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1 Introduction
The topic of fractional differential equations has received a great deal of attention from
many scientists and researchers during the past decades; see, for instance, [–]. This is
mostly due to the fact that fractional calculus provides an efficient and excellent instru-
ment to describe many practical dynamical phenomena which arise in engineering and
science such as physics, chemistry, biology, economy, viscoelasticity, electrochemistry,
electromagnetic, control, porousmedia; see [–].Moreover,many researchers study the
existence of solutions for fractional differential equations; see [–] and the references
therein.
In particular, several authors have considered a nonlocal Cauchy problem for abstract

evolution differential equations having fractional order. Indeed, the nonlocal Cauchy
problem for abstract evolution differential equations was studied by Byszewski [, ]
initially. Afterwards, many authors [–] discussed the problem for different kinds of
nonlinear differential equations and integrodifferential equations including functional dif-
ferential equations in Banach spaces. Balachandran et al. [, ] established the exis-
tence of solutions of quasilinear integrodifferential equations with nonlocal conditions.
N’Guérékata [] and Balachandran and Park [] researched the existence of solutions
of fractional abstract differential equations with a nonlocal initial condition. Ahmad []
obtained some existence results for boundary value problems of fractional semilinear evo-
lution equations. Recently, Balachandran and Trujillo [] have investigated the nonlocal
Cauchy problem for nonlinear fractional integrodifferential equations in Banach spaces.
On the other hand, the theory of impulsive differential equations for integer order has

emerged in mathematical modeling of phenomena and practical situations in both physi-
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cal and social sciences in recent years. One can see a significant development in impulsive
theory.We refer the readers to [–] for the general theory and applications of impulsive
differential equations. Besides, some researchers (see [–] and the references therein)
have addressed the theory of boundary value problems for impulsive fractional differential
equations.
However, only a few studies were concernedwith theCauchy problem for impulsive evo-

lution differential equations of fractional order; see [–]. Further, in [], Balachan-
dran et al. studied the existence of solutions for fractional impulsive integrodifferential
equations of the following type:

CDqu(t) = A(t,u)u(t) + f
(
t,u(t),

∫ t


h
(
t, s,u(s)

)
ds
)
,

�u(tk) = Ik
(
u
(
t–k
))
,

u() + g(u) = u,

where  ≤ t ≤ T and  < q < , by using the contraction mapping principle.
Motivated by the aforementioned works, in this paper, we deal with the existence and

uniqueness of solutions for a boundary value problem (BVP), for the following impulsive
fractional semilinear integro-differential equation with nonlocal conditions:⎧⎪⎪⎨⎪⎪⎩

CDqu(t) = A(t)u(t) + f (t,u(t),
∫ t
 k(t, s,u(s))ds), t ∈ J := [, ], t �= tk ,

�u(tk) = Ik(u(t–k )), �u′(tk) = I∗k (u(t
–
k )), k = , , . . . ,p,

αu() + βu′() = g(u), αu() + βu′() = g(u),

(.)

where  < q < , CDα is the Caputo fractional derivative, A(t) is a bounded linear op-
erator on a Banach space X, f ∈ C(J × X × X,X), k ∈ C(k × X,X), Ik , I∗k ∈ C(X,X),
g, g : PC(J ,X) → X (PC(J ,X) will be defined in the next section),

�u(tk) = u
(
t+k
)
– u

(
t–k
)

with

u
(
t+k
)
= lim

h→+
u(tk + h), u

(
t–k
)
= lim

h→–
u(tk + h)

and�u′(tk) has a similar meaning for u′(t),  = t < t < t < · · · < tp < tp+ = , and α,β ≥ .
Here k = {(t, s) :  ≤ s ≤ t ≤ }. For brevity, let us take Ku(t) = ∫ t

 k(t, s,u(s))ds.
Meanwhile, nonlinear functions f of this type with the integral term k occur in mathe-

matical problems that are concerned with the heat flow in materials having memory and
viscoelastic problems; see []. Also, as indicated in [, ], nonlocal conditions can be
more useful than standard conditions to describe physical phenomena. For example, in
[], the author described the diffusion phenomenon of a small amount of gas in a trans-
parent tube by using the formula

g(u) =
m∑
i=

ηiu(ξi),

where ηi, i = , , . . . ,m are given constants and  < ξ < ξ < · · · < ξm < T .
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Note that in this work, to the best of our knowledge, it is the first time that a general
boundary value problem for impulsive semilinear evolution integrodifferential equations
of fractional order  < q <  with nonlocal conditions has been considered.
The rest of this paper is organized as follows. In Section , we present some notations

and preliminary results about fractional calculus and differential equations to be used in
the following sections. In Section , we discuss some existence and uniqueness results for
solutions of BVP (.). Namely, the first result is based on Schauder’s fixed point theorem
and the second one is based on Banach’s fixed point theorem. Finally, we shall give an
illustrative example for our results.

2 Preliminaries
In order to model the real world application, the fractional differential equations are con-
sidered by using the fractional derivatives. There are many different starting points for
the discussion of classical fractional calculus; see, for example, []. One can begin with
a generalization of repeated integration. If f (t) is absolutely integrable on [,b), it can be
found [, ]

∫ t


dtn

∫ tn


dtn– · · ·

∫ t


dt

∫ t


f (t)dt =


(n + )!

∫ t


(t – t)n–f (t)dt

=


(n + )!
tn– ∗ f (t),

where n = , , . . . and  ≤ t ≤ b. On writing �(n) = (n–)!, an immediate generalization in
the form of the operation Iα defined for α >  is

(
Iαf

)
(t) =


�(α)

∫ t


(t – t)α–f (t)dt

=


�(α)
tα– ∗ f (t),  ≤ t < b, (.)

where �(α) is the gamma function and tα– ∗ f (t) =
∫ t
 f (t – t)α–(t)dt is called the con-

volution product of tα– and f (t). Now Eq. (.) is known as a fractional integral of order
α for the function f (t).
Next, we give some basic definitions and properties of fractional calculus theory used

in this paper; see [, , , , ].
Let J = [, t], J = (t, t], . . . , Jk– = (tk–, tk], Jk = (tk , tk+], and J ′ := [,T]\{t, t, . . . , tp},

then we define the set of functions as follows:
PC(J ,X) = {u : J → X : u ∈ C((tk , tk+],X),k = , , , . . . ,p and there exist u(t+k ) and
u(t–k ),k = , , . . . ,p with u(t–k ) = u(tk)} and
PC(J ,X) = {u ∈ PC(J ,X),u′ ∈ C((tk , tk+],X),k = , , , . . . ,p and there exist u′(t+k ) and
u′(t–k ),k = , , . . . ,p with u′(t–k ) = u′(tk)} which is a Banach space with the norm

‖u‖ = sup
t∈J

{‖u‖PC ,
∥∥u′∥∥

PC

}
where ‖u‖PC := sup

{∣∣u(t)∣∣ : t ∈ J
}
.

Now, B(X) denotes the Banach space of bounded linear operators from X into X with the
norm ‖A‖B(X) = sup{‖A(u)‖ : ‖u‖ = }.
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Definition  [, ] The fractional (arbitrary) order integral of the function h ∈ L(J ,R+) of
order q ∈ R+ is defined by

Iq+h(t) =


�(q)

∫ t


(t – s)q–h(s)ds,

where �(·) is the Euler gamma function.

Definition  [, ] For a function h given on the interval J , the Caputo-type fractional
derivative of order q >  is defined by

CDq
+h(t) =


�(n – q)

∫ t


(t – s)n–q–h(n)(s)ds, n = [q] + ,

where the function h(t) has absolutely continuous derivatives up to order (n – ).

Lemma  [] Let q > , then the differential equation

CDqh(t) = 

has the following solution:

h(t) = c + ct + ct + · · · + cn–tn–, ci ∈ R, i = , , , . . . ,n – ,n = [q] + .

Lemma  [] Let q > , then

IqCDqh(t) = h(t) + c + ct + ct + · · · + cn–tn–

for some ci ∈ R, i = , , , . . . ,n – , n = [q] + .

Now, by using the Kronecker convolution product, see [], the fractional integral be-
comes

(
Iαf

)
(x) =


�(α)

xα– ∗ f (x)
 ξT 
�(α)

{
xα– ∗ φm(x)

}
. (.)

Thus, if xα– ∗ φm(x) can be integrated, then expanded in block pulse functions, the frac-
tional integral is solved via the block pulse functions operational matrix as follows:


�(α)

∫ t


(t – t)α–φm(t)dt 
 Fαφm(t),

where

ψm(t) =

⎧⎨⎩ (m–
i )b≤ t < (mi )b,

 elsewhere
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form = , , . . . , i and

Fα =
(
b
m

)α 
�(α + )

⎡⎢⎢⎢⎢⎢⎢⎢⎣

 ξ ξ · · · ξm

  ξ · · · ξm–

   · · · ξm–

  
. . .

...
    

⎤⎥⎥⎥⎥⎥⎥⎥⎦
;

see [].
Now, we need the following lemma for our study.

Lemma  Let  < q <  and h : J → X be continuous. A function u(t) is a solution of the
fractional integral equation

u(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ t


(t–s)q–
�(q) h(s)ds + ( β

α
– t)[

∫ 
tk

(–s)q–
�(q) h(s)ds + β

α

∫ 
tk

(–s)q–
�(q–) h(s)ds

+
∑k

i=(
∫ ti
ti–

(ti–s)q–
�(q) h(s)ds + Ii(u(t–i )))

+
∑k

i=(
β

α
+  – tk)(

∫ ti
ti–

(t–s)q–
�(q–) h(s)ds + I∗i (u(t–i )))

+ 
α
(g(u) – g(u))] + g(u)

α
, t ∈ J,∫ t

tk
(t–s)q–

�(q) h(s)ds +
∑k

i=(
∫ ti
ti–

(ti–s)q–
�(q) h(s)ds + Ii(u(t–i )))

+
∑k

i=(t – ti)
∫ ti
ti–

( (ti–s)
q–

�(q–) h(s)ds + I∗i (u(t–i )))

+ ( β

α
– t)[

∫ 
tk

(–s)q–
�(q) h(s)ds + β

α

∫ 
tk

(–s)q–
�(q–) h(s)ds

+
∑k

i=(
∫ ti
ti–

(ti–s)q–
�(q) h(s)ds + Ii(u(t–i )))

+
∑k

i=(
β

α
+  – tk)(

∫ ti
ti–

(t–s)q–
�(q–) h(s)ds + I∗i (u(t–i )))

+ 
α
(g(u) – g(u))] + g(u)

α
, t ∈ Jk

(.)

if and only if u(t) is a solution of the fractional BVP

CDqu(t) = h(t), t ∈ J ′

�u(tk) = Ik
(
u
(
t–k
))
, �u′(tk) = I∗k

(
u
(
t–k
))
,

αu() + βu′() = g(u), αu() + βu′() = g(u),

(.)

where k = , , . . . ,p.

Proof Let u be the solution of (.). If t ∈ J, then Lemma  implies that

u(t) = Iqh(t) – c – ct =
∫ t



(t – s)q–

�(q)
h(s)ds – c – ct,

u′(t) =
∫ t



(t – s)q–

�(q – )
h(s)ds – c

for some c, c ∈ R.
Applying the boundary condition αu() + βu′() = g(u) for t ∈ J, we find that

u(t) =
∫ t



(t – s)q–

�(q)
h(s)ds + c

(
β

α
– t
)
+
g(u)

α
. (.)
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If t ∈ J, then Lemma  implies that

u(t) =
∫ t

t

(t – s)q–

�(q)
h(s)ds – d – d(t – t),

u′(t) =
∫ t

t

(t – s)q–

�(q – )
h(s)ds – d

for some d,d ∈ R. Thus, we have

u
(
t–
)
=
∫ t



(t – s)q–

�(q)
h(s)ds + c

(
β

α
– t

)
+
g(u)

α
, u

(
t+
)
= –d,

u′(t– ) = ∫ t



(t – s)q–

�(q – )
h(s)ds – c, u′(t+ ) = –d.

In the view of

�u(t) = u
(
t+
)
– u

(
t–
)
= I

(
u
(
t–
))

and �u′(t) = u′(t+ ) – u′(t– ) = I∗
(
u
(
t–
))
,

we have

–d =
∫ t



(t – s)q–

�(q)
h(s)ds + c

(
β

α
– t

)
+
g(u)

α
+ I

(
u
(
t–
))
,

–d =
∫ t



(t – s)q–

�(q – )
h(s)ds – c + I∗

(
u
(
t–
))
.

Hence,

u(t) =
∫ t

t

(t – s)q–

�(q)
h(s)ds +

∫ t



(t – s)q–

�(q)
h(s)ds

+ (t – t)
[∫ t



(t – s)q–

�(q – )
h(s)ds + I∗

(
u
(
t–
))]

+ I
(
u
(
t–
))

+ c
(

β

α
– t
)
+
g(u)

α
, for t ∈ J.

By repeating the process, for t ∈ Jk , we have

u(t) =
∫ t

tk

(t – s)q–

�(q)
h(s)ds +

k∑
i=

[∫ ti

ti–

(ti – s)q–

�(q)
h(s)ds + Ii

(
u
(
t–i
))]

+
k∑
i=

(t – ti)
[∫ ti

ti–

(ti – s)q–

�(q – )
h(s)ds + I∗i

(
u
(
t–i
))]

+ c
(

β

α
– t
)
+
g(u)

α
. (.)

Now, applying the boundary condition

αu() + βu′() = g(u),

http://www.boundaryvalueproblems.com/content/2012/1/145
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we find that

c =
∫ 

tk

( – s)q–

�(q)
h(s)ds +

β

α

∫ 

tk

( – s)q–

�(q – )
h(s)ds

+
k∑
i=

[∫ ti

ti–

(ti – s)q–

�(q)
h(s)ds + Ii

(
u
(
t–i
))]

+
k∑
i=

(
β

α
+  – tk

)[∫ ti

ti–

(ti – s)q–

�(q – )
h(s)ds + I∗i

(
u
(
t–i
))]

+

α

[
g(u) – g(u)

]
.

Substituting the value of c in (.) and (.), we obtain Eq. ..
Conversely, if we assume that u satisfies the impulsive fractional integral equation (.),

then by direct computation, we can easily see that the solution given by (.) satisfies (.).
Thus, the proof of Lemma  is complete. �

3 Main results
Definition  A function u ∈ PC(J ,X) with its q-derivative existing on J ′ is said to be a
solution of (.) if u satisfies the equation

CDqu(t) = A(t)u(t) + f
(
t,u(t),Ku(t)

)
on J ′ and satisfies the conditions

�u(tk) = Ik
(
u
(
t–k
))
, �u′(tk) = I∗k

(
u
(
t–k
))
,

αu() + βu′() = g(u), αu() + βu′() = g(u).

Now, we define the operator T : PC(J ,X)→ PC(J ,X) by

Tu(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ t
tk

(t–s)q–
�(q) (A(s)u(s) + f (s,u(s),Ku(s)))ds

+
∑k

i=(
∫ ti
ti–

(ti–s)q–
�(q) (A(s)u(s) + f (s,u(s),Ku(s)))ds + Ii(u(t–i )))

+
∑k

i=(t – ti)

× (
∫ ti
ti–

(ti–s)q–
�(q–) (A(s)u(s) + f (s,u(s),Ku(s)))ds + I∗i (u(t–i )))

+ ( β

α
– t)[

∫ 
tk

(–s)q–
�(q) (A(s)u(s) + f (s,u(s),Ku(s)))ds

+ β

α

∫ 
tk

(–s)q–
�(q–) (A(s)u(s) + f (s,u(s),Ku(s)))ds

+
∑k

i=(
∫ ti
ti–

(ti–s)q–
�(q) (A(s)u(s) + f (s,u(s),Ku(s)))ds + Ii(u(t–i )))

+
∑k

i=(
β

α
+  – tk)

× (
∫ ti
ti–

(t–s)q–
�(q–) (A(s)u(s) + f (s,u(s),Ku(s)))ds + I∗i (u(t–i )))

+ 
α
(g(u) – g(u))] + g(u)

α
, t ∈ Jk .

(.)

Clearly, the fixed points of the operator T are the solutions of problem (.). To begin
with, we need the following assumptions to prove the existence and uniqueness of a solu-
tion of the integral equation (.) which satisfies BVP (.):

http://www.boundaryvalueproblems.com/content/2012/1/145
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(A) A : X → X is a continuous bounded linear operator and there exists a constant
A >  such that ‖A(u)‖B(X) ≤ A for all u ∈ X ;

(A) The function f : J ×X ×X → X is continuous and there exists a constantM > 
such thatM =maxs∈J{f (s,u(s),Ku(s)),u ∈ X};

(A) Ik , I∗k : X → X are continuous and there exist constantsM >  andM >  such
that ‖Ik(u)‖ ≤ M,‖I∗k (u)‖ ≤ M for each u ∈ X and k = , , . . . ,p;

(A) There exist constantsGi >  and gi : PC(J ,X)→ X are continuous functions such
that ‖gi(u)‖ ≤ Gi, i = , ;

(A) There exists a constant L >  such that

∥∥f (t,u, v) – f (t,u, v)
∥∥≤ L

(‖u – u‖ + ‖v – v‖
)
,

∀t ∈ J , and u,u, v, v ∈ X ;
(A) k : k×X → X is continuous and there exists a constant L >  such that

∥∥k(t, s,u) – k(t, s, v)
∥∥≤ L‖u – v‖

for all u, v ∈ X ;
(A) There exist constants L > , L >  such that ‖Ik(u) – Ik(v)‖ ≤ L‖u – v‖,

‖I∗k (u) – I∗k (v)‖ ≤ L‖u – v‖ for each u, v ∈ X and k = , , . . . ,p;
(A) There exist constants bi >  such that ‖gi(u) – gi(v)‖ ≤ bi‖u – v‖, i = , .

The following are the main results of this paper. Our first result relies on Schauder’s fixed
point theorem which gives an existence result for solutions of BVP (.).

Theorem  Assume that the assumptions (A)-(A) hold. Then BVP (.) has at least one
solution on J .

Proof In order to show the existence of a solution of BVP (.), we need to transform BVP
(.) to a fixed point problem by using the operator T in (.). Now, we shall use Schauder’s
fixed point theorem to proveT has a fixed point which is then a solution of BVP (.). First,
let us define Br = {u ∈ PC(J) : ‖u‖ ≤ r} for any r > . Then it is clear that the set Br is a
closed, bounded and convex. The proof will be given in several steps.
Step : T is continuous.
Let {un} be a sequence such that un → u in PC(J). Then

∣∣(Tun)(t) – (Tu)(t)
∣∣

≤
∫ t

tk

(t – s)q–

�(q)
(∣∣A(s)∣∣∣∣un(s) – u(s)

∣∣
+
∣∣f (s,un(s),Kun(s)) – f

(
s,u(s),Ku(s)

)∣∣)ds
+

k∑
i=

∫ ti

ti–

(ti – s)q–

�(q)
(∣∣A(s)∣∣∣∣un(s) – u(s)

∣∣
+
∣∣f (s,un(s),Kun(s)) – f

(
s,u(s),Ku(s)

)∣∣ + ∣∣Ii(un(t–i )) – Ii
(
u
(
t–i
))∣∣)ds

×
k∑
i=

(t – ti)
∫ ti

ti–

(ti – s)q–

�(q – )
(∣∣A(s)∣∣∣∣un(s) – u(s)

∣∣

http://www.boundaryvalueproblems.com/content/2012/1/145
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+
∣∣f (s,un(s),Kun(s)) – f

(
s,u(s),Ku(s)

)∣∣
+
∣∣I∗i (un(t–i )) – I∗i

(
u
(
t–i
))∣∣)ds

+
∣∣∣∣βα – t

∣∣∣∣
[∫ 

tk

( – s)q–

�(q)
(∣∣A(s)∣∣∣∣un(s) – u(s)

∣∣
+
∣∣f (s,un(s),Kun(s)) – f

(
s,u(s),Ku(s)

)∣∣)ds
+

β

α

∫ 

tk

( – s)q–

�(q – )
(∣∣A(s)∣∣∣∣un(s) – u(s)

∣∣
+
∣∣f (s,un(s),Kun(s)) – f

(
s,u(s),Ku(s)

)∣∣)ds
+

k∑
i=

∫ ti

ti–

(ti – s)q–

�(q)
(∣∣A(s)∣∣∣∣un(s) – u(s)

∣∣
+
∣∣f (s,un(s),Kun(s)) – f

(
s,u(s),Ku(s)

)∣∣ + ∣∣Ii(un(t–i )) – Ii
(
u
(
t–i
))∣∣)ds

+
k∑
i=

(
β

α
+  – tk

)∫ ti

ti–

(t – s)q–

�(q – )
(∣∣A(s)∣∣∣∣un(s) – u(s)

∣∣
+
∣∣f (s,un(s),Kun(s)) – f

(
s,u(s),Ku(s)

)∣∣ + ∣∣I∗i (un(t–i )) – I∗i
(
u
(
t–i
))∣∣)ds

+

α

(∣∣g(un) – g(u)
∣∣ + ∣∣g(un) – g(u)

∣∣)] +

α

∣∣g(un) – g(u)
∣∣.

Since A is a continuous operator and f , g , I , I∗ are continuous functions, we have ‖Tun –
Tu‖ →  as n→ ∞.
Step : T maps bounded sets into bounded sets.
Now, it is enough to show that there exists a positive constant l such that ‖Tu‖ ≤ l for

each u ∈ Br . Then we have, for each t ∈ J ,

∣∣(Tu)(t)∣∣ ≤ ∫ t

tk

(t – s)q–

�(q)
(∣∣A(s)∣∣∣∣u(s)∣∣ + ∣∣f (s,u(s),Ku(s))∣∣)ds

+
k∑
i=

∫ ti

ti–

(ti – s)q–

�(q)
(∣∣A(s)∣∣∣∣u(s)∣∣ + ∣∣f (s,u(s),Ku(s))∣∣ + ∣∣Ii(u(t–i ))∣∣)ds

+
k∑
i=

(t – ti)
∫ ti

ti–

(ti – s)q–

�(q – )
(∣∣A(s)∣∣∣∣u(s)∣∣ + ∣∣f (s,u(s),Ku(s))∣∣

+
∣∣I∗i (u(t–i ))∣∣)ds

+
∣∣∣∣βα – t

∣∣∣∣
[∫ 

tk

( – s)q–

�(q)
(∣∣A(s)∣∣∣∣u(s)∣∣ + ∣∣f (s,u(s),Ku(s))∣∣)ds

+
β

α

∫ 

tk

( – s)q–

�(q – )
(∣∣A(s)∣∣∣∣u(s)∣∣ + ∣∣f (s,u(s),Ku(s))∣∣)ds

+
k∑
i=

∫ ti

ti–

(ti – s)q–

�(q)
(∣∣A(s)∣∣∣∣u(s)∣∣ + ∣∣f (s,u(s),Ku(s))∣∣ + ∣∣Ii(u(t–i ))∣∣)ds

+
k∑
i=

(
β

α
+  – tk

)∫ ti

ti–

(t – s)q–

�(q – )
(∣∣A(s)∣∣∣∣u(s)∣∣ + ∣∣f (s,u(s),Ku(s))∣∣
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+
∣∣I∗i (u(t–i ))∣∣)ds

+

α

(∣∣g(u)∣∣ + ∣∣g(u)∣∣)] +

α

∣∣g(u)∣∣.
Thus,

∣∣(Tu)(t)∣∣ ≤ (Ar +M)
∫ t

tk

(t – s)q–

�(q)
ds + (Ar +M +M)

k∑
i=

∫ ti

ti–

(ti – s)q–

�(q)
ds

+ (Ar +M +M)
k∑
i=

|t – ti|
∫ ti

ti–

(ti – s)q–

�(q – )
ds

+
(

β

α
+ 
)[

(Ar +M)
(∫ 

tk

( – s)q–

�(q)
ds +

β

α

∫ 

tk

( – s)q–

�(q – )
ds
)

+ (Ar +M +M)
k∑
i=

∫ ti

ti–

(ti – s)q–

�(q)
ds

+ (Ar +M +M)
k∑
i=

(
β

α
+ 
)∫ ti

ti–

(t – s)q–

�(q – )
ds

+

α
(G +G)

]
+

α
G

≤ 
�(q + )

(
β

α
+ 

)(
(Ar +M)( + p) + pM

)
+


�(q)

[
p(Ar +M +M)

(
 +

(
β

α
+ 
))

+ (Ar +M)
β

α

(
β

α
+ 
)]

+

α

(
β

α
+ 
)
(G +G) +G = l.

Then it follows that ‖Tu‖ ≤ l.
Step : T maps bounded sets into equicontinuous sets.
Let Br be a bounded set of PC(J) as in Step , and let u ∈ Br . Then, letting τ, τ ∈ Jk

with τ < τ,  ≤ k ≤ p, we have

∣∣(Tu)(τ) – (Tu)(τ)
∣∣≤ ∫ τ

τ

∣∣(Tu)′(s)∣∣ds≤ l̃(τ – τ),

where

∣∣(Tu)′(t)∣∣ ≤
∫ t

tk

(t – s)q–

�(q – )
(∣∣A(s)∣∣∣∣u(s)∣∣ + ∣∣f (s,u(s),Ku(s))∣∣)ds

+
k∑
i=

∫ ti

ti–

(ti – s)q–

�(q – )
(∣∣A(s)∣∣∣∣u(s)∣∣ + ∣∣f (s,u(s),Ku(s))∣∣ + ∣∣I∗i (u(t–i ))∣∣)ds

+
∫ 

tk

( – s)q–

�(q)
(∣∣A(s)∣∣∣∣u(s)∣∣ + ∣∣f (s,u(s),Ku(s))∣∣)ds
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+
β

α

∫ 

tk

( – s)q–

�(q – )
(∣∣A(s)∣∣∣∣u(s)∣∣ + ∣∣f (s,u(s),Ku(s))∣∣)ds

+
k∑
i=

∫ ti

ti–

(ti – s)q–

�(q)
(∣∣A(s)∣∣∣∣u(s)∣∣ + ∣∣f (s,u(s),Ku(s))∣∣ + ∣∣Ii(u(t–i ))∣∣)ds

+
k∑
i=

(
β

α
+  – tk

)∫ ti

ti–

(t – s)q–

�(q – )
(∣∣A(s)∣∣∣∣u(s)∣∣ + ∣∣f (s,u(s),Ku(s))∣∣

+
∣∣I∗i (u(t–i ))∣∣)ds

+

α

(∣∣g(u)∣∣ + ∣∣g(u)∣∣)
∣∣(Tu)′(t)∣∣ ≤ (Ar +M)

[∫ t

tk

(t – s)q–

�(q – )
ds +

∫ 

tk

( – s)q–

�(q)
ds +

β

α

∫ 

tk

( – s)q–

�(q – )
ds
]

+ (Ar +M +M)
k∑
i=

∫ ti

ti–

(ti – s)q–

�(q)
ds

+ (Ar +M +M)

×
[ k∑

i=

∫ ti

ti–

(ti – s)q–

�(q – )
ds +

k∑
i=

(
β

α
+ 
)∫ ti

ti–

(t – s)q–

�(q – )
ds

]

+

α
(G +G)

≤ 
�(q + )

[
(Ar +M) +M

]
+


α
(G +G)

+


�(q)

[
(Ar +M)

(
β

α
+ 
)
+ p(Ar +M +M)

(
β

α
+ 

)]
:= l̃ for any t ∈ Jk ,  ≤ k ≤ p.

Hence, T(Br) is equicontinuous on all the subintervals Jk , k = , , , . . . ,p. Then we can
deduce that T : PC(J ,X) → PC(J ,X) is completely continuous as a result of the Arzela-
Ascoli theorem together with Steps  to .
As a consequence of Schauder’s fixed point theorem, we conclude that T has a fixed

point. That is, BVP (.) has at least one solution. The proof is complete. �

Our second result is about the uniqueness of the solution of BVP (.). And it depends
on Banach’s fixed point theorem.

Theorem  Assume that (A)-(A) hold with

{


�(q + )

(
β

α
+ 

)((
A + L( + L)

)
( + p) + pL

)
+


�(q)

[
p
(
A + L( + L) + L

)(
 +

(
β

α
+ 
))

+
(
A + L( + L)

)β
α

(
β

α
+ 
)]

+

α

(
β

α
+ 
)
(b + b) + b

}
:=�A,L,L,L,L,b,b,q,α,β < . (.)
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Proof First, we show that TBr ⊂ Br . Indeed, in order to do this, it is adequate to replace
l with r in Step  in Theorem . Thus, T maps Br into itself. Now, define the mapping
T : C(J ,Br) → C(J ,Br). Then, for each t ∈ J , we have

∣∣(Tu)(t) – (Tv)(t)
∣∣

≤
∫ t

tk

(t – s)q–

�(q)
(∣∣A(s)∣∣∣∣u(s) – v(s)

∣∣
+
∣∣f (s,u(s),Ku(s)) – f

(
s, v(s),Kv(s)

)∣∣)ds + k∑
i=

∫ ti

ti–

(ti – s)q–

�(q)
(∣∣A(s)∣∣∣∣u(s) – v(s)

∣∣
+
∣∣f (s,u(s),Ku(s)) – f

(
s, v(s),Kv(s)

)∣∣ + ∣∣Ii(u(t–i )) – Ii
(
v
(
t–i
))∣∣)ds

×
k∑
i=

(t – ti)
∫ ti

ti–

(ti – s)q–

�(q – )
(∣∣A(s)∣∣∣∣u(s) – v(s)

∣∣
+
∣∣f (s,u(s),Ku(s)) – f

(
s, v(s),Kv(s)

)∣∣ + ∣∣I∗i (u(t–i )) – I∗i
(
v
(
t–i
))∣∣)ds

+
∣∣∣∣βα – t

∣∣∣∣
[∫ 

tk

( – s)q–

�(q)
(∣∣A(s)∣∣∣∣u(s) – v(s)

∣∣
+
∣∣f (s,u(s),Ku(s)) – f

(
s, v(s),Kv(s)

)∣∣)ds
+

β

α

∫ 

tk

( – s)q–

�(q – )
(∣∣A(s)∣∣∣∣u(s) – v(s)

∣∣ + ∣∣f (s,u(s),Ku(s)) – f
(
s, v(s),Kv(s)

)∣∣)ds
+

k∑
i=

∫ ti

ti–

(ti – s)q–

�(q)
(∣∣A(s)∣∣∣∣u(s) – v(s)

∣∣
+
∣∣f (s,u(s),Ku(s)) – f

(
s, v(s),Kv(s)

)∣∣ + ∣∣Ii(u(t–i )) – Ii
(
v
(
t–i
))∣∣)ds

+
k∑
i=

(
β

α
+  – tk

)∫ ti

ti–

(t – s)q–

�(q – )
(∣∣A(s)∣∣∣∣u(s) – v(s)

∣∣
+
∣∣f (s,u(s),Ku(s)) – f

(
s, v(s),Kv(s)

)∣∣ + ∣∣I∗i (u(t–i )) – I∗i
(
v
(
t–i
))∣∣)ds

+

α

(∣∣g(u) – g(v)
∣∣ + ∣∣g(u) – g(v)

∣∣)] +

α

∣∣g(u) – g(v)
∣∣.

Observing the inequality

∣∣f (s,u(s),Ku(s)) – f
(
s, v(s),Kv(s)

)∣∣ ≤ L
(∣∣u(s) – v(s)

∣∣ + ∣∣Ku(s) –Kv(s)
∣∣)

≤ L( + L)
∣∣u(s) – v(s)

∣∣,
we have

∣∣(Tu)(t) – (Tv)(t)
∣∣

≤ (
A + L( + L)

)∫ t

tk

(t – s)q–

�(q)
∣∣u(s) – v(s)

∣∣ds
+
(
A + L( + L) + L

) k∑
i=

∫ ti

ti–

(ti – s)q–

�(q)
∣∣u(s) – v(s)

∣∣ds
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+
(
A + L( + L) + L

) k∑
i=

|t – ti|
∫ ti

ti–

(ti – s)q–

�(q – )
∣∣u(s) – v(s)

∣∣ds
+
(

β

α
+ 
)[(

A + L( + L)
)(∫ 

tk

( – s)q–

�(q)
∣∣u(s) – v(s)

∣∣ds
+

β

α

∫ 

tk

( – s)q–

�(q – )
∣∣u(s) – v(s)

∣∣ds)

+
(
A + L( + L) + L

) k∑
i=

∫ ti

ti–

(ti – s)q–

�(q)
∣∣u(s) – v(s)

∣∣ds
+
(
A + L( + L) + L

) k∑
i=

(
β

α
+ 
)∫ ti

ti–

(t – s)q–

�(q – )
∣∣u(s) – v(s)

∣∣ds
+


α
(b + b)

∣∣u(t) – v(t)
∣∣] +


α
b
∣∣u(t) – v(t)

∣∣.
Thus,

∥∥(Tu)(t) – (Tv)(t)
∥∥

≤
{


�(q + )

(
β

α
+ 

)((
A + L( + L)

)
( + p) + pL

)
+


�(q)

[
p
(
A + L( + L) + L

)(
 +

(
β

α
+ 
))

+
(
A + L( + L)

)β
α

(
β

α
+ 
)]

+

α

(
β

α
+ 
)
(b + b) + b

}
‖u – v‖,

which implies that

∥∥(Tu)(t) – (Tv)(t)
∥∥≤ �A,L,L,L,L,b,b,q,α,β‖u – v‖.

Therefore, by (.), the operator T is a contraction. As a consequence of Banach’s fixed
point theorem, we deduce that T has a fixed point which is a unique solution of BVP
(.). �

Example  Consider the following boundary value problem for impulsive integrodiffer-
ential evolution equation of fractional order:

CD

 u(t) =



(
cos t

)
u(t) +

(sint)|u(t)|
(t + )( + |u(t)|)

+
∫ t


e–


 u(s) ds, t ∈ [, ], t �= 


,

�u
(



)
=

|u( 
–)|

 + |u( 
–)| , �u′

(



)
=

|u′( 
–)|

 + |u′( 
–)|

u() + u′() =
m∑
i=

ηiu(ξi), u() + u′() =
m∑
j=

η̃j̃u(ξi),

(.)
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where  < η < η < · · · < ,  < η̃ < η̃ < · · · < , and ηi, η̃j are given positive constants with∑m
i= ηi <


 and

∑m
j= η̃j <


 .

Here, α = , β = , q = 
 , p = . Obviously, A = 

 , L =


 , L =

 , L =


 , L =


 ,

b = 
 , b =


 and by (.), it can be found that

�A,L,L,L,L,b,b,q,α,β =
, , 
, 

√
π

+



= . < .

Therefore, due to the fact that all the assumptions of Theorem  hold, BVP (.) has a
unique solution. Besides, one can easily check the result of Theorem () for BVP (.).

Conclusion
In the literature, the authors consider impulsive fractional semilinear evolution integro-
differential equations of order  < q <  in different aspects as mentioned above. Besides,
either impulsive fractional semilinear equations of order  < q <  or impulsive fractional
integro-differential equations of order  < q <  are studied by different authors (see, for
instance, [, ]). But, to the best of our knowledge, no study considering both cases has
been carried out. Thus, in this article, we consider a general boundary value problem for
impulsive fractional semilinear evolution integro-differential equations of order  < q < 
with nonlocal conditions. Therefore, the present results are new and complementary to
previously known literature.
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