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Abstract
In this paper, we study the existence of anti-periodic solutions for a second-order
ordinary differential equation. Using the interaction of the nonlinearity with the Fučík
spectrum related to the anti-periodic boundary conditions, we apply the
Leray-Schauder degree theory and the Borsuk theorem to establish new results on the
existence of anti-periodic solutions of second-order ordinary differential equations.
Our nonlinearity may cross multiple consecutive branches of the Fučík spectrum
curves, and recent results in the literature are complemented and generalized.
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1 Introduction andmain results
In this paper, we study the existence of anti-periodic solutions for the following second-
order ordinary differential equation:

–x′′ = f (t,x), (.)

where f ∈ C(R,R), f (t + T
 , –s) = –f (t, s), ∀t, s ∈R and T is a positive constant. A function

x(t) is called an anti-periodic solution of (.) if x(t) satisfies (.) and x(t + T
 ) = –x(t) for

all t ∈R. Note that to obtain anti-periodic solutions of (.), it suffices to find solutions of
the following anti-periodic boundary value problem:

⎧⎨
⎩x′′ = –f (t,x),

x(i)() = –x(i)(T ), i = , .
(.)

In what follows, we will consider problem (.) directly.
The problem of the existence of solutions of (.) under various boundary conditions

has beenwidely investigated in the literature andmany results have been obtained (see [–
]). Usually, the asymptotic interaction of the ratio f (t,s)

s with the Fučík spectrum of –x′′

under various boundary conditions was required as a nonresonance condition to obtain
the solvability of equation (.). Recall that the Fučík spectrumof –x′′ with an anti-periodic
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boundary condition is the set of real number pairs (λ+,λ–) ∈ R
 such that the problem

⎧⎨
⎩–x′′ = λ+x+ – λ–x–,

x(i)() = –x(i)(T ), i = , 
(.)

has nontrivial solutions, where x+ =max{,x}, x– =max{,–x}; while the concept of Fučík
spectrum was firstly introduced in the s by Fučík [] and Dancer [] independently
under the periodic boundary condition. Since the work of Fonda [], some investigation
has been devoted to the nonresonance condition of (.) by studying the asymptotic in-
teraction of the ratio F(t,s)

s , where F(t, s) =
∫ s
 f (t, τ )dτ , with the spectrum of –x′′ under

different boundary conditions; for instance, see [] for the periodic boundary condition,
[] for the two-point boundary condition. Note that

lim inf
s→±∞

f (t, s)
s

≤ lim inf
s→±∞

F(t, s)
s

≤ lim sup
s→±∞

F(t, s)
s

≤ lim sup
s→±∞

f (t, s)
s

,

we can see that the conditions on the ratio F(t,s)
s are more general than those on the ratio

f (t,s)
s . In fact, by using the asymptotic interaction of the ratio F(t,s)

s with the spectrum of
–x′′, the ratio f (t,s)

s can cross multiple spectrum curves of –x′′. In this paper, we are inter-
ested in the nonresonance condition on the ratio F(t,s)

s for the solvability of (.) involving
the Fučík spectrum of –x′′ under the anti-periodic boundary condition.
Note that the study of anti-periodic solutions for nonlinear differential equations is

closely related to the study of periodic solutions. In fact, since f (t, s) = –f (t + T
 , –s) =

f (t + T , s), x(t) is a T-periodic solution of (.) if x(t) is a T
 -anti-periodic solution of (.).

Many results on the periodic solutions of (.) have been worked out. For some recent
work, one can see [–, –, ]. As special periodic solutions, the existence of anti-
periodic solutions plays a key role in characterizing the behavior of nonlinear differen-
tial equations coming from some models in applied sciences. During the last thirty years,
anti-periodic problems of nonlinear differential equations have been extensively studied
since the pioneeringwork byOkochi []. For example, in [], anti-periodic trigonometric
polynomials are used to investigate the interpolation problems, and anti-periodic wavelets
are studied in []. Also, some existence results of ordinary differential equations are pre-
sented in [, –]. Anti-periodic boundary conditions for partial differential equations
and abstract differential equations are considered in [–]. For recent developments
involving the existence of anti-periodic solutions, one can also see [–] and the refer-
ences therein.
Denote by � the Fuc̆ík spectrum of the operator –x′′ under the anti-periodic boundary

condition. Simple computation implies that � =
⋃+∞

m= �m, where

�m =
{
(λ+,λ–) ∈ R

 :
(m + )π√

λ+
+

mπ√
λ–

=
T

or

mπ√
λ+

+
(m + )π√

λ–
=
T

,m ∈N

}
.

It is easily seen that the set� can be seen as a subset of the Fuc̆ík spectrumof –x′′ under the
corresponding Dirichlet boundary condition; one can see the definition of the set �i+,
i ∈ N, or Figure  in []. Without loss of generality, we assume that ϕm is an eigenfunction
of (.) corresponding to (λ+,λ–) ∈ �m such that ϕm() =  and ϕ′

m() = a ∈R\{}. Denote
�m, = {(λ+,λ–) ∈ R

 : (m+)π√
λ+

+ mπ√
λ–

= T
 ,m ∈ Z

+} and �m, = {(λ+,λ–) ∈ R
 : mπ√

λ+
+ (m+)π√

λ–
=
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T
 ,m ∈ Z

+}. Then if a > , we obtain only a one-dimensional function ϕm, denoted by ϕm,,
corresponding to the point (λ+,λ–) ∈ �m,, and if a < , we obtain only a one-dimensional
function ϕm, denoted by ϕm,, corresponding to the point (λ+,λ–) ∈ �m,.
In this paper, together with the Leray-Schauder degree theory and the Borsuk theorem,

we obtain new existence results of anti-periodic solutions of (.) when the nonlinearity
f (t, s) is asymptotically linear in s at infinity and the ratio F(t,s)

s stays asymptotically at in-
finity in some rectangular domain between Fučík spectrum curves �m and �m+.
Our main result is as follows.

Theorem . Assume that f ∈ C(R,R), f (t + T
 , –s) = –f (t, s). If the following conditions:

(i) There exist positive constants ρ , C,M such that

ρ ≤ f (t, s)
s

≤ C, ∀t ∈ R,∀|s| ≥ M; (.)

(ii) There exist connect subset � ⊂R
 \ �, constants p,q,p,q >  and a point of the

type (λ,λ) ∈R
 such that

(λ,λ) ∈ [p,q]× [p,q] ⊂ � (.)

and

p ≤ lim inf
s→+∞

F(t, s)
s

≤ lim sup
s→+∞

F(t, s)
s

≤ p,

q ≤ lim inf
s→–∞

F(t, s)
s

≤ lim sup
s→–∞

F(t, s)
s

≤ q,

hold uniformly for all t ∈R,
then (.) admits a T

 -anti-periodic solution.

In particular, if λ+ = λ–, then problem (.) becomes the following linear eigenvalue
problem:

⎧⎨
⎩–x′′ = λx,

x(i)() = –x(i)(T ), i = , .
(.)

Simple computation implies that the operator –x′′ with the anti-periodic boundary con-
dition has a sequence of eigenvalues λm = (m–)π

T , m ∈ Z
+, and the corresponding

eigenspace is two-dimensional.

Corollary . Assume that f ∈ C(R,R), f (t, s) = –f (t+ T
 , –s). If (.) holds and there exist

constants p, q and m ∈ Z
+ such that

(m – )π

T < p≤ lim inf|s|→+∞
F(t, s)

s
≤ lim sup

|s|→+∞
F(t, s)

s
≤ q <

(m + )π

T

holds uniformly for all t ∈R, then (.) admits a T
 -anti-periodic solution.
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Remark It is well known that (.) has a T
 -anti-periodic solution if

lim sup
|s|→+∞

f (t, s)
s

≤ σ <
π

T = λ, ∀t ∈R,

for some σ >  (see Theorem . in []), which implies that the ratio f (t,s)
s stays at infinity

asymptotically below the first eigenvalue λ of (.). In this paper, this requirement on
the ratio f (t,s)

s can be relaxed to (.), with some additional restrictions imposed on the
ratio F(t,s)

s . In fact, the conditions relative to the ratios f (t,s)
s and F(t,s)

s as in Theorem .
andCorollary .may lead to that the ratio f (t,s)

s oscillates and crossesmultiple consecutive
eigenvalues or branches of the Fučík spectrum curves of the operator –x′′. In what follows,
we give an example to show this.
Denote λm = (m–)π

T for some positive integer m ≥ . Define

f (t, s) = cos

(
π
T

t
)
+

λm + λm+


s +

(
λm + λm+


– δ

)
s cos s, ∀t ∈R, s ∈R,

where δ ∈ (, λ
 ). Clearly,

f
(
t +

T

,–s

)
= cos

[
π
T

(
t +

T


)]
–

[
λm + λm+


s +

(
λm + λm+


– δ

)
s cos s

]

= –f (t, s).

In addition,

f (t, s)
s

=
cos( πT t)

s
+

λm + λm+


+

(
λm + λm+


– δ

)
cos s,

F(t, s)
s

=
 cos( πT t)

s
+

λm + λm+


+

(
λm + λm+


– δ

)
s sin s + cos s

s

for all t ∈ R, s ∈R, which imply that

δ = lim inf|s|→+∞
f (t, s)
s

≤ lim sup
|s|→+∞

f (t, s)
s

= λm + λm+ – δ, (.)

lim|s|→+∞
F(t, s)

s
=

λm + λm+


(.)

for all t ∈ R. It is obvious that (.) implies that the assumption (i) of Theorem . holds.
Take p = λm+λm+

 – σ, p = λm+λm+
 + σ, q = λm+λm+

 – σ, q = λm+λm+
 – σ such that

[p,p] × [q,q] ⊂ R
 \ �. Then (.) implies that the assumption (ii) of Theorem .

holds. Thus, by Theorem . we can obtain a T
 -anti-periodic solution of equation (.).

Here the ratio F(t,s)
s stays at infinity in the rectangular domain [p,p] × [q,q] between

Fučík spectrum curves �m and �m+, while the ratio f (t,s)
s can cross at infinity multiple

Fučík spectrum curves �,�, . . . ,�m+.

This paper is organized as follows. In Section , some necessary preliminaries are pre-
sented. In Section , we give the proof of Theorem ..

http://www.boundaryvalueproblems.com/content/2012/1/149
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2 Preliminaries
Assume that T > . Define

Ck
T

=

{
x ∈ Ck(R,R) : x

(
t +

T


)
= –x(t),∀t ∈R

}
,

‖x‖Ck = max
t∈[,T]

∣∣x(t)∣∣ + · · · + max
t∈[,T]

∣∣x(k)(t)∣∣, ∀x ∈ Ck([,T],R)
,k = , , , . . . .

For x ∈ Ck
T

, we can write the Fourier series expansion as follows:

x(t) =
∞∑
i=

[
ai+ cos

π (i + )t
T

+ bi+ sin
π (i + )t

T

]
.

Define an operator J : Ck
T


→ Ck+
T


by

(Jx)(t) =
∫ t


x(s)ds –

T
π

∞∑
i=

bi+
i + 

=
T
π

∞∑
i=

[
ai+
i + 

sin
π (i + )t

T
–

bi+
i + 

cos
π (i + )t

T

]
.

Clearly,

dJx(t)
dt

= x(t), (Jx)() = –
T
π

∞∑
i=

bi+
i + 

,

which implies that

d(Jx(t))
dt

= x(t). (.)

Furthermore, we obtain

∣∣Jx(t)∣∣ ≤
∫ T



∣∣x(s)∣∣ds + T
π

∞∑
i=

|bi+|
i + 

≤ T‖x‖Ck +
T
π

( ∞∑
i=

bi+

) 

( ∞∑

i=


(i + )

) 


.

Note that

( ∞∑
i=


(i + )

) 


=
π


√

,

using the Parseval equality
∫ T
 |x(s)| ds = T


∑∞

i=[ai+ + bi+], we get

∣∣Jx(t)∣∣ ≤ T‖x‖Ck +
T


√


∞∑
i=

[
ai+ + bi+

]

≤ T‖x‖Ck +
T


√


T

∫ T



∣∣x(s)∣∣ ds
≤ T


‖x‖Ck , ∀t ∈ [,T],

http://www.boundaryvalueproblems.com/content/2012/1/149
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which implies that the operator J is continuous. In view of the Arzela-Ascoli theorem, it
is easy to see that J is completely continuous.
Denote by deg the Leray-Schauder degree. We need the following results.

Lemma . ([, p.]) Let� be a bounded open region in a real Banach space X.Assume
that K : � → R is completely continuous and p /∈ (I – K)(∂�). Then the equation (I –
K)(x) = p has a solution in � if deg(I –K ,�,p) �= .

Lemma . ([, Borsuk theorem, p.]) Assume that X is a real Banach space. Let �

be a symmetric bounded open region with θ ∈ �. Assume that K : � → R is completely
continuous and odd with θ /∈ (I –K)(∂�). Then deg(I –K ,�, θ ) is odd.

3 Proof of Theorem 1.1

Proof of Theorem . Consider the following homotopy problem:

x′′ = –μf (t,x) – ( –μ)λx ≡ ϕ
(
μ, t,x(t)

)
, (.)

x(i)() = –x(i)
(
T


)
, i = , , (.)

where (λ,λ) ∈ [p,p]× [q,q], μ ∈ [, ].
We first prove that the set of all possible solutions of problem (.)-(.) is bounded.

Assume by contradiction that there exist a sequence of number {μn} ⊂ [, ] and corre-
sponding solutions {xn} of (.)-(.) such that

‖xn‖C → +∞. (.)

Set zn = xn
‖xn‖C

. Obviously, ‖zn‖C =  and zn satisfies

–z′′
n =

μnf (t,xn)
‖xn‖C

+ ( –μn)λzn, (.)

z(i)n () = –z(i)n

(
T


)
, i = , . (.)

By (.), (.) and the fact that f is continuous, there exist n ∈ Z
+, C >  such that

|f (t,xn)|
‖xn‖C

=
∣∣∣∣ f (t,xn)xn

∣∣∣∣ |xn|
‖xn‖C

≤ C for n≥ n.

In view of μn ∈ [, ], together with the choice of (λ,λ), it follows that there exists M > 
such that, for all n≥ n,

∣∣z′′
n(t)

∣∣ ≤ M, ∀t ∈ [,T].

It is easily seen that {zn(t)} and {z′
n(t)} are uniformly bounded and equicontinuous on

[,T]. Then, using the Arzela-Ascoli theorem, there exist uniformly convergent subse-
quences on [,T] for {zn(t)} and {z′

n(t)} respectively, which are still denoted as {zn(t)} and

http://www.boundaryvalueproblems.com/content/2012/1/149
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{z′
n(t)}, such that

lim
n→∞ zn(t) = z(t), lim

n→∞ z′
n(t) = z′(t). (.)

Clearly, ‖z‖C = . Since xn(t) is a solution of (.)-(.), for each n, we get

∫ T


xn(t)dt =

∫ T



xn(t)dt +

∫ T



xn

(
t +

T


)
dt = ,

which implies that there exists tn ∈ [,T] such that xn(tn) = . Then

lim
n→∞ zn(tn) = lim

n→∞
xn(tn)
‖xn‖C

= . (.)

Owing to that the sequences {tn} and {μn} are uniformly bounded, there exist t ∈ [,T]
and μ ∈ [, ] such that, passing to subsequences if possible,

lim
n→∞ tn = t, lim

n→∞μn = μ. (.)

Multiplying both sides of (.) by z′
n(t) and integrating from tn to t, we get

[
z′
n(tn)

] – [
z′
n(t)

]
= μn

F(t,xn(t))
xn(t)

· xn(t)
‖xn‖C

–μn
F(t,xn(tn))

‖xn‖C

+ ( –μn)λ
[(
zn(t)

) – (
zn(tn)

)].
Taking a superior limit as n→ ∞, by (.) and (.)-(.), we obtain

[
z′(t)

] – [
z′(t)

] = μ lim sup
n→∞

F(t,xn(t))
xn(t)

· z(t) + ( –μ)λz(t).

By the assumption (ii) and the choice of λ, if z(t) > , we have

[
z′(t)

] – [
z′(t)

] ≤ pz(t).

Similarly, we obtain

[
z′(t)

] – [
z′(t)

] ≥ pz(t) for z(t) > ,[
z′(t)

] – [
z′(t)

] ≤ qz(t) for z(t) < ,[
z′(t)

] – [
z′(t)

] ≥ qz(t) for z(t) < .

Note that z(t) ∈ C[,T], the above inequalities can be rewritten as the following equiva-
lent forms:

–p
[
z(t)

] ≤ [
z′(t)

] – [
z′(t)

] ≤ –p
[
z(t)

], z(t) ≥ , (.)

–q
[
z(t)

] ≤ [
z′(t)

] – [
z′(t)

] ≤ –q
[
z(t)

], z(t) ≤ . (.)

http://www.boundaryvalueproblems.com/content/2012/1/149
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It is easy to see that z′(t) �= . In fact, if not, in view of (.)-(.), we get z(t) = , z′(t) = ,
∀t ∈ [,T], which is contrary to ‖z‖C = .
We claim that z′(t) has only finite zero points on [,T]. In fact, if not, we may assume

that there are infinitelymany zero points {ζi} ⊂ [,T] of z′(t).Without loss of generality, we
assume that there exists ζ ∈ [,T] such that limi→∞ ζi = ζ. Letting t = ζi in (.)-(.)
and taking i → ∞, we can obtain that z(ζ) �= . Without loss of generality, we assume
that z(ζ) > . Since z(t) is continuous, there exist η, δ >  such that z(t) ≥ η > , ∀t ∈
[t – δ, t + δ]. Then there exists n >  such that, if n > n, we have

zn(t) ≥ η, ∀t ∈ [t – δ, t + δ]. (.)

Clearly, z–n (t) = , ∀t ∈ [t – δ, t + δ]. Take ζ∗, ζ ∗ ∈ [t – δ, t + δ] with ζ∗ < ζ ∗ such that
z′(ζ ∗) = z′(ζ∗) = . Integrating (.) from ζ∗ to ζ ∗,

z′
n(ζ∗) – z′

n
(
ζ ∗) = μn


‖xn‖C

∫ ζ∗

ζ∗
f
(
t,xn(s)

)
ds + ( –μn)

∫ ζ∗

ζ∗
λzn(s)ds. (.)

By (.), (.), we obtain

xn(t) = zn(t)‖xn‖C ≥ η‖xn‖C → +∞ as n→ +∞

holds uniformly for t ∈ [ζ∗, ζ ∗]. Thus, using (.), we get

f (t,xn(t))
xn(t)

≥ ρ, ∀t ∈ [
ζ∗, ζ ∗],

which implies that

f (t,xn(t))
‖xn‖C

=
f (t,xn(t))
xn(t)

· zn(t) ≥ ρ · η > , ∀t ∈ [
ζ∗, ζ ∗].

Then, together with (.), (.) and (.), we obtain

 ≥ μ · ρ · η(
ζ ∗ – ζ∗

)
+ ( –μ) · λ · η(

ζ ∗ – ζ∗
)
> ,

a contradiction.
Now, we show that (.)-(.) has only a trivial anti-periodic solution. In fact, if not,

we assume that (.)-(.) has a nontrivial anti-periodic solution z(t). Without loss of
generality, we assume t = . Firstly, we consider the case that z′() > . Assume that z, z
satisfy the following equations respectively:

[
z′
(t)

] – [
z′
()

] = –p
[
z(t)

], z(t) ≥ , (.)[
z′
(t)

] – [
z′
()

] = –p
[
z(t)

], z(t) ≥  (.)

with

z() = z() = z(), (.)

z′
()≤ z′()≤ z′

(). (.)

http://www.boundaryvalueproblems.com/content/2012/1/149
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Take t as the first zero point of z(t) on (,T]. Then by (.)-(.) it follows that

z(t)≤ z(t)≤ z(t), ∀t ∈ [, t]. (.)

In fact, by (.)-(.) and the fact that z, z, z are continuous differential, it is easy to
see that there exists sufficiently small ε ∈ (, t) such that

z(t)≤ z(t)≤ z(t), t ∈ (, ε),

z′
(t)≤ z′(t)≤ z′

(t), t ∈ (, ε).

If there is t̄ ∈ (ε, t) such that z(t̄) = z(t), then comparing (.) with (.), we can obtain
that z′(t̄) ≥ z′

(t̄), which implies that if t > t̄, we have z(t̄) ≥ z(t̄). Then z(t) ≥ z(t) for t ∈
(, t]. Similarly, we have z(t) ≤ z(t), ∀t ∈ [, t]. Hence, (.) holds.
Similarly, if z, z satisfy

[
z′
(t)

] – [
z′
()

] = –q
[
z(t)

], z(t) ≤ , (.)[
z′
(t)

] – [
z′
()

] = –q
[
z(t)

], z(t) ≤  (.)

and

z(t) = z(t) = z(t),

z′
(t) ≤ z′(t) ≤ z′

(t),

then we obtain

z(t)≤ z(t)≤ z(t), ∀t ∈ [t, t],

where t is the first zero point on (t,T).
Since z′(t) has finite zero points, (.), (.), (.), (.) can be transformed into the

following equations respectively:

z′′(t) = –pz(t), z′′(t) = –pz(t), z(t) ≥ , (.)

z′′(t) = –qz(t), z′′(t) = –qz(t), z(t) ≤ . (.)

Then there exist A,B,C,D >  such that

A sin
√
pt ≤ z(t)≤ B sin

√
pt, ∀t ∈ [, t],

–C sin
√
q(t – t) ≤ z(t) ≤ –D sin

√
q(t – t), ∀t ∈ [t, t].

It is easy to get

π√p
≤ t ≤ π√p

,

π√q
+

π√p
≤ t ≤ π√q

+
π√p

.

http://www.boundaryvalueproblems.com/content/2012/1/149
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Since z is anti-periodic and z′() > , there existsm ∈ Z
+ such that

(m + )π√q
+

mπ√p
≤ tm =

T


≤ (m + )π√q
+

mπ√p
,

which implies that there exists a real number pair (p*,q*) ∈ [p,p]× [q,q] such that

(m + )π√
q*

+
mπ√
p*

=
T

. (.)

On the other hand, in view of the assumption (ii), by the definition of � and (p*,q*) ∈
[p,p]× [q,q], it follows that

(m + )π√
p*

+
mπ√
q*

�= T

, ∀m ∈ Z

+,

which is contrary to (.).
If z′() < , then by the assumption (ii), we can obtain a contradiction using similar ar-

guments.
In a word, we can see that there exists C >  independent of μ such that

‖x‖C ≤ C. (.)

Set

� =
{
x ∈ C

T

: ‖x‖C < C + 

}
.

Clearly, � is a bounded open set in C
T

. Note that, for x ∈ C

T

, using the assumption on f ,

we obtain

ϕ

(
μ, t +

T

,x

(
t +

T


))

= –μf
(
t +

T

,x

(
t +

T


))
– ( –μ)λx

(
t +

T


)

= μf (t,x) + ( –μ)λx(t)

= –ϕ
(
μ, t,x(t)

)
,

which implies that ϕ ∈ C
T

.

Define Gμ :� → C
T

by

Gμ

(
x(t)

)
= Jϕ

(
μ, t,x(t)

)
.

Clearly,Gμ is completely continuous, and by (.) and (.) it follows that the fixed point of
G in� is the anti-periodic solution of problem (.). Define the homotopyH :�×[, ] →
C

T

as follows:

H(x,μ) = x –Gμ(x).
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In view of (.), it follows that

H(x,μ) �= , ∀(x,μ) ∈ ∂� × [, ].

Hence,

deg(I –G,�, ) = deg(I –G,�, ).

Note that the operator G is odd. By Lemma . it follows that deg(I –G,�, ) �= . Thus,

deg(I –G,�, ) �= .

Now, using Lemma ., we can see that (.) has a solution and hence (.) has a T
 -anti-

periodic solution. The proof is complete. �
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