ

)σ–|α|

×
(
d(y′)
|y′|

)–ε |x′|–β

|y′|–β+–k–|α| exp
(
–

κ|x – y|
t – τ

)
.
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Analogously, the estimate () implies

∣∣∣∣
∫ τ

t

∂

∂s
K̃ (k,α)
 (x, y, t, s)ds

∣∣∣∣ ≤ c
δ

(t – τ )(n++k+|α|)/

( |x′|
|x′| +√

t – τ

)λ+ –ε( |y′|
|y′| +√

t – τ

)a

×
(
d(y′)
|y′|

)–ε |x′|–β

|y′|–β+–k–|α| exp
(
–

κ|x – y|
t – τ

)
,

where a is an arbitrary real number, since |y′| ≤ |y′| +√
t – τ ≤ |y′| on the support of the

function K̃ (k,α)
 (x, y, t, τ ). Applying Lemma ., we obtain () for k + |α| ≤  and j ≤ .

Using the representation for Gσ , the estimate (), and the fact that |x′| ≤ |y′| ≤ 
√
t – τ

on the support of K̃ (k,α)
 (x, y, t, τ ), we obtain

∣∣∣∣
∫ τ

t

∂

∂s
K̃ (k,α)
 (x, y, t, s)ds

∣∣∣∣ ≤ c
δ

(t – τ )(n++k)/

( |x′|
|x′| +√

t – τ

)λ+ –σ ( |y′|
|y′| +√

t – τ

)σ

×
(
d(y′)
|y′|

)–ε |x′|–β

|y′|–β+–k exp

(
–

κ|x – y|
t – τ

)
.

We may assume again that σ < λ+
 +m– β –m/p in addition to () and (). Then it fol-

lows from Lemma . that () is valid for j =  and k + |α| ≤ . Therefore, by Lemma .,
the operator K̃(k,α) is bounded in Lp′ ,q′ (D × R) for  < q′ < p′ if k + |α| ≤ . This means
that K(k,α) is bounded in Lp,q(D ×R) for all q if k + |α| ≤ . The proof of the theorem is
complete. �

3 Another representation for the coefficients
As was proved [, Lemma .], the functions Hj in Theorem . can be replaced by other
extensions H̃j of the functions hj(x′′, t) provided these extensions also satisfy the condi-
tions () and (). Note that the proof of this assertion in [] is also correct under our
assumptions on the boundary of �. Moreover, it was proved in [, Lemma .], for the
particular case p = q, that the extension

H̃j(x, t) = (Ehj)(x, t) =
∫ ∞



∫
Rn–m

T(τ )R
(
z′′)hj(x′′ – rz′′, t – rτ

)
dz′′ dτ

satisfies the conditions () and (). Here T(τ ) is a smooth function with support in
[,∞) satisfying the conditions

∣∣∂k
τ T(τ )

∣∣ ≤ ck,Mτ–M exp
(
–κτ–) for allM > ,

with certain positive constants ck,M , κ and

∫
T(τ )dτ = ,

∫
T(τ )τ k dτ =  for k = , , . . . .

Furthermore, R is a smooth function with support on the cube [, (n –m)–/]n–m having
the form

R
(
x′′) = R(xm+, . . . ,xn) =

n∏
j=m+

ψ(xj),
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where
∫
R

ψ(s)ds = ,
∫
R

sjψ(s)ds =  for j = , , . . . ,N ()

with a sufficiently large integer N.
We extend the result of [, Lemma .] to the case q �= p. First, note that Ehj =Kjf , where

Kj is the integral operator

(Kjf )(x, t) =
∫ t

–∞

∫
D
Kj(x, y, t – τ )f (y, τ )dydτ

with the kernel

Kj(x, y, t) = rm–n–
∫ t



∫
Rn–m

T
(
t – s
r

)
R
(
x′′ – z′′

r

)
cj
(
y′, s

)


(
y′′, z′′, s

)
dz′′ ds.

Our goal is to show that the operator

Lp,q;β (D ×R)  f → ∂k
t ∂

α
x′∂

γ

x′′Kjf ∈ Lp,q;β+λ+j +k+|α|+|γ |–(D ×R)

is bounded if |α| ≥  or k + |γ | >  – β – λ+
j –m/p. Since the function (x, t) → (Kjf )(x, t)

depends only on the variables r = |x′|, x′′, and t, it suffices to prove that the operator

Lp,q;β (D ×R)  f → ∂k
t ∂

l
r∂

γ

x′′Kjf ∈ Lp,q;β+λ+j +k+l+|γ |–(D ×R)

is bounded if l ≥  or k + |γ | >  – β – λ+
j –m/p.

We define the operator Kk,l,γ
j as

Kk,l,γ
j h = rβ+λ+j +k+l+|γ |–

∂k
t ∂

l
r∂

γ

x′′Kj
(
r–βh

)
.

This means that Kk,l,γ
j is the integral operator with the kernel

Kk,l,γ
j (x, y, t, τ ) = rβ+λ+j +k+l+|γ |–

ρ–β∂k
t ∂

l
r∂

γ

x′′Kj(x, y, t – τ ),

where r = |x′| and ρ = |y′|. As was shown in [], the operatorKk,l,γ
j is bounded in Lp(D×R)

if l ≥  or k + |γ | > –β –λ+
j –m/p. In order to prove the boundedness in Lp,q(D×R) for

q �= p, we verify the condition (ii) of Lemma .. For this, we apply the following lemma.

Lemma . Suppose that the kernel of the integral operator () satisfies the condition

∣∣K(x, y, t, τ )
∣∣ ≤ c

δ

(t – τ )M/ r
μ+M–n–ρ–μ exp

(
–κ

r + ρ + |x′′ – y′′|
t – τ

)

for t > t +δ, |τ – t| ≤ δ,where r = |x′|, ρ = |y′|, κ > ,M > +n–m and –m
p –M+n+ <

μ <m – m
p . Then

∫ ∞

t+δ

∥∥(Kh)(·, t)∥∥Lp(D) dt ≤ c‖h‖Lp,(D×R)
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for all h ∈ Lp,(D×R) with support in the layer |t – t| ≤ δ.Here, the constant c is indepen-
dent of t and δ.

Proof Obviously,

(
r√
t – τ

)M

≤
(

r
r +

√
t – τ

)M

forM ≤  and

(
r√
t – τ

)M

≤ cmin

(
,

(
r√
t – τ

)M)
exp

(
κr

(t – τ )

)

≤ c
(

r
r +

√
t – τ

)M

exp

(
κr

(t – τ )

)

forM > . Consequently, it follows from our assumption on K that

∣∣K(x, y, t, τ )
∣∣

≤ c
δ

(t – τ )(n+)/

(
r√
t – τ

)M–n– rμ–

ρμ
exp

(
–κ

r + ρ + |x′′ – y′′|
t – τ

)

≤ c
δ

(t – τ )(n+)/

(
r

r +
√
t – τ

)M–n– rμ–

ρμ
exp

(
–κ

r + ρ + |x′′ – y′′|
(t – τ )

)
.

Thus, we can apply Lemma .. �

Wewill show that the operatorKk,l,γ
j satisfies the condition of the last lemma. This leads

to the following assertion.

Lemma . Suppose that p,q ∈ (,∞), λ+
j <  – β –m/p and that at least one of the con-

ditions l ≥  or k + |γ | >  – β – λ+
j –m/p is satisfied. Furthermore, we assume that the

number N in () is greater than  – β – λ+
j –m/p. Then the operator Kk,l,γ

j is bounded in
Lp,q(D ×R).

Proof For the case q = p, we refer to [, Lemma .].
We consider the case  < q < p. Let h ∈ Lp,(D×R) be an arbitrary function with support

in the layer |t– t| < δ such that
∫
h(x, t)dt =  for all x. Then (Kk,l,γ

j h)(x, t) =  for t < t +δ,
while

(
Kk,l,γ

j h
)
(x, t) =

∫ t

–∞

∫
D

(∫ τ

t

∂

∂s
Kk,l,γ
j (x, y, t – s)ds

)
h(y, τ )dydτ ()

for t > t + δ. We verify the condition of Lemma . for the kernel of the last integral op-
erator. To this end, we use the same decomposition

∂k+
t ∂

γ

x′′Kj(x, y, t – s) = �(x, y, t – s) +A(x, y, t – s) +
k∑
i=

Bi(x, y, t – s)
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for the t,x′′-derivatives of Kj(x, y, t – s) as in the proof of [, Lemma .], where

�(x, y, t) =
∫ t/



∫
Rn–m

T (k+)
(
t – ξ

r

)
R(γ )

(
x′′ – z′′

r

)
cj
(
y′, ξ

)


(
y′′, z′′, ξ

) dz′′dξ

rn–m++k+|γ | ,

A(x, y, t) =
∫ t/



∫
Rn–m

T
(

ξ

r

)
R
(
x′′ – z′′

r

)
∂k+
t cj

(
y′, t – ξ

)
∂

γ

z′′
(
y′′, z′′, t – ξ

) dz′′dξ

rn–m+

and

Bi(x, y, t)

= irm–n––k+iT (k–i)
(

t
r

)∫
Rn–m

R
(
x′′ – z′′

r

)
∂ i
t cj

(
y′, t/

)
∂

γ

z′′
(
y′′, z′′, t/

)
dz′′.

Here we used the notation T (k)(t) = ∂k
t T(t) and R(γ )(x′′) = ∂

γ

x′′R(x′′). Applying the estimates

∣∣∣∣∂ l
rr

m–n––k–|γ |T (k+)
(
t – s – ξ

r

)
R(γ )

(
x′′ – z′′

r

)∣∣∣∣
≤ crm–n––k–l–|γ |

(
r

t – s

)M

exp

(
–

κr

t – s

)

and

|y′′ – z′′|
ξ

≥ |y′′ – z′′|
ξ

+
κ|x′′ – y′′|
(t – s)

–
κr

(t – s)

for  ≤ ξ ≤ (t – s)/, |z′′ – x′′| ≤ r and κ ≤ /, we obtain

∣∣∂ l
r�(x, y, t – s)

∣∣ ≤ crm–n––k–l–|γ |ρλ+j

(
r

t – s

)M

exp

(
–κ

r + |x′′ – y′′|
(t – s)

)

×
∫ (t–s)/



∫
Rn–m

ξ
–λ+j –n/ exp

(
–
ρ + |y′′ – z′′|

ξ

)
dz′′ dξ

≤ c
rm–n––k–l–|γ |

ρ
λ+j +m–

(
r

t – s

)M

exp

(
–κ ′ r + ρ + |x′′ – y′′|

t – s

)

with arbitrary positiveM and certain positive κ ′. Furthermore, the estimates

∣∣∣∣∂ l
rr

m–n––k+iT (k–i)
(
t – s
r

)
R
(
x′′ – z′′

r

)∣∣∣∣ ≤ crm–n––k–l+i
(

r

t – s

)M

exp

(
–

κr

t – s

)

and
∣∣∣∣∂ i

t cj
(
y′,

t – s


)
∂

γ

z′′

(
y′′, z′′,

t – s


)∣∣∣∣
≤ c(t – s)–λ+j –i–(n+|γ |)/

ρ
λ+j exp

(
–κ

ρ + |y′′ – z′′|
t – s

)

≤ c(t – s)–λ+j –i–(n+|γ |)/
ρ

λ+j exp

(
–κ

ρ + |y′′ – z′′| + |x′′ – y′′| – r

(t – s)

)
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for |x′′ – z′′| ≤ r with certain positive κ and arbitrary positiveM yield

∣∣∂ l
rBi(x, y, t – s)

∣∣ ≤ c
rm–n––k–l–|γ |

ρ
λ+j +m–

(
r

t – s

)M+i++|γ |/(
ρ

t – s

)λ+j –+m/

× exp

(
–κ

r + ρ + |x′′ – y′′|
(t – s)

)

≤ c
rm–n––k–l–|γ |

ρ
λ+j +m–

(
r

t – s

)M+i++|γ |/
exp

(
–κ

r + ρ + |x′′ – y′′|
(t – s)

)
.

Finally, (cf. formulas (.) and (.) in []), we get the estimates

∣∣A(x, y, t – s)
∣∣ ≤ c(t – s)–λ+j –k––(n+|γ |)/

ρ
λ+j exp

(
–κ

r + ρ + |x′′ – y′′|
t – s

)

≤ c
rm–n––k–|γ |

ρ
λ+j +m–

(
r√
t – s

)n–m++k+|γ |
exp

(
–κ

r + ρ + |x′′ – y′′|
(t – s)

)

and

∣∣∂ l
rA(x, y, t – s)

∣∣ ≤ c(t – s)–λ+j –(n+N+)/rN––k–l–|γ |ρλ+j exp

(
–κ

r + ρ + |x′′ – y′′|
t – s

)

≤ c
rm–n––k–l–|γ |

ρ
λ+j +m–

(
r√
t – s

)n–m+N+

exp

(
–κ

r + ρ + |x′′ – y′′|
(t – s)

)

if l ≥ . Thus,

∣∣∂k+
t ∂ l

r∂
γ

x′′Kj(x, y, t – s)
∣∣

≤ c
rm–n––k–l–|γ |

ρ
λ+j +m–

(
r√
t – s

)M

exp

(
–κ

r + ρ + |x′′ – y′′|
t – s

)
, ()

where

M =

⎧⎨
⎩
n –m +  + k + |γ |, if l = ,

n –m +  +N, if l ≥ .

If t > t + δ, |τ – t| < δ, and s lies between t and τ , we have 
 (t – τ ) < t – s < (t – τ ).

Consequently, it follows from () that

∣∣∣∣
∫ τ

t

∂

∂s
Kk,l,γ
j (x, y, t – s)ds

∣∣∣∣ ≤ c
δ

(t – τ )M/
rβ+λ+j +m–n–+M

ρ
β+λ+j +m– exp

(
–κ

r + ρ + |x′′ – y′′|
t – τ

)

for t > t + δ and |τ – t| < δ. This means that the kernel of the integral operator ()
satisfies the condition of Lemma . ifM > n–m+–β –λ+

j –m/p. Hence, by Lemmas .
and ., the operatorKk,l,γ

j is bounded in Lp,q(D×R) if l ≥  or k + |γ | > –β –λ+
j –m/p.

In order to prove this for q > p, we consider the adjoint operator. Let K̃k,l,γ
j be the integral

operator with the kernel

K̃k,l,γ
j (x, y, t, τ ) = Kk,l,γ

j (y,x, –τ , –t) = ρ
β+λ+j +k+l+|γ |–r–β∂k

t ∂
l
ρ∂

γ

y′′Kj(y,x, t – τ ).
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Since Kk,l,γ
j is bounded in Lp(D × R) under the assumptions of the lemma, the operator

K̃k,l,γ
j is bounded in Lp′ (D × R), where p′ = p/(p – ). Suppose that h ∈ Lp′ ,(D × R) is a

function with support in the layer |t – t| < δ such that
∫
h(x, t)dt =  for all x. Then

(
K̃k,l,γ
j h

)
(x, t) =

∫ t

–∞

∫
D

(∫ τ

t

∂

∂s
K̃k,l,γ
j (x, y, t, s)ds

)
h(y, τ )dydτ

for t > t + δ, where

∂

∂s
K̃k,l,γ
j (x, y, t, s) = –ρ

β+λ+j +k+l+|γ |–r–β∂k+
t ∂ l

ρ∂
γ

y′′Kj(y,x, t – τ ).

As was shown above, the derivatives of Kj satisfy the estimate

∣∣∂k+
t ∂ l

ρ∂
γ

y′′Kj(y,x, t – τ )
∣∣ ≤ c

ρm–n––k–l–|γ |

rλ
+
j +m–

(
ρ√
t – s

)M

exp

(
–κ

r + ρ + |x′′ – y′′|
t – s

)

with the sameM as before. This implies

∣∣∣∣
∫ τ

t

∂

∂s
K̃k,l,γ
j (x, y, t – s)ds

∣∣∣∣ ≤ c
δ

(t – τ )M/
r–m–β–λ+j

ρ
n–m+–β–λ+j –M

exp

(
–κ

r + ρ + |x′′ – y′′|
t – τ

)
.

Therefore, it follows from Lemma . that
∫ ∞

t+δ

∥∥(
K̃k,l,γ

j h
)
(·, t)∥∥Lp′ (D) dt ≤ c‖h‖Lp′ ,(D×R)

for all h ∈ Lp′ ,(D×R) with support in the layer |t– t| ≤ δ if l ≥  or k + |γ | > –β –λ+
j –

m/p. Applying Lemma ., we conclude that K̃k,l,γ
j is bounded in Lp′ ,q′ (D×R) for  < q′ < p′

if l ≥  or k + |γ | >  – β – λ+
j – m/p. Consequently, the operator Kk,l,γ

j is bounded in
Lp,q(D ×R) for p < q < ∞ if l ≥  or k + |γ | >  – β – λ+

j –m/p. The proof is complete. �

Using the last lemma, we obtain the following result which generalizes [, Corollary .].

Theorem . Let f ∈ Lp,q;β (D × R), where p and β satisfy the condition () and q is an
arbitrary real number,  < q <∞. Then there exists a solution of the problem (), () which
has the form

u =
∑

λ+j <–β–m/p

u(mj)
j

(
x′, ∂t –�x′′

)
Ehj +w, ()

where u(mj)
j , hj are given by () and (), respectively, and w ∈W ,

p,q;β (D ×R).

Proof By Lemma ., the functions H̃j = Ehj satisfy the same condition () as the func-
tions Hj in Theorem .. Thus, it follows from [, Lemma .] that

u(mj)
j

(
x′, ∂t –�x′′

)
(Hj – H̃j) ∈W ,

p,q;β (D ×R).

This together with Theorem . implies () with a remainder w ∈ W ,
p,q;β (D ×R). �
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