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Abstract
In this paper, we present a recent approach via variational methods and critical point
theory to obtain the existence of solutions for the nonautonomous second-order
system on time scales with impulsive effects⎧⎪⎨⎪⎩

u�2
(t) + A(σ (t))u(σ (t)) +∇F(σ (t),u(σ (t))) = 0, �-a.e. t ∈ [0, T ]κ

T
;

u(0) – u(T ) = u�(0) – u�(T ) = 0,

(ui)�(t+j ) – (u
i)�(t–j ) = Iij(ui(tj)), i = 1, 2, . . . ,N, j = 1, 2, . . . ,p,

where t0 = 0 < t1 < t2 < · · · < tp < tp+1 = T , tj ∈ [0, T ]T (j = 0, 1, 2, . . . ,p + 1),
u(t) = (u1(t),u2(t), . . . ,uN(t)) ∈ R

N , A(t) = [dlm(t)] is a symmetric N× Nmatrix-valued
function defined on [0, T ]T with dlm ∈ L∞([0, T ]T,R) for all l,m = 1, 2, . . . ,N, Iij :R → R

(i = 1, 2, . . . ,N, j = 1, 2, . . . ,p) are continuous and F : [0, T ]T ×R
N → R. Finally, two

examples are presented to illustrate the feasibility and effectiveness of our results.
MSC: 34B37; 34N05

Keywords: nonautonomous second-order systems; time scales; impulse; variational
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1 Introduction
Consider the nonautonomous second-order system on time scales with impulsive effects

⎧⎪⎪⎨⎪⎪⎩
u� (t) +A(σ (t))u(σ (t)) +∇F(σ (t),u(σ (t))) = , �-a.e. t ∈ [,T]κ

T
;

u() – u(T) = u�() – u�(T) = ,

(ui)�(t+j ) – (ui)�(t–j ) = Iij(ui(tj)), i = , , . . . ,N , j = , , . . . ,p,

(.)

where t =  < t < t < · · · < tp < tp+ = T , tj ∈ [,T]T (j = , , , . . . ,p + ),

(
ui

)�(
t+j

)
=

⎧⎨⎩limt→t+j (u
i)�(t), t is right-dense;

(ui)�(σ (tj)), t is right-scattered,

(
ui

)�(
t–j

)
=

⎧⎨⎩limt→t–j (u
i)�(t), t is left-dense;

(ui)�(ρ(tj)), t is left-scattered,
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u(t) = (u(t),u(t), . . . ,uN (t)), A(t) = [dlm(t)] is a symmetric N × N matrix-valued func-
tion defined on [,T]T with dlm ∈ L∞([,T]T,R) for all l,m = , , . . . ,N , Iij : R → R

(i = , , . . . ,N , j = , , . . . ,p) are continuous and F : [,T]T × R
N → R satisfies the fol-

lowing assumption:
(A) F(t,x) is �-measurable in t for every x ∈R

N and continuously differentiable in x for
�-a.e. t ∈ [,T]T, and there exist a ∈ C(R+,R+), bσ ∈ L(,T ;R+) such that

∣∣F(t,x)∣∣ ≤ a
(|x|)b(t), ∣∣∇F(t,x)

∣∣ ≤ a
(|x|)b(t)

for all x ∈R
N and �-a.e. t ∈ [,T]T, where ∇F(t,x) denotes the gradient of F(t,x)

in x.
For the sake of convenience, in the sequel, we denote � = {, , , . . . ,N}, � = {, , ,

. . . ,p}.
When Iij ≡ , i ∈ A, j ∈ B and A(t) is a zero matrix, (.) is the Hamiltonian system on

time scales⎧⎨⎩u� (t) +∇F(σ (t),u(σ (t))) = , a.e. t ∈ [,T],

u() – u(T) = u�() – u�(T) = .
(.)

In [], the authors study the Sobolev’s spaces on time scales and their properties. As ap-
plications, they present a recent approach via variational methods and the critical point
theory to obtain the existence of solutions for (.).
When Iij(t) �≡ , i ∈ A, j ∈ B and A(t) is not a zero matrix, until now the variational

structure of (.) has not been studied.
Problem (.) covers the second-order Hamiltonian systemwith impulsive effects (when

T =R)

⎧⎪⎪⎨⎪⎪⎩
ü(t) +A(t)u(t) +∇F(t,u(t)) = , a.e. t ∈ [,T];

u() – u(T) = u̇() – u̇(T) = ,

�u̇i(tj) = u̇i(t+j ) – u̇i(t–j ) = Iij(ui(tj)), i ∈ �, j ∈ �,

(.)

as well as the second-order discrete Hamiltonian system (when T = Z, T ∈N, T ≥ )

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u(t + ) – u(t + ) + u(t) +A(t + )u(t + )

+∇F(t + ,u(t + )) = , t ∈ [,T – ]∩Z,

u() – u(T) = ,u(T) – u() = u(T + ) – u(),

ui(tj + ) – ui(tj + ) – ui(tj) + ui(tj – ) = Iij(ui(tj)), i ∈ �, j ∈ �.

In [], the authors establish some sufficient conditions on the existence of solutions of
(.) by means of some critical point theorems when A(t) ≡ . When T �= R, until now, it
is unknown whether problem (.) has a variational structure or not.
Impulsive effects exist widely in many evolution processes in which their states are

changed abruptly at certainmoments of time. The theory of impulsive differential systems
has been developed by numerous mathematicians (see [–]). Applications of impulsive
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differential equations with or without delays occur in biology, medicine, mechanics, engi-
neering, chaos theory and so on (see [–]).
For a second-order differential equation u′′ = f (t,u,u′), one usually considers impulses

in the position u and the velocity u′. However, in the motion of spacecraft, one has to
consider instantaneous impulses depending on the position that result in jump discon-
tinuities in velocity, but with no change in position (see []). The impulses only on the
velocity occur also in impulsivemechanics (see []). An impulsive problemwith impulses
in the derivative only is considered in [].
The study of dynamical systems on time scales is now an active area of research. One of

the reasons for this is the fact that the study on time scales unifies the study of both discrete
and continuous processes, besidesmany others. The pioneeringworks in this direction are
Refs. [–]. The theory of time scales was initiated by Stefan Hilger in his Ph.D. thesis
in , providing a rich theory that unifies and extends discrete and continuous analy-
sis [, ]. The time scales calculus has a tremendous potential for applications in some
mathematical models of real processes and phenomena studied in physics, chemical tech-
nology, population dynamics, biotechnology and economics, neural networks and social
sciences (see []). For example, it canmodel insect populations that are continuous while
in season (and may follow a difference scheme with variable step-size), die out in winter,
while their eggs are incubating or dormant, and then hatch in a new season, giving rise to
a nonoverlapping population.
There have been many approaches to study solutions of differential equations on time

scales, such as the method of lower and upper solutions, fixed-point theory, coincidence
degree theory and so on (see [, –]). In [], authors used the fixed point theorem of
strict-set-contraction to study the existence of positive periodic solutions for functional
differential equations with impulse effects on time scales. However, the study of the ex-
istence and multiplicity of solutions for differential equations on time scales using the
variational method has received considerably less attention (see, for example, [, ]). The
variational method is, to the best of our knowledge, novel and it may open a new approach
to deal with nonlinear problems, with some type of discontinuities such as impulses.
Motivated by the above, we research the existence of variational construction for prob-

lem (.) in an appropriate space of functions and study the existence of solutions for (.)
by some critical point theorems in this paper. All these results are new.

2 Preliminaries and statements
In this section, we present some fundamental definitions and results from the calculus on
time scales and Sobolev’s spaces on time scales that will be required below. These are a
generalization to Rn of definitions and results found in [].

Definition . ([, Definition .]) Let T be a time scale. For t ∈ T, the forward jump
operator σ : T → T is defined by

σ (t) = inf{s ∈ T, s > t} for all t ∈ T,

while the backward jump operator ρ : T→ T is defined by

ρ(t) = sup{s ∈ T, s < t} for all t ∈ T

http://www.boundaryvalueproblems.com/content/2012/1/148
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(supplemented by inf∅ = supT and sup∅ = infT, where ∅ denotes the empty set). A point
t ∈ T is called right-scattered, left-scattered, if σ (t) > t, ρ(t) < t hold, respectively. Points
that are right-scattered and left-scattered at the same time are called isolated. Also, if t <
supT and σ (t) = t, then t is called right-dense, and if t > infT and ρ(t) = t, then t is called
left-dense. Points that are right-dense and left-dense at the same time are called dense.
The set Tκ which is derived from the time scale T as follows. If T has a left-scattered
maximumm, then T

κ = T – {m}; otherwise, Tκ = T.

When a,b ∈ T, a < b, we denote the intervals [a,b]T, [a,b)T and (a,b]T in T by

[a,b]T = [a,b]∩T, [a,b)T = [a,b)∩T, (a,b]T = (a,b]∩T,

respectively. Note that [a,b]κ
T
= [a,b]T if b is left-dense and [a,b]κ

T
=

[
a,b)

T
= [a,ρ(b)]T if b

is left-scattered. We denote [a,b]κ
T

= ([a,b]κ
T
)κ , therefore [a,b]κ

T
= [a,b]T if b is left-dense

and [a,b]κ
T

= [a,ρ(b)]κ
T
if b is left-scattered.

Definition . ([, Definition .]) Assume that f : T → R is a function and let t ∈ T
κ .

Then we define f �(t) to be the number (provided it exists) with the property that given
any ε > , there is a neighborhood U of t (i.e., U = (t – δ, t + δ) ∩ T for some δ > ) such
that

∣∣[f (σ (t)) – f (s)
]
– f �(t)

[
σ (t) – s

]∣∣ ≤ ε
∣∣σ (t) – s

∣∣ for all s ∈U .

We call f �(t) the delta (or Hilger) derivative of f at t. The function f is delta (or Hilger)
differentiable on T

κ provided f �(t) exists for all t ∈ T
κ . The function f � : Tκ → R is then

called the delta derivative of f on T
κ .

Definition . ([, Definition .]) Assume that f : T→R
N is a function,

f (t) =
(
f (t), f (t), . . . , f N (t)

)
,

and let t ∈ T
κ . Then we define f �(t) = (f � (t), f � (t), . . . , f N� (t)) (provided it exists). We

call f �(t) the delta (or Hilger) derivative of f at t. The function f is delta (or Hilger) differ-
entiable provided f �(t) exists for all t ∈ T

κ . The function f � : Tκ → R
N is then called the

delta derivative of f on T
κ .

Definition . ([, Definition .]) For a function f : T → R, we will talk about the
second derivative f � provided f � is differentiable on T

κ = (Tκ )κ with derivative f � =
(f �)� : Tκ →R.

Definition . ([, Definition .]) For a function f : T → R
N , we will talk about the

second derivative f � provided f � is differentiable on T
κ = (Tκ )κ with derivative f � =

(f �)� : Tκ →R
N .

The �-measure μ� and �-integration are defined as those in [].

http://www.boundaryvalueproblems.com/content/2012/1/148


Zhou et al. Boundary Value Problems 2012, 2012:148 Page 5 of 26
http://www.boundaryvalueproblems.com/content/2012/1/148

Definition . ([, Definition .]) Assume that f : T → R
N is a function, f (t) =

(f (t), f (t), . . . , f N (t)) and let A be a �-measurable subset of T. f is integrable on A if
and only if f i (i = , , . . . ,N ) are integrable on A, and

∫
A f (t)�t = (

∫
A f

(t)�t,
∫
A f

(t)�t,
. . . ,

∫
A f

N (t)�t).

Definition . ([, Definition .]) Let B ⊂ T. B is called a �-null set if μ�(B) = . Say
that a property P holds �-almost everywhere (�-a.e.) on B, or for �-almost all (�-a.a.)
t ∈ B if there is a �-null set E ⊂ B such that P holds for all t ∈ B\E.

For p ∈ R, p ≥ , we set the space

Lp�
(
[,T)T ,RN)

=
{
u : [,T)T →R

N :
∫
[,T) T

∣∣f (t)∣∣p�t < +∞
}

with the norm

‖f ‖Lp� =
(∫

[,T) T

∣∣f (t)∣∣p�t
) 

p
.

We have the following theorem.

Theorem . ([, Theorem .]) Let p ∈R be such that p ≥ . Then the space Lp�( [,T)T ,
R

N ) is a Banach space together with the norm ‖ · ‖Lp� . Moreover, L�( [a,b)T ,RN ) is a
Hilbert space together with the inner product given for every (f , g) ∈ Lp�( [a,b)T ,RN ) ×
Lp�(

[
a,b)

T
,RN ) by

〈f , g〉L� =
∫
[a,b) T

(
f (t), g(t)

)
�t,

where (·, ·) denotes the inner product in R
N .

Definition . ([, Definition .]) A function f : [a,b]T → R
N , f (t) = (f (t), f (t),

. . . , f N (t)). We say that f is absolutely continuous on [a,b]T (i.e., f ∈ AC([a,b]T,RN )) if
for every ε > , there exists δ >  such that if { [ak ,bk)T}nk= is a finite pairwise disjoint
family of subintervals of [a,b]T satisfying

∑n
k=(bk – ak) < δ, then

∑n
k= |f (bk) – f (ak)| < ε.

Now, we recall the Sobolev space W ,p
�,T ([,T]T,RN ) on [,T]T defined in []. For the

sake of convenience, in the sequel we let uσ (t) = u(σ (t)).

Definition . ([, Definition .]) Let p ∈ R be such that p >  and u : [,T]T → R
N .

We say that u ∈ W ,p
�,T ([,T]T,RN ) if and only if u ∈ Lp�( [,T)T ,RN ) and there exists g :

[,T]κ
T

→R
N such g ∈ Lp�( [,T)T ,RN ) and∫

[,T) T

(
u(t),φ�(t)

)
�t = –

∫
[,T) T

(
g(t),φσ (t)

)
�t, ∀φ ∈ C

T ,rd
(
[,T]T,RN)

. (.)

For p ∈ R, p > , we denote

V ,p
�,T

(
[,T]T,RN)

=
{
x ∈ AC

(
[,T]T,RN)

: x� ∈ Lp�
(
[,T)T ,RN)

,x() = x(T)
}
.

http://www.boundaryvalueproblems.com/content/2012/1/148
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It follows from Remark . in [] that

V ,p
�

(
[,T]T,RN

) ⊂W ,p
�

(
[,T]T,RN)

is true for every p ∈ R with p > . These two sets are, as a class of functions, equiva-
lent. It is the characterization of functions in W ,p

�,T ([,T]T,RN ) in terms of functions in
V ,p

�,T ([,T]T,RN ) too. That is the following theorem.

Theorem . ([, Theorem .]) Suppose that u ∈W ,p
�,T ([,T]T,RN ) for some p ∈R with

p > , and that (.) holds for g ∈ Lp�( [,T)T ,RN ). Then there exists a unique function
x ∈ V ,p

�,T ([,T]T,RN ) such that the equalities

x = u, x� = g �-a.e. on [,T)T (.)

are satisfied and∫
[,T) T

g(t)�t = . (.)

By identifying u ∈ W ,p
�,T ([,T]T,RN ) with its absolutely continuous representative x ∈

V ,p
�,T ([,T]T,RN ) for which (.) holds, the set W ,p

�,T ([,T]T,RN ) can be endowed with
the structure of a Banach space. That is the following theorem.

Theorem . ([, Theorem .]) Assume p ∈ R and p > . The set W ,p
�,T ([,T]T,RN ) is

a Banach space together with the norm defined as

‖u‖W ,p
�,T

=
(∫

[,T) T

∣∣uσ (t)
∣∣p�t +

∫
[,T) T

∣∣u�(t)
∣∣p�t

) 
p

∀u ∈W ,p
�,T

(
[,T]T,RN)

. (.)

Moreover, the set H
�,T =W ,

�,T ([,T]T,RN ) is a Hilbert space together with the inner prod-
uct

〈u, v〉H
�,T

=
∫
[,T) T

(
uσ (t), vσ (t)

)
�t +

∫
[,T) T

(
u�(t), v�(t)

)
�t ∀u, v ∈H

�,T .

The Banach spaceW ,p
�,T ([,T]T,RN ) has some important properties.

Theorem . ([, Theorem .]) There exists C >  such that the inequality

‖u‖∞ ≤ C‖u‖H
�,T

(.)

holds for all u ∈H
�,T , where ‖u‖∞ =maxt∈[,T]T |u(t)|.

Moreover, if
∫
[,T) T

u(t)�t = , then

‖u‖∞ ≤ C
∥∥u�

∥∥
L�
.
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Theorem . ([, Theorem .]) If the sequence {uk}k∈N ⊂W ,p
�,T ([,T]T,RN ) converges

weakly to u in W ,p
�,T ([,T]T,RN ), then {uk}k∈N converges strongly in C([,T]T,RN ) to u.

Theorem . ([, Theorem .]) Let L : [,T]T × R
N × R

N → R, (t,x, y) → L(t,x, y)
be �-measurable in t for each (x, y) ∈ R

N × R
N and continuously differentiable in (x, y)

for �-almost every t ∈ [,T]T. If there exist a ∈ C(R+,R+),b ∈ L�([,T]T,R+) and c ∈
Lq�([,T]T,R+) ( < q < +∞) such that for �-almost t ∈ [,T]T and every (x, y) ∈R

N ×R
N ,

one has∣∣L(t,x, y)∣∣ ≤ a
(|x|)(b(t) + |y|p),∣∣Lx(t,x, y)∣∣ ≤ a
(|x|)(b(t) + |y|p), (.)∣∣Ly(t,x, y)∣∣ ≤ a
(|x|)(c(t) + |y|p–),

where 
p +


q = , then the functional � :W ,p

�,T ([,T]T,RN ) →R defined as

�(u) =
∫
[,T) T

L
(
σ (t),uσ (t),u�(t)

)
�t

is continuously differentiable on W ,p
�,T ([,T]T,RN ) and

〈
�′(u), v

〉
=

∫
[,T) T

[(
Lx

(
σ (t),uσ (t),u�(t)

)
, vσ (t)

)
+

(
Ly

(
σ (t),uσ (t),u�(t)

)
, v�(t)

)]
�t. (.)

3 Variational setting
In this section, we recall some basic facts which will be used in the proofs of our main
results. In order to apply the critical point theory, we make a variational structure. From
this variational structure, we can reduce the problem of finding solutions of (.) to the
one of seeking the critical points of a corresponding functional.
If u ∈ H

�,T , by identifying u ∈ H
�,T with its absolutely continuous representative

x ∈ V ,
�,T ([,T]T,RN ) for which (.) holds, then u is absolutely continuous and u̇ ∈

L( [,T)T ;RN ). In this case, u�(t+) – u�(t–) =  may not hold for some t ∈ (,T)T. This
leads to impulsive effects.
Take v ∈ H

�,T and multiply the two sides of the equality

u�
(t) +A

(
σ (t)

)
u
(
σ (t)

)
+∇F

(
σ (t),uσ (t)

)
= 

by vσ and integrate on [,T)T, then we have∫
[,T) T

[
u�

(t) +A
(
σ (t)

)
u
(
σ (t)

)
+∇F

(
σ (t),uσ (t)

)]
vσ (t)�t = . (.)

Moreover, combining u�() – u�(T) = , one has∫
[,T) T

(
u�

(t), vσ (t)
)
�t

=
p∑
j=

∫
[tj ,tj+) T

(
u�

(t), vσ (t)
)
�t

http://www.boundaryvalueproblems.com/content/2012/1/148
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=
p∑
j=

[(
u�

(
t–j+

)
, v

(
t–j+

))
–

(
u�

(
t+j

)
, v

(
t+j

))
–

∫
[tj ,tj+)

(
u�(t), v�(t)

)
�t

]

=
p∑
j=

[ N∑
i=

((
ui

)�(
t–j+

)
vi

(
t–j+

)
–

(
ui

)�(
t+j

)
vi

(
t+j

))
–

∫
[tj ,tj+)

(
u�(t), v�(t)

)
�t

]

= u�(T)v(T) – u�()v() –
p∑
j=

N∑
i=

Iij
((
ui

)
(tj)

)(
vi

)
(tj) –

∫
[,T) T

(
u�(t), v�(t)

)
�t

= –
p∑
j=

N∑
i=

Iij
(
ui(tj)

)(
vi

)
(tj) –

∫
[,T) T

(
u�(t), v�(t)

)
�t.

Combining (.), we have

∫
[,T) T

(
u�(t), v�(t)

)
�t +

p∑
j=

N∑
i=

Iij
(
ui(tj)

)
vi(tj)

–
∫
[,T) T

(
Aσ (t)uσ (t), vσ (t)

)
�t –

∫
[,T) T

(∇F
(
σ (t),uσ (t)

)
, vσ (t)

)
�t = .

Considering the above, we introduce the following concept solution for problem (.).

Definition . We say that a function u ∈ H
�,T is a weak solution of problem (.) if the

identity

∫
[,T) T

(
u�(t), v�(t)

)
�t +

p∑
j=

N∑
i=

Iij
(
ui(tj)

)
vi(tj)

=
∫
[,T) T

(
Aσ (t)uσ (t), vσ (t)

)
�t +

∫
[,T) T

(∇F
(
σ (t),uσ (t)

)
, vσ (t)

)
�t

holds for any v ∈H
�,T .

Consider the functional ϕ :H
�,T →R defined by

ϕ(u) =



∫
[,T) T

∣∣u�(t)
∣∣�t +

p∑
j=

N∑
i=

∫ ui(tj)


Iij(t) dt

–



∫
[,T) T

(
Aσ (t)uσ (t),uσ (t)

)
�t + J(u)

= ψ(u) + φ(u), (.)

where

J(u) = –
∫
[,T) T

F
(
σ (t),uσ (t)

)
�t,

ψ(u) =



∫
[,T) T

∣∣u�(t)
∣∣�t –




∫
[,T) T

(
Aσ (t)uσ (t),uσ (t)

)
�t + J(u)

http://www.boundaryvalueproblems.com/content/2012/1/148
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and

φ(u) =
p∑
j=

N∑
i=

∫ ui(tj)


Iij(t) dt.

Lemma . The functional ϕ is continuously differentiable on H
�,T and

〈
ϕ′(u), v

〉
=

∫
[,T) T

(
u�(t), v�(t)

)
�t +

p∑
j=

N∑
i=

Iij
(
ui(tj)

)
vi(tj)

–
∫
[,T) T

[(
Aσ (t)uσ (t), vσ (t)

)
–

(∇F
(
σ (t),uσ (t)

)
, vσ (t)

)]
�t. (.)

Proof Set L(t,x, y) = 
 |y| – 

 (A(t)x,x) – F(t,x) for all x, y ∈ RN and t ∈ [,T]T. Then
L(t,x, y) satisfies all assumptions of Theorem .. Hence, by Theorem ., we know that
the functional ψ is continuously differentiable on H

�,T and

〈
ψ ′(u), v

〉
=

∫
[,T) T

[(
u�(t), v�(t)

)
–

(
Aσ (t)uσ (t), vσ (t)

)
–

(∇F
(
σ (t),uσ (t)

)
, vσ (t)

)]
�t

for all u, v ∈H
�,T .

On the other hand, by the continuity of Iij, i ∈ �, j ∈ �, one has that φ ∈ C(H
�,T ,R) and

〈
φ′(u), v

〉
=

p∑
j=

N∑
i=

Iij
(
ui(tj)

)
vi(tj)

for all u, v ∈H
�,T . Thus, ϕ is continuously differentiable on H

�,T and (.) holds. �

By Definition . and Lemma ., the weak solutions of problem (.) correspond to the
critical points of ϕ.
Moreover, we need more preliminaries. For any u ∈H

�,T , let

q(u) =



∫
[,T) T

[∣∣uσ (t)
∣∣ – (

Aσ (t)uσ (t),uσ (t)
)]

�t.

We see that

q(u) =


‖u‖ – 



∫
[,T) T

((
Aσ (t) + IN×N

)
uσ (t),uσ (t)

)
�t

=


〈
(I –K)u,u

〉
,

whereK :H
�,T → H

�,T is the bounded self-adjoint linear operator defined, using the Riesz
representation theorem, by

〈Ku, v〉 =
∫
[,T) T

((
Aσ (t) + IN×N

)
uσ (t), vσ (t)

)
�t, ∀u, v ∈H

�,T ,

http://www.boundaryvalueproblems.com/content/2012/1/148
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IN×N and I denote anN×N identitymatrix and an identity operator, respectively. By (.),
ϕ(u) can be rewritten as

ϕ(u) = q(u) + φ(u) + J(u)

=


〈
(I –K)u,u

〉
+ φ(u) + J(u). (.)

The compact imbedding ofH
�,T intoC([,T]T,RN ) implies thatK is compact. By classical

spectral theory, we can decompose H
�,T into the orthogonal sum of invariant subspaces

for I –K

H
�,T =H– ⊕H ⊕H+,

where H = ker(I –K) and H–, H+ are such that, for some δ > ,

q(u) ≤ –δ‖u‖ if u ∈H–, (.)

q(u) ≥ δ‖u‖ if u ∈H+. (.)

Remark . K has only finitely many eigenvalues λi with λi >  since K is compact on
H

T . Hence H– is finite dimensional. Notice that I – K is a compact perturbation of the
self-adjoint operator I . By a well-known theorem, we know that  is not in the essential
spectrum of I –K . Hence, H is a finite dimensional space too.

To prove our main results, we need the following definitions and theorems.

Definition . ([, P]) Let X be a real Banach space and I ∈ C(X,R). I is said to be
satisfying (PS) condition on X if any sequence {xn} ⊆ X for which I(xn) is bounded and
I ′(xn) →  as n→ ∞, possesses a convergent subsequence in X.

Firstly, we state the local linking theorem.
Let X be a real Banach space with a direct decomposition X = X ⊕ X. Consider two

sequences of a subspace

X
 ⊂ X

 ⊂ · · · ⊂ X, X
 ⊂ X

 ⊂ · · · ⊂ X

such that

dimX
n < +∞, dimX

n < +∞, n ∈N

and

X =
⋃
n∈N

X
n, X =

⋃
n∈N

X
n .

For every multi-index α = (α,α) ∈ N
, we denote by Xα the space Xα ⊕ Xα . We say

α ≤ β ⇔ α ≤ β, α ≤ β. A sequence (αn)⊂N
 is admissible if, for every α ∈N

, there is
m ∈N such that n≥ m ⇒ αn ≥ α.

http://www.boundaryvalueproblems.com/content/2012/1/148
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Definition . ([, Definition .]) Let I ∈ C(X,R). The functional I satisfies the (C)*

condition if every sequence (uαn ) such that αn is admissible and

uαn ∈ Xαn , sup
∣∣I(uαn )

∣∣ < ∞,
(
 + ‖uαn‖

)
I ′(uαn )→ 

contains a subsequence which converges to a critical point of I .

Theorem . [, Theorem .] Suppose that I ∈ C(X,R) satisfies the following assump-
tions:

(I) X �= {} and I has a local linking at  with respect to (X,X); that is, for someM > ,

I(u) ≥ , u ∈ X,‖u‖ ≤ M,

I(u) ≤ , u ∈ X,‖u‖ ≤ M.

(I) I satisfies (C)* condition.
(I) I maps bounded sets into bounded sets.
(I) For every n ∈N, I(u) → –∞ as ‖u‖ → ∞, u ∈ X

n ⊕X.

Then I has at least two critical points.

Remark . Since I ∈ C(X,R), by the condition (I) of Theorem .,  is the critical point
of I . Thus, under the conditions of Theorem ., I has at least one nontrivial critical point.

Secondly, we state another three critical point theorems.

Theorem . ([, Theorem .]) Let E be a Hilbert space with E = E ⊕E and E = E⊥
 .

Suppose I ∈ C(E,R), satisfies (PS) condition, and

(I) I(u) = 
 〈Lu,u〉 + b(u), where Lu = LPu + LPu and Lκ : Eκ → Eκ is bounded and

self-adjoint, κ = , ,
(I) b′ is compact, and
(I) there exist a subspace Ẽ ⊂ E and sets S ⊂ E, Q⊂ Ẽ and constants α > ω such that

(i) S ⊂ E and I|S ≥ α,
(ii) Q is bounded and I|∂Q ≤ ω,
(iii) S and ∂Q link.

Then I possesses a critical value c ≥ α.

Theorem . ([, Theorem .]) Let E be a Banach space. Let I ∈ C(E,R) be an even
functional which satisfies the (PS) condition and I() = . If E = V ⊕ W , where V is finite
dimensional, and I satisfies

(I) there are constants ρ,α >  such that I|∂Bρ∩W ≥ α, where Bρ = {x ∈ E : ‖x‖ < ρ},
(I) for each finite dimensional subspace Ẽ ⊂ E, there is an R = R(̃E) such that I ≤  on

Ẽ\BR(̃E),

then I possesses an unbounded sequence of critical values.

http://www.boundaryvalueproblems.com/content/2012/1/148
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In order to state another critical point theorem,we need the following notions. LetX and
Y be Banach spaces with X being separable and reflexive, and set E = X ⊕ Y . Let S ⊂ X*

be a dense subset. For each s ∈ S , there is a semi-norm on E defined by

ps : E → R, ps(u) =
∣∣s(x)∣∣ + ‖y‖ for u = x + y ∈ X ⊕ Y .

We denote by TS the topology on E induced by a semi-norm family {ps}, and let w and w*

denote the weak-topology and weak*-topology, respectively.
For a functional � ∈ C(E,R), we write �a = {u ∈ E : �(u) ≥ a}. Recall that �′ is said

to be weak sequentially continuous if, for any uk ⇀ u in E, one has limk→∞ �′(uk)v →
�′(u)v for each v ∈ E, i.e., �′ : (E,w) → (E*,w*) is sequentially continuous. For c ∈ R, we
say that � satisfies the (C)c condition if any sequence {uk} ⊂ E such that �(uk) → c and
( + ‖uk‖)�′(uk) →  as k → ∞ contains a convergent subsequence.
Suppose that

(�) for any c ∈ R, �c is TS -closed, and �′ : (�c,TS ) → (E*,w*) is continuous;
(�) there exists ρ >  such that κ := inf�(∂Bρ ∩ Y ) > , where

Bρ =
{
u ∈ E : ‖u‖ < ρ

}
;

(�) there exist a finite dimensional subspace Y ⊂ Y and R > ρ such that c̄ := sup�(E) <
∞ and sup�(E\S) < inf�(Bρ ∩ Y ), where

E := X ⊕ Y, and S =
{
u ∈ E : ‖u‖ ≤ R

}
.

Theorem . ([]) Assume that � is even and (�)-(�) are satisfied. Then � has at
least m = dimY pairs of critical points with critical values less than or equal to c̄ provided
� satisfies the (C)c condition for all c ∈ [κ , c̄].

Remark . In our applications, we take S=X* so that TS is the product topology on
E = X ⊕ Y given by the weak topology on X and the strong topology on Y .

4 Main results
Lemma . φ′ is compact on H

�,T .

Proof Let {uk} ⊂ H
�,T be any bounded sequence. Since H

�,T is a Hilbert space, we can
assume that uk ⇀ u. Theorem . implies that ‖uk – u‖∞ → . By (.), we have

∥∥φ′(uk) – φ′(u)
∥∥

= sup
v∈H

�,T ,‖v‖≤

∣∣〈φ′(uk) – φ′(u), v
〉∣∣

= sup
v∈H

�,T ,‖v‖≤

∣∣∣∣ p∑
j=

N∑
i=

[
Iij

(
uik(tj)

)
– Iij

(
ui(tj)

)]
vi(tj)

∣∣∣∣
≤ ‖v‖∞ sup

v∈H
�,T ,‖v‖≤

p∑
j=

N∑
i=

∣∣Iij(uik(tj)) – Iij
(
ui(tj)

)∣∣

http://www.boundaryvalueproblems.com/content/2012/1/148
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≤ C‖v‖ sup
v∈H

�,T ,‖v‖≤

p∑
j=

N∑
i=

∣∣Iij(uik(tj)) – Iij
(
ui(tj)

)∣∣
= C sup

v∈H
�,T ,‖v‖≤

p∑
j=

N∑
i=

∣∣Iij(uik(tj)) – Iij
(
ui(tj)

)∣∣.
The continuity of Iij and this imply that φ′(uk) → φ′(u) in H

�,T . The proof is complete.
�

First of all, we give two existence results.

Theorem . Suppose that (A) and the following conditions are satisfied.

(F) lim|x|→∞ F(t,x)
|x| = +∞ uniformly for �-a.e. t ∈ [,T]T,

(F) lim|x|→
F(t,x)
|x| =  uniformly for �-a.e. t ∈ [,T]T,

(F) there exist λ >  and β > λ –  such that

lim sup
|x|→∞

F(t,x)
|x|λ < ∞ uniformly for �-a.e. t ∈ [,T]T

and

lim inf|x|→∞
(∇F(t,x),x) – F(t,x)

|x|β >  uniformly for �-a.e. t ∈ [,T]T,

(F) there exists r >  such that

F(t,x)≥ , ∀|x| ≤ r, and � -a.e. t ∈ [,T]T,

(F) there exist aij,bij >  and ξij ∈ [, ) such that

∣∣Iij(t)∣∣ ≤ aij + bij|t|ξij for every t ∈R, i ∈ �, j ∈ �,

(F)
∫ t
 Iij(s) ds≤  for every t ∈ R, i ∈ �, j ∈ �,

(F) there exists ζij >  such that


∫ t


Iij(s) ds – Iij(t)t ≥  for all i ∈ �, j ∈ � and |t| ≥ ζij,

and

lim
t→

Iij(t)
t

=  for all i ∈ �, j ∈ �.

Then problem (.) has at least two weak solutions. The one is a nontrivial weak solution,
the other is a trivial weak solution.

Proof By Lemma ., ϕ ∈ C(X,R). Set X =H
�,T ,X =H+ with (en)n≥ being its Hilbertian

basis, X =H– ⊕H and define

X
n = span{e, e, . . . , en}, n ∈N, X

n = X, n ∈N.

http://www.boundaryvalueproblems.com/content/2012/1/148
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Then we have

X
 ⊂ X

 ⊂ · · · ⊂ X, X
 ⊂ X

 ⊂ · · · ⊂ X, X =
⋃
n∈N

X
n, X =

⋃
n∈N

X
n

and

dimX
n < +∞, dimX

n < +∞, n ∈N.

We divide our proof into four parts in order to show Theorem ..
Firstly, we show that ϕ satisfies the (C)* condition.
Let {uαn} be a sequence in H

�,T such that αn is admissible and

uαn ∈ Xαn , sup
∣∣ϕ(uαn )

∣∣ < +∞,
(
 + ‖uαn‖

)
ϕ′(uαn ) → ,

then there exists a constant C >  such that

∣∣ϕ(uαn )
∣∣ ≤ C,

(
 + ‖uαn‖

)
ϕ′(uαn ) ≤ C (.)

for all large n. On the other hand, by (F), there are constants C >  and ρ >  such that

F(t,x)≤ C|x|λ (.)

for all |x| ≥ ρ and �-a.e. t ∈ [,T]T. By (A) one has

∣∣F(t,x)∣∣ ≤ max
s∈[,ρ]

a(s)b(t) (.)

for all |x| ≤ ρ and �-a.e. t ∈ [,T]T. It follows from (.) and (.) that

∣∣F(t,x)∣∣ ≤ max
s∈[,ρ]

a(s)b(t) +C|x|λ (.)

for all x ∈ R
N and �-a.e. t ∈ [,T]T. Since dlm ∈ L∞([,T]) for all l,m = , , . . . ,N , there

exists a constant C ≥  such that∣∣∣∣∫
[,T) T

(
Aσ (t)uσ (t),uσ (t)

)
�t

∣∣∣∣ ≤ C

∫
[,T) T

∣∣uσ (t)
∣∣�t, ∀u ∈H

�,T . (.)

From (F) and (.), we have that

∣∣φ(u)∣∣ ≤
p∑
j=

N∑
i=

∫ |ui(tj)|



(
aij + bij|t|ξij

)
dt

≤ apN‖u‖∞ + b
p∑
j=

N∑
i=

‖u‖ξij+
∞

≤ apNC‖u‖ + bC

p∑
j=

N∑
i=

‖u‖ξij+ (.)

http://www.boundaryvalueproblems.com/content/2012/1/148
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for all u ∈H
�,T , where a =maxi∈�,j∈�{aij}, b =maxi∈�,j∈�{bij}. Combining (.), (.), (.)

and Hölder’s inequality, we have



‖uαn‖ = ϕ(uαn ) – φ(uαn ) +




∫
[,T) T

∣∣uσ
αn (t)

∣∣�t

+



∫
[,T) T

(
Aσ (t)uσ

αn (t),u
σ
αn (t)

)
�t – J(uαn )

≤ C + apNC‖uαn‖ + bC

p∑
j=

N∑
i=

‖uαn‖ξij+ +C

∫
[,T) T

∣∣uσ
αn (t)

∣∣�t

+C

∫
[,T) T

∣∣uσ
αn (t)

∣∣λ�t + max
s∈[,ρ]

a(s)
∫
[,T) T

bσ (t)�t

≤ C + apNC‖uαn‖ + bC

p∑
j=

N∑
i=

‖uαn‖ξij+

+CT
λ–
λ

(∫
[,T) T

∣∣uσ
αn (t)

∣∣λ�t
) 

λ

+C

∫
[,T) T

∣∣uσ
αn (t)

∣∣λ�t +C (.)

for all large n, where C =maxs∈[,ρ] a(s)
∫
[,T) T

bσ (t)�t. On the other hand, by (F), there
exist C >  and ρ >  such that

(∇F(t,x),x
)
– F(t,x)≥ C|x|β (.)

for all |x| ≥ ρ and �-a.e. t ∈ [,T]T. By (A),

∣∣(∇F(t,x),x
)
– F(t,x)

∣∣ ≤ Cb(t) (.)

for all |x| ≤ ρ and �-a.e. t ∈ [,T]T, where C = ( + ρ)maxs∈[,ρ] a(s). Combining (.)
and (.), one has

(∇F(t,x),x
)
– F(t,x)≥ C|x|β –Cρ

β
 –Cb(t) (.)

for all x ∈R
N and �-a.e. t ∈ [,T]T. According to (F), there exists C >  such that


∫ t


Iij(s) ds – Iij(t)t ≥ –C for all i ∈ �, j ∈ � and t ∈R. (.)

Thus, by (.), (.) and (.), we obtain

C ≥ ϕ(uαn ) –
〈
ϕ′(uαn ),uαn

〉
= φ(uαn ) –

〈
φ′(uαn ),uαn

〉
+

∫
[,T) T

[(∇F
(
σ (t),uσ

αn (t)
)
,uσ

αn (t)
)
– F

(
σ (t),uσ

αn (t)
)]

�t

=
p∑
j=

N∑
i=

(

∫ uiαn (tj)


Iij(t) dt – Iij

(
uiαn (tj)

)
uiαn (tj)

)
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+
∫
[,T) T

[(∇F
(
σ (t),uσ

αn (t)
)
,uσ

αn (t)
)
– F

(
σ (t),uσ

αn (t)
)]

�t

≥ –pNC +C

∫
[,T) T

∣∣uσ
αn

∣∣β�t –Cρ
β
 T –C

∫
[,T) T

bσ (t)�t (.)

for all large n. From (.),
∫
[,T) T

|uσ
αn |β�t is bounded. If β > λ, by Hölder’s inequality, we

have

∫
[,T) T

∣∣uσ
αn (t)

∣∣λ�t ≤ T
β–λ
β

(∫
[,T) T

∣∣uσ
αn (t)

∣∣β�t
) λ

β

. (.)

Since ξij ∈ [, ) for all i ∈ �, j ∈ �, by (.) and (.), {uαn} is bounded in H
�,T . If β ≤ λ,

by (.), we obtain∫
[,T) T

∣∣uσ
αn (t)

∣∣λ�t =
∫
[,T) T

∣∣uσ
αn (t)

∣∣β ∣∣uσ
αn (t)

∣∣λ–β
�t

≤ ‖uαn‖λ–β
∞

∫
[,T) T

∣∣uσ
αn (t)

∣∣β�t

≤ Cλ–β
 ‖uαn‖λ–β

∫
[,T) T

∣∣uσ
αn (t)

∣∣β�t. (.)

Since ξij ∈ [, ), λ – β < , by (.) and (.), {uαn} is also bounded in H
�,T . Hence, {uαn}

is also bounded inH
�,T . Going if necessary to a subsequence, we can assume that uαn ⇀ u

in H
�,T . From Theorem ., we have ‖uαn – u‖∞ →  and

∫
[,T) T

|uσ
αn (t) – uσ (t)|�t → .

Since∫
[,T) T

∣∣u�
αn (t) – u�(t)

∣∣�t

=
〈
ϕ′(uαn ) – ϕ′(u),uαn – u

〉
+

∫
[,T) T

(
Aσ (t)

(
uσ

αn (t) – uσ (t)
)
,uσ

αn (t) – uσ (t)
)
�t

–
p∑
j=

N∑
i=

(
Iij

(
uiαn (tj)

)
– Iij

(
ui(tj)

))(
uiαn (tj) – ui(tj)

)
+

∫
[,T) T

(∇F
(
σ (t),uσ

αn (t)
)
–∇F

(
σ (t),uσ (t)

)
,uσ

αn (t) – uσ (t)
)
�t.

This implies
∫
[,T) T

|u�
αn (t)–u

�(t)|�t → , and hence ‖uαn –u‖ → . Therefore, uαn → u
in H

�,T . Hence ϕ satisfies the (C)* condition.
Secondly, we show that ϕ maps bounded sets into bounded sets.
It follows from (.), (.), (.) and (.) that

∣∣ϕ(u)∣∣ = 


∫
[,T) T

∣∣u�(t)
∣∣�t +

p∑
j=

N∑
i=

∫ ui(tj)


Iij(t) dt

–



∫
[,T) T

(
Aσ (t)uσ (t),uσ (t)

)
�t + J(u)

≤ 


∫
[,T) T

∣∣u�(t)
∣∣�t +

C



∫
[,T) T

∣∣uσ (t)
∣∣�t + apNC‖u‖

http://www.boundaryvalueproblems.com/content/2012/1/148


Zhou et al. Boundary Value Problems 2012, 2012:148 Page 17 of 26
http://www.boundaryvalueproblems.com/content/2012/1/148

+ bC

p∑
j=

N∑
i=

‖u‖ξij+

+C

∫
[,T) T

∣∣uσ (t)
∣∣λ�t + max

s∈[,ρ]
a(s)

∫
[,T) T

bσ (t)�t

≤ 

C‖u‖ + apNC‖u‖ + bC

p∑
j=

N∑
i=

‖u‖ξij+ +CT‖u‖λ
∞ +C

≤ 

C‖u‖ + apNC‖u‖ + bC

p∑
j=

N∑
i=

‖u‖ξij+ +CTCλ
 ‖u‖λ +C

for all u ∈H
�,T . Thus, ϕ maps bounded sets into bounded sets.

Thirdly, we claim that ϕ has a local linking at  with respect to (X,X).
Applying (F), for ε = δ

 , there exists ρ >  such that

∣∣F(t,x)∣∣ ≤ ε|x| (.)

for all |x| ≤ ρ and �-a.e. t ∈ [,T]T. By (F), for ε = δ
pNC

, there exists ρ >  such that

∣∣Iij(t)∣∣ ≤ ε|t|, |t| ≤ ρ, i ∈ �, j ∈ �. (.)

Let ρ =min{ρ,ρ}. For u ∈ X with ‖u‖ ≤ r � ρ
C
, by (.), (.), (.), (.) and (.),

we have

ϕ(u) = q(u) +
p∑
j=

N∑
i=

∫ ui(tj)


Iij(t) dt –

∫
[,T) T

F
(
σ (t),uσ (t)

)
�t

≥ δ‖u‖ –
p∑
j=

N∑
i=

∫ |ui(tj)|



∣∣Iij(t)∣∣dt – ε

∫
[,T) T

∣∣uσ (t)
∣∣�t

≥ δ‖u‖ –
p∑
j=

N∑
i=

∫ |ui(tj)|


ε|t|dt – ε

∫
[,T) T

∣∣uσ (t)
∣∣�t

≥ δ‖u‖ – ε

p∑
j=

N∑
i=

‖u‖∞ – ε

∫
[,T) T

∣∣uσ (t)
∣∣�t

≥ δ‖u‖ – εpNC‖u‖ – ε‖u‖

≥ δ‖u‖ – δ


‖u‖ – δ


‖u‖

=
δ


‖u‖.

This implies that

ϕ(u) ≥ , ∀u ∈ X with ‖u‖ ≤ r.

On the other hand, it follows from (F) that

φ(u) ≤  (.)
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for all u ∈ H
�,T . Let u = u– + u ∈ X satisfy ‖u‖ ≤ r � r

C
. Using (F), (.), (.), (.)

and (.), we obtain

ϕ(u) = q(u) + φ(u) –
∫
[,T) T

F
(
σ (t),uσ (t)

)
�t

≤ –δ
∥∥u–∥∥ –

∫
[,T) T

F
(
σ (t),uσ (t)

)
�t

≤ –δ
∥∥u–∥∥.

This implies that

ϕ(u) ≤ , ∀u ∈ X with ‖u‖ ≤ r.

LetM =min{r, r}. Then ϕ satisfies the condition (I) of Theorem ..
Finally, we claim that for every n ∈N,

ϕ(u) → –∞ as ‖u‖ → ∞,u ∈ X
n ⊕X.

For given n ∈N, since X
n ⊕X is a finite dimensional space, there exists C >  such that

‖u‖ ≤ C‖u‖L , ∀u ∈ X
n ⊕X. (.)

By (F), there exists ρ >  such that

F(t,x)≥ C
(C + δ)|x| (.)

for all |x| ≥ ρ and �-a.e. t ∈ [,T]T. From (A), we get

∣∣F(t,x)∣∣ ≤ max
s∈[,ρ]

a(s)b(t) (.)

for all |x| ≤ ρ and �-a.e. t ∈ [,T]T. Equations (.) and (.) imply that

F(t,x)≥ C
(C + δ)|x| –C – max

s∈[,ρ]
a(s)b(t) (.)

for all x ∈ R
N and �-a.e. t ∈ [,T]T, where C = C

(C + δ)ρ
 . Using (.), (.), (.),

(.), (.) and (.), we have, for u = u+ + u + u– ∈ X
n ⊕X = X

n ⊕H ⊕H–,

ϕ(u) =



∫
[,T) T

∣∣u�(t)
∣∣�t +

p∑
j=

N∑
i=

∫ ui(tj)


Iij(t) dt

–



∫
[,T) T

(
Aσ (t)uσ (t),uσ (t)

)
�t –

∫
[,T) T

F
(
σ (t),uσ (t)

)
�t

≤ –δ
∥∥u–∥∥ +




∫
[,T) T

∣∣(u+)�(t)
∣∣�t

–



∫
[,T) T

(
Aσ (t)

(
u+

)σ (t),
(
u+

)σ (t)
)
�t –

∫
[,T) T

F
(
σ (t),uσ (t)

)
�t
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≤ –δ
∥∥u–∥∥ +




∫
[,T) T

∣∣(u+)�(t)
∣∣�t +

C



∫
[,T) T

∣∣(u+)σ (t)
∣∣�t

–
∫
[,T) T

F
(
σ (t),uσ (t)

)
�t

≤ –δ
∥∥u–∥∥ +

C


∥∥u+∥∥ –C

(C + δ)
∥∥uσ

∥∥
L +CT + max

s∈[,ρ]
a(s)

∫
[,T) T

bσ (t)�t

≤ –δ
∥∥u–∥∥ +C

∥∥u+∥∥ – (C + δ)‖u‖ +CT +C

= –δ
∥∥u–∥∥ +C

∥∥u+∥∥ – (C + δ)
∥∥u+ + u + u–

∥∥ +CT +C

≤ –δ
∥∥u–∥∥ +C

∥∥u+∥∥ – (C + δ)
∥∥u+∥∥ – δ

∥∥u + u–
∥∥ +CT +C

≤ –δ
∥∥u–∥∥ +C

∥∥u+∥∥ – (C + δ)
∥∥u+∥∥ – δ

∥∥u∥∥ +CT +C

= –δ‖u‖ +CT +C,

where C =maxs∈[,ρ] a(s)
∫
[,T) T

bσ (t)�t. Hence, for every n ∈ N, ϕ(u) → –∞ as ‖u‖ →
∞ and X

n ⊕X.
Thus, by Theorem ., problem (.) has at least one nontrivial weak solution. The proof

is complete. �

Example . Let T = R, T = π
 , N = , t = π

 . Consider the second-order Hamiltonian
system with impulsive effects

⎧⎪⎪⎨⎪⎪⎩
ü(t) +A(t)u(t) +∇F(t,x) = , a.e. t ∈ [, π

 ];

u() – u(π
 ) = u̇() – u̇(π

 ) = ,

�u̇(t) = u̇(t+ ) – u̇(t– ) = I(u(t)),

(.)

where A(t) = ,

F(t,x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

|x|, |x| ≥ ,


–
√
x –


√


–
√
 , 

√
 < x < ,

, |x| ≤ 
√
,



√
–x +


√



√
– , – ≤ x < –

√


for all x ∈R and t ∈ [, π
 ],

I(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

, t ≥ ,

–(t – ),  ≤ t < ,

t – ,  < t < ,

–t, |t| ≤ ,

t + , – < t < –,

–(t + ), – < t ≤ –,

, t ≤ –,
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then all conditions of Theorem . hold. According to Theorem ., problem (.) has at
least one nontrivial weak solution. In fact,

u(t) =

⎧⎨⎩
√
 cos t, t ∈ [, π

 ];


√
 sin t, t ∈ [π

 ,
π
 ]

is the solution of problem (.).

Theorem . Assume that (A), (F), (F), (F) and the following conditions are satisfied.

(F) lim sup|x|→
F(t,x)
|x| ≤  uniformly for �-a.e. t ∈ [,T]T,

(F) there exist constants μ >  and r ≥  such that (∇F(t,x),x) ≥ μF(t,x) >  for all t ∈
[,T]T and |x| ≥ r,

(F) F(t,x)≥  for all x ∈ R
N and �-a.e. t ∈ [,T]T.

Then problem (.) has at least one nontrivial weak solution.

Proof Set E =H+, E =H– ⊕H and E =H
�,T . Then E is a real Hilbert space, E = E ⊕E,

E = E⊥
 and dim(E) < +∞.

Firstly, we prove that ϕ satisfies the (PS) condition. Indeed, let {uk} ⊂H
�,T be a sequence

such that |ϕ(uk)| ≤ C and ϕ′(uk) →  as k → ∞. As the proof of Theorem ., it suffices
to show that {uk} is bounded in H

�,T . By (F) there exist positive constants C, C such
that

F(t,x)≥ C|x|μ –C, ∀t ∈ [,T]T,∀x ∈R
n (.)

(see []). By (F), (.) and (.), we have

C + ‖uk‖
≥ ϕ(uk) –

〈
ϕ′(uk),uk

〉
= φ(uk) –

〈
φ′(uk),uk

〉
+

∫
[,T) T

[(∇F
(
σ (t),uσ

k (t)
)
,uσ

k (t)
)
– F

(
σ (t),uσ

k (t)
)]

�t

=
p∑
j=

N∑
i=

(

∫ uik (tj)


Iij(t) dt – Iij

(
uik(tj)

)
uik(tj)

)

+
∫
[,T) T

[(∇F
(
σ (t),uσ

k (t)
)
,uσ

k (t)
)
– F

(
σ (t),uσ

k (t)
)]

�t

= –pNC +
∫
[,T) T

[(∇F
(
σ (t),uσ

k (t)
)
,uσ

k (t)
)
– F

(
σ (t),uσ

k (t)
)]

�t

= –pNC + (μ – )
∫
[,T) T

F
(
σ (t),uσ

k (t)
)
�t

+
∫
[,T) T

[(∇F
(
σ (t),uσ

k (t)
)
,uσ

k (t)
)
–μF

(
σ (t),uσ

k (t)
)]

�t

≥ –pNC + (μ – )
∫
[,T) T

(
C

∣∣uσ
k (t)

∣∣μ –C
)
�t
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+
∫
[,T) T

[(∇F
(
σ (t),uσ

k (t)
)
,uσ

k (t)
)
–μF

(
σ (t),uσ

k (t)
)]

�t

≥ –pNC + (μ – )C

∫
[,T) T

|uσ
k |(t)μ�t – (μ – )CT –C (.)

for large k, where C = (r +μ)maxs∈[,r] a(s)
∫
[,T) T

bσ (t)�t. Equation (.) implies that
there exists C >  such that∫

[,T) T

∣∣uσ
k (t)

∣∣μ�t ≤ C
(
 + ‖uk‖

)
. (.)

Combining (.), (.), (.) and (.), we obtain

μc + ‖uk‖
≥ μϕ(uk) –

〈
ϕ′(uk),uk

〉
=

(
μ


– 

)∫
[,T) T

[∣∣u�
k (t)

∣∣ – (
Aσ (t)uσ

k (t),u
σ
k (t)

)]
�t

+
∫
[,T) T

[(∇F
(
σ (t),uσ

k (t)
)
,uσ

k (t)
)
–μF

(
σ (t),uσ

k (t)
)]

�t +μφ(uk) –
〈
φ′(uk),uk

〉
=

(
μ


– 

)∫
[,T) T

[∣∣u�
k (t)

∣∣ – (
Aσ (t)uσ

k (t),u
σ
k (t)

)]
�t + (μ – )φ(uk) + φ(uk)

+
∫
[,T) T

[(∇F
(
σ (t),uσ

k (t)
)
,uσ

k (t)
)
–μF

(
σ (t),uσ

k (t)
)]

�t –
〈
φ′(uk),uk

〉
≥

(
μ


– 

)
‖uk‖ –

[
μ


–  –

(
μ


– 

)
C

]∫
[,T) T

∣∣uσ
k (t)

∣∣�t –C – pNC

– (μ – )apNC‖uk‖ – (μ – )bC

p∑
j=

N∑
i=

‖uk‖ξij+

≥
(

μ


– 

)
‖uk‖ –

[
μ


–  –

(
μ


– 

)
C

]
T

μ–
μ

(∫
[,T) T

∣∣uσ
k (t)

∣∣μ�t
) 

μ

–C – pNC – (μ – )apNC‖uk‖ – (μ – )bC

p∑
j=

N∑
i=

‖uk‖ξij+

≥
(

μ


– 

)
‖uk‖ –

[
μ


–  –

(
μ


– 

)
C

]
T

μ–
μ

[
C

(
 + ‖uk‖

)] 
μ

–C – pNC – (μ – )apNC‖uk‖ – (μ – )bC

p∑
j=

N∑
i=

‖uk‖ξij+ (.)

for large k. Since μ > , ξij ∈ [, ), by (.), {uk} is bounded in H
�,T .

For any small ε = δ
 , by (F) we know that there is a ρ >  such that

F(t,x)≤ ε|x|, for |x| < ρ �-a.e. t ∈ [,T]T. (.)

By (F), for ε = δ
pNC

, there exists ρ >  such that∣∣Iij(t)∣∣ ≤ ε|t|, |t| ≤ ρ, i ∈ �, j ∈ �. (.)

http://www.boundaryvalueproblems.com/content/2012/1/148


Zhou et al. Boundary Value Problems 2012, 2012:148 Page 22 of 26
http://www.boundaryvalueproblems.com/content/2012/1/148

Let ρ = 
 min{ρ,ρ}. For u ∈ E with ‖u‖ ≤ r � ρ

C
, by (.), (.), (.), (.) and (.),

we have

ϕ(u) = q(u) +
p∑
j=

N∑
i=

∫ ui(tj)


Iij(t) dt –

∫
[,T) T

F
(
σ (t),uσ (t)

)
�t

≥ δ‖u‖ –
p∑
j=

N∑
i=

∫ |ui(tj)|



∣∣Iij(t)∣∣dt – ε

∫
[,T) T

∣∣uσ (t)
∣∣�t

≥ δ‖u‖ –
p∑
j=

N∑
i=

∫ |ui(tj)|


ε|t|dt – ε

∫
[,T) T

∣∣uσ (t)
∣∣�t

≥ δ‖u‖ – ε

p∑
j=

N∑
i=

‖u‖∞ – ε

∫
[,T) T

∣∣uσ (t)
∣∣�t

≥ δ‖u‖ – εpNC‖u‖ – ε‖u‖

≥ δ‖u‖ – δ


‖u‖ – δ


|u‖

=
δ


‖u‖.

Consequently,

ϕ(u) ≥ δρ


� σ > , ∀u ∈ E with ‖u‖ = ρ. (.)

Moreover, we can prove that J ′ is compact (see [, p.]). It follows from (.), (.)
and Lemma . that ϕ satisfies the conditions (I), (I) and (I)(i) with S = ∂Bρ ∩ E of
Theorem ..
Set e ∈ E ∩ ∂B, r > ρ, r > , Q = {se : s ∈ (, r)} ⊕ (Br ∩ E) and Ẽ = span{e} ⊕ E.

Then S and ∂Q link, where Br = {u ∈ E : ‖u‖ ≤ r}. Set

Q =
{
u ∈ E : ‖u‖ ≤ r

}
, Q =

{
re + u : u ∈ E, and ‖u‖ ≤ r

}
and

Q =
{
se + u : s ∈ [, r],u ∈ E and ‖u‖ = r

}
.

Then ∂Q =Q ∪Q ∪Q.
By (F), (.), (.) and (.), we know ϕ|Q ≤ . For each re + u ∈ Q, one has u =

u + u– ∈ E and ‖u‖ ≤ r. By the equivalence of a finite dimensional space and (.),
there exists C >  such that

∫
[,T) T

F
(
t, re(t) + u(t)

)
�t ≥ C

∫
[,T) T

∣∣re(t) + u(t)
∣∣μ�t –CT

≥ C‖re + u‖μ –CT

= C
(
r + ‖u‖)μ

 –CT .
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Thus, we have

ϕ(re + u) =
r


〈
(I –K)e, e

〉
+


〈
(I –K)u,u

〉
+ φ(re + u)

–
∫
[,T) T

F
(
t, re(t) + u(t)

)
�t

≤ r


‖I –K‖ – δ
∥∥u–∥∥ –C

(
r + ‖u‖)μ

 +CT

≤ r


‖I –K‖ –Crμ +CT

≤ 

for large r > ρ due to μ > .
Moreover, for each se+u ∈Q, one has s ∈ [, r], u ∈ E and ‖u‖ = r. By the equivalence

of a finite dimensional space and (.), one has∫
[,T) T

F
(
t, se(t) + u(t)

)
�t ≥ C

∫
[,T) T

∣∣se(t) + u(t)
∣∣μ�t –CT

≥ C‖se + u‖μ –CT

= C
(
s + r

)μ
 –CT .

Hence

ϕ(se + u) =
s


〈
(I –K)e, e

〉
+


〈
(I –K)u,u

〉
+ φ(se + u) –

∫
[,T) T

F
(
t, se(t) + u(t)

)
�t

≤ s


‖I –K‖ – δ

∥∥u–∥∥ –C
(
s + r

)μ
 +CT

≤ r


‖I –K‖ –Crμ +CT

≤ 

for large r > r.
Summing up the above, ϕ satisfies all conditions of Theorem .. Hence, ϕ possesses a

critical value c≥ σ > , and hence problem (.) has at least one nontrivial weak solution.
The proof is complete. �

Remark . There are a number of functions satisfying (A), (F), (F) and (F), for exam-
ple, F(t,x) = |x|.

Next, we given two multiplicity results.

Theorem . Assume that (A), (F), (F), (F), (F) and the following conditions are satis-
fied.

(F) Iij (i ∈ A, j ∈ B) are odd.
(F) F(t,x) is even in x and F(t, ) = .

Then problem (.) has an unbounded sequence of weak solutions.
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Proof Set W = H+, V = H– ⊕ H and E = H
T . Then E = V ⊕ W , dimV < +∞ and ϕ ∈

C(E,R). From the proof of Theorem ., we know that ϕ satisfies the (PS) condition, and
there exist ρ >  and σ >  such that

ϕ(u) ≥ σ , ∀u ∈ W with ‖u‖ = ρ.

For each finite dimensional subspace Ẽ ⊂ E, combining (.), (.), (.), (.) and the
equivalence of a finite dimensional space, there exists C >  such that

ϕ(u) =



∫
[,T) T

∣∣u̇(t)∣∣�t +
p∑
j=

N∑
i=

∫ ui(tj)


Iij(t) dt –




∫
[,T) T

(
A(t)u(t),u(t)

)
�t + J(u)

≤ 

‖u‖ + apNC‖u‖ + bC

p∑
j=

N∑
i=

‖u‖ξij+ +


C

∫
[,T) T

∣∣u(t)∣∣�t

–C

∫
[,T) T

∣∣u(t)∣∣μ�t +CT

≤ 

( + apNC +C)‖u‖ + bC

p∑
j=

N∑
i=

‖u‖ξij+ –C‖u‖μ +CT .

Thus,

ϕ(u) → –∞ as u ∈ Ẽ and ‖u‖ → ∞. (.)

This implies that there is an R = R(̃E) >  such that ϕ ≤  on Ẽ\BR.
Moreover, by (F) and (F), we know that ϕ is even and ϕ() = . In view of Theo-

rem ., ϕ has a sequence of critical points {un} ⊂ E such that |ϕ(un)| → ∞. If {un} is
bounded in E, then by the definition of ϕ, one knows that {|ϕ(un)|} is also bounded, a
contradiction. Hence, {un} is unbounded in E. The proof is completed. �

Example . Let T = {√m,m ∈ N}, T = , N = , t = , t = . Consider the second-
order Hamiltonian system with impulsive effects⎧⎪⎪⎨⎪⎪⎩

u� (t) +A(σ (t))u(σ (t)) +∇F(σ (t),uσ (t)) = , �-a.e. t ∈ [, ]T;

u() – u() = u�() – u�() = ,

(ui)�(t+j ) – (ui)�(t–j ) = Iij(ui(tj)), i = , , , , j = , ,

(.)

where A(t) is the unit matrix and

F(t,x) = |x|, for all x ∈R
 and t ∈ [, ]T,

Iij(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

, |t| ≥ ,

(t – ), ≤ t < ,

–t + ,  < t < ,

t, |t| ≤ ,

–t – , – < t < –,

(t + ), – < t ≤ –,
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for all i = , , , , j = , . All conditions of Theorem . hold. According to Theorem .,
problem (.) has an unbounded sequence of weak solutions.

Remark . In Theorem ., if we delete the condition ‘F(t, ) = ’, we have the following
theorem.

Theorem . Assume that (A), (F), (F), (F), (F), (F) and the following condition are
satisfied.

(F) F(t,x) is even in x.

Then problem (.) has an infinite sequence of distinct weak solutions.

Proof Set Y = H+, X = H– ⊕ H and E = H
T in Theorem .. Then, from the proof of

Theorem ., we know that E = X ⊕ Y , dim(X) < +∞, ϕ is even, ϕ ∈ C(E,R) satisfies the
(PS) condition, and there are constants ρ,σ >  such that ϕ|∂Bρ∩Y ≥ σ and infϕ(Bρ ∩
Y ) > , where ∂Bρ = {u ∈ E : ‖u‖ = ρ}.
For each finite dimensional subspace Ẽ ⊂ E, by (.), we know that

ϕ(u) → –∞ as u ∈ Ẽ and ‖u‖ → ∞.

Consequently, for each finite dimensional subspace Y ⊂ Y , the condition (�) holds.
Moreover, by dim(X) < +∞ and ϕ ∈ C(E,R), we know that (�) holds too. Therefore,
the conclusion follows from Theorem .. �
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