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Abstract
In this paper, we are concerned with a system of nonlinear viscoelastic wave
equations with initial and Dirichlet boundary conditions in R

n (n = 1, 2, 3). Under
suitable assumptions, we establish a general decay result by multiplier techniques,
which extends some existing results for a single equation to the case of a coupled
system.
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1 Introduction
In this paper, we are concernedwith a coupled system of nonlinear viscoelastic wave equa-
tions with weak damping

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

utt –�u +
∫ t
 g(t – τ )�u(τ )dτ + ut = f(u, v), in � × (, +∞),

vtt –�v +
∫ t
 g(t – τ )�v(τ )dτ + vt = f(u, v), in � × (, +∞),

u = v = , on ∂� × (, +∞),

u(·, ) = u, ut(·, ) = u, v(·, ) = v, vt(·, ) = v, in �,

(.)

where � ⊆R
n (n = , , ) is a bounded domain with smooth boundary ∂�, u and v repre-

sent the transverse displacements of waves. The functions g and g denote the kernel of
a memory, f(u, v) and f(u, v) are the nonlinearities.
In recent years, many mathematicians have paid their attention to the energy decay and

dynamic systems of the nonlinear wave equations, hyperbolic systems and viscoelastic
equations.
Firstly, we recall some results concerning single viscoelastic wave equation. Kafini and

Tatar [] considered the following Cauchy problem:

⎧⎨
⎩
utt –�u +

∫ t
 g(t – s)�u(x, s)ds = , x ∈ R

n, t > ,

u(x, ) = u(x), ut(x, ) = u(x), x ∈R
n.

(.)

They established the polynomial decay of the first-order energy of solutions for compactly
supported initial data and for a not necessarily decreasing relaxation function. Later Tatar
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[] studied the problem (.) with the Dirichlet boundary condition and showed that the
decay of solutionswas an arbitrary decay not necessarily at exponential or polynomial rate.
Cavalcanti et al. [] studied the following equation with Dirichlet boundary condition:

|ut|ρutt –�u –�utt + g ∗ �u – γ�ut = .

The authors established a global existence result for γ ≥  and an exponential decay of
energy for γ > . They studied the interaction within the |ut|ρutt and the memory term
g ∗�u. Later on, several other results were published based on [–]. For more results on
a single viscoelastic equation, we can refer to [–].
For a coupled system, Agre and Rammaha [] investigated the following system:

⎧⎨
⎩
utt –�u + |ut|m–ut = f(u, v), in � × (,T),

vtt –�v + |vt|r–vt = f(u, v), in � × (,T),

where � ⊆ R
n (n = , , ) is a bounded domain with smooth boundary. They considered

the following assumptions on fi (i = , ):
(A) Let

F(u, v) = a|u + v|p+ + b|uv| p+ , f(u, v) =
∂F
∂u

, f(u, v) =
∂F
∂v

with a,b > , p≥  if n = ,  and p =  if n = ;m, r ≥ .
(A) There exist two positive constants c, c such that for all u, v ∈R

, F(u, v) satisfies

c
(|u|p+ + |v|p+) ≤ F(u, v)≤ c

(|u|p+ + |v|p+).
Under the assumptions (A)-(A), they established the global existence of weak solutions
and the global existence of small weak solutions with initial and Dirichlet boundary con-
ditions. Moreover, they also obtained the blow up of weak solutions. Mustafa [] studied
the following system:

⎧⎨
⎩
utt –�u +

∫ t
 g(t – τ )�u(τ )dτ + f(u, v) = ,

vtt –�v +
∫ t
 g(t – τ )�v(τ )dτ + f(u, v) = ,

(.)

in � × (, +∞) with initial and Dirichlet boundary conditions, proved the existence and
uniqueness to the system by using the classical Faedo-Galerkin method and established a
stability result by multiplier techniques. But the author considered the following different
assumptions on fi (i = , ) from (A)-(A):
(A′

) fi :R → R (i = , ) are C functions and there exists a function F such that

f(x, y) =
∂F
∂x

, f(x, y) =
∂F
∂y

, F ≥ ,xf(x, y) + yf(x, y) ≥ F(x, y),

(A′
)
∣∣∣∣∂fi∂x

(x, y)
∣∣∣∣ +

∣∣∣∣∂fi∂y
(x, y)

∣∣∣∣ ≤ d
(
 + |x|βi– + |y|βi–),

for all (x, y) ∈R
, where the constant d >  and βij ≥ , (n – )βij ≤ n for i, j = , .
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Han andWang [] considered the following coupled nonlinear viscoelastic wave equa-
tions with weak damping:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

utt –�u +
∫ t
 g(t – τ )�u(τ )dτ + |ut|m–ut = f(u, v), in � × (,T),

vtt –�v +
∫ t
 g(t – τ )�v(τ )dτ + |vt|r–vt = f(u, v), in � × (,T),

u = v = , on ∂� × (,T),

u(·, ) = u, ut(·, ) = u, v(·, ) = v, vt(·, ) = v, in �,

(.)

where � ⊆ R
n is a bounded domain with smooth boundary ∂�. Under the assumptions

(A)-(A) on fi (i = , ), the initial data and the parameters in the equations, they estab-
lished the local existence, global existence uniqueness and finite time blow up properties.
When the weak damping terms |ut|m–ut , |vt|r–vt were replaced by the strong damping
terms –�ut , –�vt , Liang and Gao [] showed that under certain assumption on ini-
tial data in the stable set, the decay rate of the solution energy is exponential when they
take

f(u, v) =
[
a|u + v|(p+)(u + v) + b|u|pu|v|p+],

f(u, v) =
[
a|u + v|(p+)(u + v) + b|u|p+v|v|p],

a,b >  and p > – if n = , , – < p ≤  if n = . Moreover, they obtained that the so-
lutions with positive initial energy blow up in a finite time for certain initial data in the
unstable set. For more results on coupled viscoelastic equations, we can refer to [–
].
If we takem = r =  in (.), the system will be transformed into (.). To the best of our

knowledge, there is no result on general energy decay for the viscoelastic problem (.).
Motivated by [, ], in this paper, we shall establish the general energy decay for the
problem (.) by multiplier techniques, which extends some existing results for a single
equation to the case of a coupled system. The rest of our paper is organized as follows.
In Section , we give some preparations for our consideration and our main result. The
statement and the proof of our main result will be given in Section .
For the reader’s convenience, we denote the norm and the scalar product in L(�) by ‖·‖

and (·, ·), respectively. C denotes a general constant, which may be different in different
estimates.

2 Preliminaries andmain result
To state our main result, in addition to (A)-(A), we need the following assumption.
(A) gi :R+ →R

+, i = , , are differentiable functions such that

gi() > ,  –
∫ +∞


gi(s)ds = li > ,

and there exist nonincreasing functions ξ, ξ :R+ →R
+ satisfying

g ′
i(t) ≤ –ξi(t)gi(t), t ≥ .
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Now, we define the energy functional

E(t) =



∫
�

(
ut +

(
 –

∫ t


g(s)ds

)
|∇u|

)
dx

+


(g ◦ ∇u)(t) +



(g ◦ ∇v)(t)

+



∫
�

(
vt +

(
 –

∫ t


g(s)ds

)
|∇v|

)
dx –

∫
�

F(u, v)dx (.)

and the functional

D(t) =
(
 –

∫ t


g(s)ds

)∥∥∇u(t)
∥∥ +

(
 –

∫ t


g(s)ds

)∥∥∇v(t)
∥∥

+ 
[
(g ◦ ∇u)(t) + (g ◦ ∇v)(t)

]
– 

∫
�

F
(
u(t), v(t)

)
dx, (.)

where

(g ◦ y)(t) =
∫ t


g(t – s)

∥∥y(t) – y(s)
∥∥ ds.

The existence of a global solution to the system (.) is established in [] as follows.

Proposition [] Let (A)-(A) hold. Assume that D() = ‖∇u‖ + ‖∇v‖ – 
∫
�
F(u,

v)dx > , pC
l ( E()l )

p–
 <  and that (u,u) ∈ H

(�) × L(�), (v, v) ∈ H
(�) × L(�),

where C is a computable constant and l =min{l, l}. Then the problem (.) has a unique
global solution (u(t), v(t)) satisfying

(
u(t),ut(t)

) ∈ C
(
R

+;H
(�)× L(�)

)
,

(
v(t), vt(t)

) ∈ C
(
R

+;H
(�)× L(�)

)
.

We are now ready to state our main result.

Theorem . Let (A)-(A) hold. Assume that D() = ‖∇u‖ + ‖∇v‖ – 
∫
�
F(u,

v)dx > , pC
l ( E()l )

p–
 <  and that (u,u) ∈ H

(�) × L(�), (v, v) ∈ H
(�) × L(�),

where C is a computable constant and l = min{l, l}. Then there exist constants C,η > 
such that, for t large, the solution of (.) satisfies

E(t)≤ Ce–η
∫ t
 ξ (s)ds, (.)

where

ξ (t) =min
{
ξ(t), ξ(t)

}
, t ≥ . (.)

3 Proof of Theorem 2.1
In this section, we carry out the proof of Theorem .. Firstly, we will estimate several
lemmas.

http://www.boundaryvalueproblems.com/content/2012/1/146
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Lemma . Let u(t), v(t) be the solution of (.). Then the following energy estimate holds
for any t ≥ :

E′(t) = –
(‖ut‖ + ‖vt‖

)
+


[(
g ′
 ◦ ∇u

)
+

(
g ′
 ◦ ∇v

)]

–


[
g(t)

∥∥∇u(t)
∥∥ + g(t)

∥∥∇v(t)
∥∥] ≤ . (.)

Proof Multiplying the first equation of (.) by ut and the second equation by vt , respec-
tively, integrating the results over �, performing integration by parts and noting that
Ft(u, v) = f(u, v)ut + f(u, v)vt , we can easily get (.). The proof is complete. �

Lemma . Under the assumption (A), the following hold:

∫
�

(∫ t


g(t – τ )

(∇u(t) –∇u(τ )
)
dτ

)

dx ≤ C(g ◦ ∇u), (.)

∫
�

(∫ t


–g ′(t – τ )

(∇u(t) –∇u(τ )
)
dτ

)

dx≤ –C
(
g ′ ◦ ∇u

)
. (.)

Proof Using Hölder’s inequality, we get

∫
�

(∫ t


g(t – τ )

(∇u(t) –∇u(τ )
)
dτ

)

dx

≤
∫

�

(∫ t


g(τ )dτ

)(∫ t


g(t – τ )

(∇u(t) –∇u(τ )
) dτ

)
dx

≤
(∫ t


g(τ )dτ

)∫ t


g(t – τ )

(∫
�

(∇u(t) –∇u(τ )
) dx

)
dτ

≤ C(g ◦ ∇u).

On the other hand, we repeat the above proof with –g ′, instead of g , we can get (.). The
proof is now complete. �

Lemma . Let (A)-(A) hold and u(t), v(t) be the solution of (.). Then the functional
I(t) defined by

I(t) :=
∫

�

(uut + vvt)dx

satisfies

I ′(t) ≤ –
l


∥∥∇u(t)
∥∥ –

l


∥∥∇v(t)
∥∥ +

(
 +


δ

)(‖ut‖ + ‖vt‖
)

+
C

δ
(g ◦ ∇u) +

C

δ
(g ◦ ∇v) +C

∫
�

F(u, v)dx (.)

for all δ > .
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Proof By (.), a direct differentiation gives

I ′(t) = ‖ut‖ – ‖∇u‖ +
∫

�

∇u
∫ t


g(t – τ )∇u(τ )dτ dx –

∫
�

utudx +
∫

�

fudx

+ ‖vt‖ – ‖∇v‖ +
∫

�

∇v
∫ t


g(t – τ )∇v(τ )dτ dx

–
∫

�

vtvdx +
∫

�

fvdx. (.)

From the assumptions (A)-(A), we derive

f(u, v) = a(p + )|u + v|p + b(p + )|u| p– |v| p+ ,

f(u, v) = a(p + )|u + v|p + b(p + )|u| p+ |v| p– ,

and

fu + fv = a(p + )|u + v|p+ + b(p + )|uv| p+
≤ CF(u, v). (.)

By Young’s inequality and (.), we deduce for any δ > 

∫
�

∇u ·
∫ t


g(t – τ )∇u(τ )dτ dx

=
∫

�

∇u ·
∫ t


g(t – τ )

(∇u(τ ) –∇u(t) +∇u(t)
)
dτ dx

= ‖∇u‖ ·
∫ t


g(τ )dτ +

∫
�

∇u ·
∫ t


g(t – τ )

(∇u(τ ) –∇u(t)
)
dτ dx

≤ ‖∇u‖ ·
∫ t


g(τ )dτ + δ‖∇u‖ + 

δ

∫
�

(∫ t


g(t – τ )

∣∣∇u(τ ) – u(t)
∣∣dτ

)

dx

≤ ‖∇u‖ ·
∫ t


g(τ )dτ + δ‖∇u‖ + C

δ
(g ◦ ∇u). (.)

Similarly, we have

∫
�

∇v ·
∫ t


g(t – τ )∇v(τ )dτ dx ≤ ‖∇v‖ ·

∫ t


g(τ )dτ + δ‖∇v‖

+
C

δ
(g ◦ ∇v). (.)

Using Young’s inequality and Poincaré’s inequality, we obtain for any δ > 

∫
�

uut dx ≤ δ‖u‖ + 
δ

‖ut‖ ≤ δλ‖∇u‖ + 
δ

‖ut‖, (.)

where λ is the first eigenvalue of –� with the Dirichlet boundary condition. Similarly,

∫
�

vvt dx ≤ δ‖v‖ + 
δ

‖vt‖ ≤ δλ‖∇v‖ + 
δ

‖vt‖,

http://www.boundaryvalueproblems.com/content/2012/1/146
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which together with (.)-(.) gives

I ′(t) ≤ –
(
l – δ – δλ)‖∇u‖ – (

l – δ – δλ)‖∇v‖ +
(
 +


δ

)(‖ut‖ + ‖vt‖
)

+
C

δ
(g ◦ ∇u) +

C

δ
(g ◦ ∇v) +C

∫
�

F(u, v)dx. (.)

Now, we choose δ >  so small that

l – δ – δλ ≥ l

, l – δ – δλ ≥ l


,

which together with (.) gives (.). The proof is complete. �

Lemma . Let (A)-(A) hold and u(t), v(t) be the solution of (.). Then the functional
J(t) defined by

J(t) = J(t) + J(t),

with

J(t) := –
∫

�

ut
∫ t


g(t – τ )

(
u(t) – u(τ )

)
dτ dx,

J(t) := –
∫

�

vt
∫ t


g(t – τ )

(
v(t) – v(τ )

)
dτ dx,

satisfies

J ′(t) ≤ –
(∫ t


g(τ ) – δ

)
‖ut‖ + δC‖∇u‖ + C

δ
(g ◦ ∇u) –

C

δ

(
g ′
 ◦ ∇u

)

–
(∫ t


g(τ ) – δ

)
‖vt‖ + δC‖∇v‖ + C

δ
(g ◦ ∇v) –

C

δ

(
g ′
 ◦ ∇v

)
. (.)

Proof A direct differentiation for J(t) yields

J ′(t) = –
∫

�

utt ·
∫ t


g(t – τ )

(
u(t) – u(τ )

)
dτ –

∫
�

ut ·
∫ t


g ′
(t – τ )

(
u(t) – u(τ )

)
dτ dx

–
(∫ t


g(τ )dτ

)∫
�

ut dx. (.)

Using the first equation of (.) and integrating by parts, we obtain

J ′(t) =
(
 –

∫ t


g(τ )dτ

)∫
�

∇u ·
∫ t


g(t – τ )

(∇u(t) –∇u(τ )
)
dτ dx

+
∫

�

(∫ t


g(t – τ )

∣∣∇u(t) –∇u(τ )
∣∣dτ

)

dx

+
∫

�

ut ·
∫ t


g(t – τ )

(
u(t) – u(τ )

)
dτ dx

http://www.boundaryvalueproblems.com/content/2012/1/146
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–
∫

�

f(u, v)
∫ t


g(t – τ )

(
u(t) – u(τ )

)
dτ dx

–
∫

�

ut ·
∫ t


g ′
(t – τ )

(
u(t) – u(τ )

)
dτ dx

–
(∫ t


g(τ )dτ

)∫
�

ut dx. (.)

From Young’s inequality, Poincaré’s inequality and Lemma ., we derive

(
 –

∫ t


g(τ )dτ

)∫
�

∇u ·
∫ t


g(t – τ )

(∇u(t) –∇u(τ )
)
dτ dx

≤ δ‖∇u‖ + C

δ
(g ◦ ∇u), (.)

–
∫

�

ut ·
∫ t


g ′
(t – τ )

(
u(t) – u(τ )

)
dτ dx≤ δ‖ut‖ – C

δ

(
g ′
 ◦ ∇u

)
, (.)

∫
�

ut ·
∫ t


g(t – τ )

(
u(t) – u(τ )

)
dτ dx ≤ δ‖ut‖ + C

δ
(g ◦ ∇u), (.)

∫
�

f(u, v)
∫ t


g(t – τ )

(
u(t) – u(τ )

)
dτ dx ≤

∫
�

f  (u, v)dx +
C

δ
(g ◦ u)

≤ δ

∫
�

f  (u, v)dx +
C

δ
(g ◦ ∇u). (.)

Now, we estimate the first term on the right-hand side of (.). Using the assumptions
(A)-(A) and Young’s inequality, we arrive at

∫
�

f  (u, v)dx

≤ C

∫
�

|u + v|p dx +C

∫
�

|u|p–|v|p+ dx

≤ C‖u‖pLp +C‖v‖pLp +C‖u‖p–L(p–) +C‖v‖p+
L
(p+)



≤ C

(
E()
l

)p–

‖∇u‖ +C

(
E()
l

)p–

‖∇v‖

+C

(
E()
l

)p–

‖∇u‖ +C

(
E()
l

)p

‖∇v‖

≤ C‖∇u‖ +C‖∇v‖, (.)

where we used the embedding H
(�) ↪→ Ls(�) for  ≤ s ≤ n/(n – ) if n =  or s ≥  if

n = ,  and the fact 
 (‖ut‖ + ‖vt‖) + 

 l‖∇u‖ + 
 l‖∇v‖ ≤ E() proved in Lemma .

in []. Combining (.)-(.), we get

J ′(t) ≤ –
(∫ t


g(τ )dτ – δ

)
‖ut‖ + δC‖∇u‖ + δC‖∇v‖

+
C

δ
(g ◦ ∇u) –

C

δ

(
g ′
 ◦ ∇u

)
. (.)
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The same estimate to J(t), we can derive

J ′(t) ≤ –
(∫ t


g(τ )dτ – δ

)
‖vt‖ + δC‖∇u‖ + δC‖∇v‖

+
C

δ
(g ◦ ∇v) –

C

δ

(
g ′
 ◦ ∇v

)
,

which together with (.) gives (.). The proof is now complete. �

Proof of Theorem . For N,N > , we define the functional K by

K :=NE(t) +NJ(t) + I(t),

and let

g =min

{∫ t


g(s)ds,

∫ t


g(s)ds

}

for some fixed t > .
Using Lemma . and Lemmas .-., a direct differentiation gives

K ′(t) ≤ –
(
l

–NδC

)(‖∇u‖ + ‖∇v‖) +
(
C

δ
+N

C

δ

)[
(g ◦ ∇u) + (g ◦ ∇v)

]

–
(
N +N – δ –  –


δ

)(‖ut‖ + ‖vt‖
)
+C

∫
�

F(u, v)dx

+
(
N


–
NC

δ

)[(
g ′
 ◦ ∇u

)
+

(
g ′
 ◦ ∇v

)]
, (.)

where l =min{l, l}.
Now, we choose δ = 

CN
and N, N large enough so that

c =
l

–NδC =

l

–

l

=

l

> , (.)

c =N +N –
l

CN
–  –

CN

l
> , (.)

c =
N


–
C

N


l
> . (.)

Inserting (.)-(.) into (.), we have

K ′(t) ≤ –c
(‖∇u‖ + ‖∇v‖) – c

(‖ut‖ + ‖vt‖
)
+ c

[(
g ′
 ◦ ∇u

)
+

(
g ′
 ◦ ∇v

)]

+
(
C

N

l
+
C

N

l

)[
(g ◦ ∇u) + (g ◦ ∇v)

]
+C

∫
�

F(u, v)dx. (.)

Therefore, for two positive constants ω and C, we obtain

K ′(t)≤ –ωE(t) +C
[
(g ◦ ∇u) + (g ◦ ∇v)

]
, for all t ≥ t. (.)

http://www.boundaryvalueproblems.com/content/2012/1/146
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On the other hand, we choose N even larger so that K(t) is equivalent to E(t), i.e.,

K(t) ∼ E(t). (.)

Multiplying (.) by ξ (t) =min{ξ(t), ξ(t)} and using (A), we get

ξ (t)K ′(t) ≤ –ωξ (t)E(t) +C
∫

�

∫ t


ξ(t – τ )g(t – τ )

∣∣∇u(t) –∇u(τ )
∣∣ dτ dx

+C
∫

�

∫ t


ξ(t – τ )g(t – τ )

∣∣∇v(t) –∇v(τ )
∣∣ dτ dx

≤ –ωξ (t)E(t) –C
∫

�

∫ t


g ′
(t – τ )

∣∣∇u(t) –∇u(τ )
∣∣ dτ dx

–C
∫

�

∫ t


g ′
(t – τ )

∣∣∇v(t) –∇v(τ )
∣∣ dτ dx

≤ –ωξ (t)E(t) –CE′(t), for all t ≥ t. (.)

By virtue of (A) and ξ (t)≤ , we have

d
dt

(
ξ (t)K(t) +CE(t)

) ≤ –ωξ (t)E(t), for all t ≥ t. (.)

Using (.), we can easily get

L(t) := ξ (t)K(t) +CE(t)∼ E(t), (.)

which together with (.) yields, for some positive constant η,

L′(t)≤ –ηξ (t)L(t), for all t ≥ t. (.)

Integrating (.) over (t, t), we arrive at

L(t) ≤ L(t)e–η
∫ t
t ξ (τ )dτ

≤ Ce–η
∫ t
t ξ (τ )dτ ,

which together with (.) and the boundedness of E and ξ yields (.). The proof is now
complete. �
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