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Abstract

The equations of two dimensional incompressible fluid flow for hydro-magnetic
Maxwell fluid through a porous medium have been studied. Lie group analysis has
been employed and the group invariant solutions are obtained. Solutions
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1 Introduction
Non-Newtonian fluid behavior, which is characterized by a nonlinear viscosity depen-

dence on the strain, can be observed in many complex fluids, for example, polymers,

dense colloidal dispersions, surfactant solutions, micellar solutions chemical, and petro-

leum industries [1]. In addition to shear-thinning and shear-thickening behavior, a

dynamic or even chaotic response can be found in some fluids subjected to a steady

shear flow. Because of the difficulty to suggest a single model which exhibits all prop-

erties of non-Newtonian fluids, they cannot be described as simply as Newtonian

fluids. Due to this fact many models of constitutive equations have been proposed and

most of them are empirical or semi empirical [2]. Amongst these the differential type

fluid model gained considerable attention of many researchers. The flows of non-New-

tonian fluids are not only important because of their technological significance but

also in the interesting mathematical features presented by the equations governing the

flow. However on the other hand there are much controversies on these models as

well. Such fluids are also inadequate to describe the relaxation phenomena. For a com-

plete and detailed discussion of the relevant issues for differential type fluids, we refer

the readers to Dunn and Rajagopal [3] and Aksel [4].

The non-Newtonian fluids are mainly classified into three types namely differential,

rate and integral. The simplest subclass of the rate type fluids is the Maxwell model

[5]. This fluid model can very well describe the relaxation time effects. Specifically the

Maxwell fluid model has been used for the viscoelastic flows where the dimensionless
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relaxation time is small. However in some more concentrated polymeric fluids the

Maxwell model is also useful for large dimensionless relaxation time. Some recent

investigations dealing with the flows of Maxwell fluids are given in the references [6-9].

Modified Darcy’s law for a Maxwell fluid including the Hall current has been used for

the modeling. In fact, the Hall effect is important when the Hall parameter, which is the

ratio between the electron-cyclotron frequency and the electronatom-collision fre-

quency, is high. This happens, when the magnetic field is high or when the collision fre-

quency is low. In most cases, the Hall term has been ignored in applying Ohm’s law as it

has no marked effects for small and moderate values of the magnetic field. However, the

current trend in the application of magnetohydrodynamics is towards a strong magnetic

field, so that the influence of electromagnetic force is noticeable. Under these conditions,

the Hall current is important and it has marked effects on the magnitude and direction

of the current density and consequently on the magnetic-force term. Therefore, it is of

interest to study the influence of the Hall current on the flow.

In the Earth there are a large number of problems that can be described by the interac-

tion of a low viscosity fluid (water, oil, gas, magma) in a permeable (possibly deformable)

matrix. Darcy’s Law is the classic, empirically derived equation for the flux of a low viscos-

ity fluid in a permeable matrix. This equation assumes that flow in the pores or cracks of

the medium is essentially laminar and provides the average flux through a representative

area that is larger than the pore scale and smaller than the scale of significant permeability

variation (if such a scale exists). Various approaches have been used to justify this rule

from first principles (see e.g., Dagan [10]) but it generally seems to work.

In this article, we apply the so-called symmetry methods for a particular problem of

fluid mechanics. The main advantage of such methods is that they can successfully be

applied to nonlinear differential equations [11-13]. The similarity solutions are quite

popular because they result in the reduction of the independent variables of the pro-

blem. The symmetry transformations method transform the given family of equations

of n independent variables, say, to another family of equations of n - 1 independent

variables, which can further be solved [14,15]. The fundamental concepts of this

approach can be found in [16-19]. In our case, the problem under investigation is (2 +

1)-nonlinear partial differential equations (PDEs). Hence, any similarity solution will

transform the system of (n + 1)-nonlinear PDEs into a system of (n)-nonlinear PDEs

and any similarity solution will transform the system of (2)-nonlinear PDEs into a sys-

tem of ordinary differential equations (ODEs).

Many authors used Lie group analysis method to obtain the exact solutions for some

problems in fluid mechanics. Yurusoy and Pakdemirli [20] investigated the boundary

layer equations of a non-Newtonian fluid model in which the shear stress is an arbi-

trary function of the velocity gradient. Yurusoy et al. [21] have obtained the solution

for the creeping flow of the second grade fluid. Also the two-dimensional equations of

motions for the slowly flowing and heat transfer in second grade fluid in cartesian

coordinates neglecting the inertial terms are considered by Yürüsoy [22]. Shahzad et al.

[23] found the analytical solution of a micropolar fluid by using the Lie group analysis.

Recently, Mekheimer et al. studied the Lie group analysis and similarity solutions for a

couple stress fluid with heat transfer [24], Lie point symmetries and similarity solutions

for an electrically conducting Jeffrey fluid [25] and Lie point symmetries and similarity

solution for a micro-polar fluid through a porous medium [26].
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From discussion above, we attend to find the analytical (similarity) solutions for the

flow problem of an incompressible hydro-magnetic Maxwell fluid through a porous

medium using Lie group analysis. The problem is presented as follows, in Section 2,

the equations governing two-dimensional motion of an incompressible, MHD Maxwell

fluid are introduced. In Section 3, the basic idea of the Lie group analysis method are

given and used to find the isovector field of our equations. The similarity solutions

corresponding to translational and rotational symmetry are obtained in Sections 3.1

and 3.2. Also a boundary value problem for the similarity solutions corresponding to

translational symmetry are obtained in Section 4. The graphs for a boundary value pro-

blem (magma flow) are plotted and discussed in Section 5. Finally a concluding

remarks are pointed in Section 6.

2 Equations of motion
The continuity and momentum equations governing the two-dimensional motion of an

incompressible hydro-magnetic Maxwell fluid through a porous medium can be writ-

ten as:

E1 =
∂ũ
∂ x̃

+
∂ ṽ
∂ ỹ

= 0,

E2 =
(
1 + λ̃

∂

∂t

) [
∂ũ

∂ t̃
+ ũ

∂ũ
∂ x̃

+ ṽ
∂ũ
∂ ỹ

]
+

(
1 + λ̃

∂

∂ t̃

)
1
ρ

∂ p̃
∂ x̃

− μ

ρ
∇2ũ

+
(
1 + λ̃

∂

∂ t̃

) [
σB2

0θ

ρ
(ũ − mṽ)

]
+

μϕ

ρk̃
ũ = 0,

E3 =
(
1 + λ̃

∂

∂ t̃

) [
∂ ṽ

∂ t̃
+ ũ

∂ ṽ

∂ x̃
+ ṽ

∂ ṽ
∂ ỹ

]
+

(
1 + λ̃

∂

∂ t̃

)
1
ρ

∂ p̃

∂ ỹ
− μ

ρ
∇2ṽ

+
(
1 + λ̃

∂

∂ t̃

) [
∂B2

0θ

ρ
(ṽ +mũ)

]
+

μϕ

ρk̃
ṽ = 0,

(1)

where ∇2 =
∂2

∂ x̃2
+

∂2

∂ ỹ2
, θ =

1
1 +m2

,m =
∂B0

e ne
are the fluid velocities in the x̃, ỹ direc-

tions, p̃ is the pressure, and t̃ is the time. Here λ̃ , r, μ, �, k, e, ne, s, B0, and m are

the relaxation time, density, coefficient of viscosity, porosity of the porous medium,

permeability, electric charge, the number density of electrons, electrical conductivity of

the fluid, magnetic field and Hall parameter respectively.

Using the following dimensionless parameters

u =
ũ
U
, v =

ṽ
U
, x =

x̃
L
, y =

ỹ
L
, t =

U
L
t̃, p =

p̃
ρU2

, λ =
U
L

λ̃, k =
k̃

ϕL2
, (2)

the system (1) becomes

E1 =
∂u
∂x

+
∂v
∂y

= 0,

E2 =
(
1 + λ

∂

∂t

)[
∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

]
+

(
1 + λ

∂

∂t

)
∂p
∂x

− 1
R

∇2u

+
(
1 + λ

∂

∂t

) [
Mθ(u − mv)

]
+

1
Rk

u = 0,

E3 =
(
1 + λ

∂

∂t

)[
∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

]
+

(
1 + λ

∂

∂t

)
∂p
∂y

− 1
R

∇2v

+
(
1 + λ

∂

∂t

) [
Mθ(v +mu)

]
+

1
Rk

v = 0,

(3)
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where R =
ρLU
μ

is the Reynolds number, M =
σB2

0L
ρU

is the Hartmann number and L,

U are the dimensionless length and velocity, respectively.

3 Lie group analysis and isovector fields
In order to obtain the analytical solution, we apply the Lie group analysis theory to

system (3). For this we write{
x∗
i = xi + εξi(xj, uα) + o(ε2),

u∗
α = uα + εηα(xj, uβ) + o(ε2),

i, j = 1, 2, 3, α,β = 1, 2, 3, (4)

as the infinitesimal Lie point transformations. We have assumed that system (3) is

invariant under the transformations given in Eq. (4). The corresponding infinitesimal

generator of Lie groups (symmetries) is given by

X = ξi
∂

∂xi
+ ηα

∂

∂uα

, (5)

with summation convention over the repeated index and x1 = x, x2 = y, x3 = t, u1 =

u, u2 = v, u3 = p. The coefficients ξ1, ξ2, ξ3, h1, h2, and h3 are the functions of all inde-

pendent and dependent variables. There coefficients are the components of the infini-

tesimals symmetries corresponding to x, y, t, u, v, and p, respectively to be determined

from the invariance conditions:

Pr(2)X(Ea)
∣∣∣
Eα=0

= 0, a = 1, 2, 3, (6)

where Ea = 0, i = 1, 2, 3 represent the system of Eq. (3) and Pr(2) is the second pro-

longation of the isovector field X. Since the system (3) is of order two, then our pro-

longation will be in the form

Pr(1)X = X + ηαi
∂

∂uα,i
,

Pr(2)X = Pr(1)X + ηαij
∂

∂uα,ij
.

(7)

where

ηαi = Di
[
ηα − ξjuα,j

]
+ ξjuα,ji,

ηαij = Dij
[
ηα − ξkuα,k

]
+ ξkuα,kij.

(8)

and the operator Di1 i2...is is called the total derivative (Hash operator) and has the fol-

lowing form:

Di =
∂

∂xi
+ uα,i

∂

∂uα

+ uα,ij
∂

∂uα,j
+ uα,ijk

∂

∂uα,jk
, (9)

where Dij = Di(Dj) = Dj(Di) = Dji and uα,i =
∂uα

∂xi
.

Expanding the system of Eq. (6) with the aid of Mathematica programm, along with

the original system of Eq. (3) to eliminate ux, pxt, pyt and setting the coefficients invol-

ving uy, uyy, vx, vy, vxx, vxy, vyy and various products to zero give rise the essential set of
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over-determined equations. Solving these set of determining equations we obtain the

required components of isovector field as follows:

ξ1 = a2 − a1y, ξ2 = a3 + a1x, ξ3 = a4,

η1 = −α1v, η2 = a1u, η3 = δ(t),
(10)

where ai, i = 1,..., 5 are arbitrary constants, δ(t) is arbitrary function of the variable t

only.

3.1 Translational symmetry

In this case we take a1 = 0. The characteristic equations corresponding to the transla-

tional symmetry are:

dx
a2

=
dy
a3

=
dt
a4

=
du
0

=
dv
0

=
dp

δ(t)
. (11)

By solving the ODEs (11), we can obtain the similarity variables and similarity func-

tions as follows:

φ = x − m1t, ψ = y − m2t, (12)

u(x, y, t) = û(φ,ψ), v(x, y, t) = v̂(φ,ψ), p(x, y, t) = p̂(φ,ψ) + δ1(t), (13)

where m1 =
a2
a4

,m2 =
a3
a4

are arbitrary constants and δ1(t) = ∫ δ(t) dt is an arbitrary

function. Substituting the transformations (12), (13) in the Eq. (3) lead to the following

system of PDEs:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E1 = ûφ + v̂ψ = 0,

E2 = û
[
1
Rk

+Mθ + ûφ − λ(m2ûφψ +m1ûφφ)
]

− 1
R
(ûφφ + ûψψ ) + λm2

2ûφφ + p̂φ

−v̂
[
mMθ − ûψ + λ

(
m2ûψψ +m1ûφψ

)] − m2
[
ûψ

(
1 +Mλθ + λv̂ψ + λûφ

)
+λ

(−mMθ v̂ψ − 2m1ûφψ + p̂φψ

)] − m1
[
ûφ

(
1 +Mλθ + λûφ

)
+λ

(
ûψ v̂φ − mMθ v̂φ − m1ûφφ + p̂φφ

)]
= 0,

E3 = v̂
[
1
Rk

+Mθ + v̂ψ − λ
(
m2v̂ψψ +m1v̂φψ

)] − 1
R
(v̂φφ + v̂ψψ ) − λm2

2v̂ψψ − p̂ψ

+û
[
mMθ − v̂φ − λ

(
m2v̂φψ +m1v̂φφ

)]
+m2

[
v̂ψ

(
1 +Mλθ + λv̂ψ

)
+λ

(
ûψ

(
mMθ + v̂φ

) − 2m1v̂φψ + p̂ψψ

)]
+m1

[
v̂φ

(
1 +Mλθ + λv̂ψ

)
+ λ

(
ûφ v̂φ +mMθ ûφ +m1v̂φφ + p̂φψ

)]
= 0,

(14)

To transform Eq. (14) to an (ODEs), we use the Lie group analysis again and obtain

the infinitesimal generator corresponding to system of equation (14) in the following

form:

ξ11 = b1, ξ21 = b2, η11 = 0, η21 = 0, η31 = β(φ,ψ), (15)

where bi, i = 1, 2 are arbitrary constants and b(j, ψ) an arbitrary function that satisfy

two conditions:{
βφ − λ

(
m2βφψ +m1βφφ

)
= 0,

βψ − λ
(
m2βψψ +m1βφψ

)
= 0,

(16)
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By solving the characteristic equations,

dφ

b1
=
dψ

b2
=
dû

0
=
dv̂

0
=

dp̂

β(φ,ψ)
, (17)

if we take b(j, ψ) = 0 then we can obtain the similarity variable and similarity func-

tions as the following:

χ = ψ − m0φ, û(φ,ψ) = f (χ), v̂(φ,ψ) = g(χ), p̂(φ,ψ) = h(χ), (18)

where m0 =
b2
b1

an arbitrary constant. Substituting the transformations (18) in Eq.

(14) lead to the following system of ODEs:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g′ − m0f ′ = 0

f
[
1
Rk

+Mθ − m0f ′ − λm0 (m0m1 − m2) f ′′
]

− 1
R

(
1 +m2

0

)
f ′′ − g

[
mMθ − f ′

−λ (m0m1 − m2) f ′′] − m2
[(
1 +Mλθ + λg′) f ′ − λ

(
mMθg′ +m2f ′′)]

+m0m1
[(
1 +Mλθ + λg′) f ′ − λ

(
mMθg′ + 2m2f ′′)] + λm0

[− (m0m1 − m2) (f ′)2

+m0m2
1f

′′] + λm0 (m0m1 − m2) h′′ − m0h = 0,

g
[
1
Rk

+Mθ + g′ + λ (m0m1 − m2) g′′
]

− 1
R
(1 +m2

0)g
′′ − f

[
mMθ − m0g′

−m0λ (m0m1 − m2) g′′] − m2
[(
1 +Mλθ + λg′) g′ + λ

(
mMθ f ′ − m2g′′)]

+m0m1
[(
1 +Mλθ + λg′) g′ + λ

(
mMθ f ′ − 2m2g′′)] + λm0

[− (m0m1 − m2) f ′g′

+m0m2
1g

′′] + λ (m0m1 − m2) h′′ + h = 0.

(19)

Integrating the first equation in (19) yields

g = m0f + c1, (20)

where c1 is an arbitrary constant. Eliminating h(ξ) from the second and third equa-

tions in (19) along with Eq. (20) we get the following equation:

Af ′′ + Bf ′ + Cf +D = 0. (21)

where

A = −1
R

(
1 +m2

0

)
+ λ

(
m2

0m
2
1 +m2

2 − 2m0m1m2 + c1 (m0m1 − m2)
)
,

B = c1 + (1 +Mλθ) (m0m1 − m2) ,

C =
1
Rk

+Mθ ,

D =
c1(

1 +m2
0

) [
m0

(
1
Rk

+Mθ

)
− mMθ

]
.

(22)

By solving equation (21) we get

f (χ) = c2 exp[α1χ] + c3 exp[α2χ] − D̃, (23)

where D̃ =
D

C
and c2, c3 are arbitrary constants and a1, a2 are roots of the following

equation:

Aγ 2 + Bγ + C = 0, (24)
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From equations (20) and (23) the expression of the function g(c) becomes

g(χ) = m0

(
c2 exp[α1χ] + c3 exp[α2χ] − D̃ + c1, (25)

and from the second and third equations in (19) we get

h(χ) =
[
D̃mMθ − c1

(1 +m2
0)

(
1
Rk

+Mθ +mMθm0

)]
χ − mMθ

(
c2
α1

exp[α1χ]

+
c3
α2

exp[α2χ]
)

− λc4 (m0m1 − m2) exp
[
− χ

λ(m0m1 − m2)

]
+ c5,

(26)

where c4 and c5 are arbitrary constants.

In the form of the original variables, our exact solutions can be written as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(x, y, t) = c2 exp
[
α1

(
y − m0x + (m0m1 − m2) t

)]
+c3 exp

[
α2

(
y − m0x + (m0m1 − m2) t

)] − D̃,
v(x, y, t) = m0

(
c2 exp

[
α1

(
y − m0x + (m0m1 − m2) t

)]
+c3 exp

[
α2

(
y − m0x + (m0m1 − m2) t

)] − D̃
)
+ c1,

p(x, y, t) =
[
D̃mMθ − c1

(1 +m2
0)

(
1
Rk

+Mθ +mMθm0

)] (
y − m0x + (m0m1 − m2)

)
−mMθ

(
c2
α1

exp
[
α1

(
y − m0x + (m0m1 − m2) t

)]
+
c3
α2

exp
[
α2

(
y − m0x + (m0m1 − m2) t

)])
λ

−c4 (m0m1 − m2) exp

[
−

(
y − m0x + (m0m1 − m2) t

)
λ(m0m1 − m2)

]
+ c5 + δ1(t).

(27)

3.2 Rotational symmetry

In this section, the parameter a1 is taken to be an arbitrary non-zero constant. The

characteristic equations corresponding to the rotational symmetry are:

dx
−a1y + a2

=
dy

a1x + a3
=

dt
a4

=
du

−a1v
=

dv
a1u

=
dp
δ(t)

. (28)

Integrating equations (28) using the Lie group analysis method, we get the rotation-

ally invariant solutions for our problem in the following form:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ψ =
√
(x + β1)

2 + (y + β2)
2,

φ = tan−1

[
y + β2

x + β1

]
,

u = G1(ψ , t) cos[φ] + G2(ψ , t) sin[φ],
v = G1(ψ , t) sin[φ] − G2(ψ , t) cos[φ],
p = G3(ψ , t) + δ1(t),

(29)

where β1 =
a3
a1

, β2 =
−a2
a1

, and G3 are functions of ψ and t.

Substituting the new (similarity) variables (j, ψ) and functions (G1, G2, G3) into the

original system (3) yields the following set of equations:

Mekheimer et al. Boundary Value Problems 2012, 2012:15
http://www.boundaryvalueproblems.com/content/2012/1/15

Page 7 of 18



⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G1

ψ
+

∂G1

∂ψ
= 0,

G1

[
k + ψ2

(
1 + RkMθ

(
∂G1

∂ψ
+ λ

∂2G1

∂ψ ∂t

))]
+ kψ

[
RG2

(
mMθψ − G2 − 2λ

∂G2

∂t

)
− ∂G1

∂ψ

]

−kψ2 ∂2G1

∂ψ2
+ Rkψ2

[(
1 +Mλθ + λ

∂G1

∂ψ

)
∂G1

∂t
+

∂G3

∂ψ

+λ

(
mMθ

∂G2

∂t
+

∂2G1

∂t2
+

∂2G3

∂ψ ∂t

)]
= 0,

G2

[
k + ψ2 (1 + RkMθ) + Rkλψ

∂G1

∂t

]
+ kψ

[
RG1

(
G2 + λ

∂G2

∂t

)
− ∂G2

∂ψ
− ψ

∂2G2

∂ψ2

]

+Rkψ2

[
(1 +Mλθ)

∂G2

∂t
+ λ

(
∂2G2

∂t2
+

∂G1

∂t
∂G2

∂ψ
+ G1

∂2G2

∂ψ∂t

)

−mMθG1 − mMλθ
∂G1

∂t
+ G1

∂G2

∂ψ

]
= 0

(30)

To transform Eq. (30) to (ODEs), we use the Lie group analysis again and obtain the

infinitesimal generator corresponding to system of equations (30) in the following

form:

ξ12 = 0, ξ22 = d1, η11 = 0, η21 = 0, η32 = η(ψ , t,G1), (31)

where d1 is an arbitrary constant and h(ψ,t,G1) an arbitrary function that satisfy the

following condition:

ψ
∂η

∂ψ
− G1

∂η

∂G1
= 0. (32)

If we take h(ψ,t,G1) = 0 is a simple solution of Eq. (32) then the characteristic equa-

tions are:

dψ
0

=
dt
d1

=
dG1

0
=
dG2

0
=
dG3

0
. (33)

The similarity variables and resulting functions are

ζ = ψ , G1 = F1(ζ ), G2 = F2(ζ ), G3 = F3(ζ ). (34)

One now substitutes the similarity variable and the functions into the equations (30)

and obtains⎧⎪⎪⎨
⎪⎪⎩
F′

1 +
F1
ζ

= 0,

F1
[
k + ζ 2

(
1 + RkMθ + RkF′

1
)]

+ kζ
[
RF2 (mMθζ − F2) − F′

1 + RζF′
3 − ζF′′

1
]
= 0,

F2
[
k + ζ 2 (1 + RkMθ)

]
+ RkζF1

[
F2 + ζ

(
F′

2 − mMθ
)] − kζF′

2 + ζF′′
2 = 0.

(35)

Integrating the first equation in the system (35) we get:

F1 =
g1
ζ
, (36)

where g1 is an arbitrary constant. From the second and the third equations in (35)

along with (36) we get:

F′
3 − F22

ζ
+mMθF2 − g21

ζ 3
+

(1 + RkMθ) g1
Rkζ

= 0, (37)

F2
[
k + ζ 2 (1 + RkMθ)

]
+ Rkg1

[
F2 + ζ

(
F′

2 − mMθ
)] − kζ

[
F′

2 + ζF′′
2
]
= 0, (38)
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by integrating equation (38) we obtain

F2 =
1
k
2

−
(
1+
Rg1
2

)
ζ

Rg1
2

(
−iζ

√
1
k + RMθ

)−
(
1+
Rg1
2

)

[
22+Rg1kg3 csc

[
1
2

πRg1

]
0F1 Regularized

(
−Rg1

2
,
ζ 2 (1 + RkMθ)

4k

)

− ζ 2

(
−iζ

√
1
k
+ RMθ

)
(1 + RkMθ)

[
g2 + g3 cot

[
1
2

πRg1

]]

0F1 Regularized
(
2 +

Rg1
2

,
ζ 2 (1 + RkMθ)

4k

)]

− RkmMθg1
ζ (1 + RkMθ)

[
−1+0F1

(
−Rg1

2
,
ζ 2 (1 + RkMθ)

4k

)]
,

(39)

and

F3 =
∫ (

F22
ζ

− mMθF2 +
g21
ζ 3

− (1 + RkMθ) g1
Rkζ

)
dζ , (40)

where g2 and g3 are arbitrary constants, and the function pFq and pFq Regularized are

defined as:

pFq
(
�a; �b; z

)
= HypergeometricPFQ

({a1, ..., ap}; {b1, ..., bq}; z)
=

∑∞
k=0

[
(a1)k...(ap)k

(b1)k...(bq)k

]
zk

k!
,

(41)

pFqRegularized =
pFq

�(b1)...�(bq)
. (42)

Then the solution of our problem in the original variables using symbolic computa-

tions is:

u(x, y, t) =
g1
ψ

cos[φ] +

⎧⎨
⎩1
k
2

−(1+
Rg1
2

)
ψ

Rg1
2

(
−iψ

√
1
k
+ RMθ

)−(1+
Rg1
2

)

[
22+Rg1kg3 csc[

1
2

πRg1] 0F1 Regularized
(

−Rg1
2

,
ψ2 (1 + RkMθ)

4k

)
−

ψ2

(
−iψ

√
1
k
+ RMθ

)
(1 + RkMθ)

[
g2 + g3 cot[

1
2

πRg1]
]

0F1 Regularized
(
2 +

Rg1
2

,
ψ2 (1 + RkMθ)

4k

)]
−

RkmMθg1
ψ(1 + RkMθ)

[
−1+0F1

(
−Rg1

2
,
ψ2 (1 + RkMθ)

4k

)]}
sin[φ]

v(x, y, t) =
g1
ψ

sin[φ] −
⎧⎨
⎩1
k
2

−(1+
Rg1
2

)
ψ

Rg1
2

(
−iψ

√
1
k
+ RMθ

)−(1+
Rg1
2

)

[
22+Rg1kg3 csc[

1
2

πRg1] 0F1 Regularized
(

−Rg1
2

,
ψ2 (1 + RkMθ)

4k

)
−

− ψ2

(
−iψ

√
1
k
+ RMθ

)
(1 + RkMθ)

[
g2 + g3 cot

[
1
2

πRg1

]]

0F1 Regularized
(
2 +

Rg1
2

,
ψ2 (1 + RkMθ)

4k

)]
−

RkmMθg1
ψ (1 + RkMθ)

[
−1+0F1(−Rg1

2
,
ψ2 (1 + RkMθ)

4k
)
]}

cos[φ],

p(x, y, t) =
∫ (

F22
ψ

− mMθF2 +
g21
ψ3

− (1 + RkMθ) g1
Rkψ

)
dψ + δ1(t),

(43)
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where ψ and j are the same in (29).

4 Solutions for hydro-magnetic Maxwell fluid through a porous medium:
(magmatic fluid) problem
One of the important applications in geology is the magmatic fluid. Consider a mag-

matic fluid as an incompressible hydro-magnetic Maxwell fluid through a porous med-

ium and a plate over it. The plate occupies the position y = 0, where the positive y

goes deep into the fluid beneath the plate. The relevant boundary conditions are of the

form:

u(x, 0, 0) = U0, u(x,∞, t) = 0,
∂u
∂y

(x, 0, 0) = 0,

v(x, 0, 0) = −V0, p(x,∞, 0) = P0, p(x, 0, 0) = Pa,
(44)

where U0 is the velocity of the plate, V0 is the magmatic fluid velocity penetrating

into the plate, P0 is the pressure deep in the magmatic fluid and Pa is the atmosphere

pressure. The expressions (27) for the translational symmetry case solution after using

conditions (44) give⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(x, y, t) =
U0

α2 − α1

[
α2 exp

[
α1(y +W t)

] − α1 exp
[
α2(y +W t)

]]
,

v(x, y, t) =
V0

α2 − α1

[
α2 exp

[
α1(y +W t)

] − α1 exp
[
α2(y +W t)

]]
,

p(x, y, t) =
mMθU0

α1α2(α2 − α1)

[−α2
1 exp

[
α2(y +W t)

]
+ α2

2 exp
[
α1(y +W t)

]]
−

[
p0 − pa +

mMθU0

α1α2
(α1 + α2)

]
exp

[
−(y +W t)

Cλ

]
+ P0,

(45)

where W = m0m1 - m2, a1 and a2 are the negative roots of Eq. (24).

5 Discussion of the magmatic fluid problem
This section deals with the graphics on the magmatic fluid. So, the interpretation of

the relaxation time l, Reynolds number R, Hartmann number M, Hall parameter m,

the time parameter t, and the permeability parameter k have been studied on the pres-

sure p, and the x and y components of the velocity distributions u and v.

Figures 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, and 14 describe the variations of the

velocity components u and v with the time t at y = 0 for different values of
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Figure 1 Variation of the dimensionless velocity distribution along the x-axis with t for different
values of permeability parameter k(U0 = V0 = 2; m0 = m1 = m2 = 2; y = 0; m = 0.5; M = 0.5; R =
0.5; l = 50).
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Figure 2 Variation of the dimensionless velocity distribution along the y-axis with t for different
values of permeability parameter k(U0 = V0 = 2; m0 = m1 = m2 = 2; y = 0; m = 0.5; M = 0.5; R =
0.5; l = 50).
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Figure 3 Variation of the dimensionless velocity distribution along the x-axis with t for different
values of Hall parameter m(U0 = V0 = 2; y = 0; m0 = m1 = m2 = 2;k = 0.05; M = 0.5; R = 0.5; l = 50).
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Figure 4 Variation of the dimensionless velocity distribution along the y-axis with t for different
values of Hall parameter m(U0 = V0 = 2; y = 0; m0 = m1 = m2 = 2;k = 0.05; M = 0.5; R = 0.5; l = 50).
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Figure 5 Variation of the dimensionless velocity distribution along the x-axis with t for different
values of relaxation time l(U0 = V0 = 2; y = 0; m0 = m1 = m2 = 2;k = 0.05; M = 0.5; R = 0.5; m = 0.5).
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Figure 6 Variation of the dimensionless velocity distribution along the y-axis with t for different
values of relaxation time l(U0 = V0 = 2; y = 0; m0 = m1 = m2 = 2; k = 0.05; M = 0.5; R = 0.5; m = 0.5).
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Figure 7 Variation of the dimensionless velocity distribution along the x-axis with t for different
values of Reynolds number R(U0 = V0 = 2; y = 0; m = 0.5; m0 = m1 = m2 = 2; k = 0.05; M = 0.5; l = 50).
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Figure 8 Variation of the dimensionless velocity distribution along the y-axis with t for different
values of Reynolds number R(U0 = V0 = 2; y = 0; m = 0.5; m0 = m1 = m2 = 2; k = 0.05; M = 0.5; l = 50).
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Figure 9 Variation of the dimensionless velocity distribution along the x-axis with t for different values
of Hartmann number M(U0 = V0 = 2; m0 = m1 = m2 = 2; y = 0; k = 0.05; R = 0.5; l = 50; m = 0.5).
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Figure 10 Variation of the dimensionless velocity distribution along the y-axis with t for different
values of Hartmann number M(U0 = V0 = 2; m0 = m1 = m2 = 2; y = 0; k = 0.05; R = 0.5; l = 50; m = 0.5).
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Figure 11 Variation of the dimensionless velocity distribution along the x-axis with t for different
values y(U0 = V0 = 2; m0 = m1 = m2 = 2; M = 0.5; k = 0.05; R = 0.5; l = 50; m = 0.5).
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Figure 12 Variation of the dimensionless velocity distribution along the y-axis with t for different
values y(U0 = V0 = 2; m0 = m1 = m2 = 2; M = 2; k = 0.05; R = 50; l = 50; m = 0.5).

0 2 4 6 8 10

1

0

1

2

3

4

t

u
t

U0 4

U0 3

U0 2

U0 1

Figure 13 Variation of the dimensionless velocity distribution along the x-axis with t for different
values of the velocity U0(V0 = 2; y = 0; m0 = m1 = m2 = 2; k = 0.05; R = 0.5; l = 50; m = 0.5; M = 0.5).
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permeability parameter k, Hall parameter m, the relaxation time l, Reynolds number R,

and Hartmann number M. For all of these figures at y = 0 we note that as the time t

increases the variation of each component of the velocity decreases and vanishes for

large values of t. This is expected, where for small values of t and at the magma plate

(y = 0), the variation of the velocity components is obvious. Also, the gap between the

curves for small values of t at the magma plate increases than those as t increases.

Figures 1 and 2 show that as the permeability parameter k increases the horizontal

velocity component u increases, while the vertical velocity component v decreases. Fig-

ures 3 and 4 illustrate the variation of the velocity components u and v with the Hall

parameter m, which indicate that for small values of t (or at initial values of t) the

curves are the same with no obvious different which for t > 2, the gap between the

curves appears. Also, we can see that curves with small values of m (m = 0, 0.5) are

vanishing rabidly than those for (m = 1,1.5) i.e., as the Hall parameter m increases the

disturbance of the velocity components increase. (decreasing the number of density

electrons or the electronic charges).

Figures 5 and 6 illustrate the variations of u and v with t for different values of the

relaxation time l, which show that for small values l the disturbance in u and v will

vanish rapidly than those as l increases. Also, the figures show that the disturbance in

u and v for a Newtonian fluid less than those for a Non-Newtonian fluid in the case of

magma flow.

Figures 7 and 8 show that the variation with the Reynolds number R. As R increases

the velocity components u and v increase. Figures 9 and 10 show that as the Hartmann

number M increases the velocity components u and v decrease, i.e., the fluid moves as

a block and takes a constant value for large values of M. Figures 11 and 12 illustrate

the variation of u and v with t for different values of the y axis, which show that the

velocity components take the initial values of the magma plate at y = 0 and the velo-

city components decreases as y increases. Figures 13 and 14 describe the variations of

u and v with t for different values of U0 and V0 (velocities of the magma plate), the fig-

ures show that the gab between the curves decreases with time and finally vanishes

and for certain values of t the velocity components u and v equal to zero. Also, the

magnitudes of u and v increase with increasing U0 and V0.

Figures 15, 16, 17, 18, 19, and 20 illustrate the variation of the pressure p with y for

different values of k, m, l, R, M, and t. We can see that the pressure decreases as the
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Figure 14 Variation of the dimensionless velocity distribution along the y-axis with t for different
values of magmatic velocity V0(U0 = 2; y = 0; m0 = m1 = m2 = 2; k = 0.05; R = 0.5; l = 50; m = 0.5;
M = 0.5).
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Figure 15 Variation of the dimensionless pressure distribution with y for different values of
permeability parameter k(U0 = V0 = 2; p0 = 5; pa = 1; m0 = m1 = m2 = 2; t = 0; m = 0.5; M = 2; R =
50; l = 50).
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Figure 16 Variation of the dimensionless pressure distribution with y for different values of Hall
parameter m(U0 = V0 = 2; m0 = m1 = m2 = 2; t = 0; k = 0.5; M = 2; R = 50; l = 50; p0 = 5;pa = 1).
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Figure 17 Variation of the dimensionless pressure distribution with y for different values of
relaxation time l(U0 = V0 = 2; m0 = m1 = m2 = 2; t = 0; k = 0.5; M = 2; R = 50; m = 0.5; p0 = 5; pa = 1).
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Figure 18 Variation of the dimensionless pressure distribution with y for different values of Reynolds
number R(U0 = V0= 2; m0= m1= m2 = 2; t = 0; k = 0.5; M = 2; l = 50; m = 0.5; p0 = 5; pa = 1).
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permeability parameter k increases and take a constant value for large values of k.

However an inverse effective behavior for p with the Hartmann number M is shown in

Figure 19. Figures 16 and 17 describe the variation of p with the Hall parameter m and

the relaxation time l, which shows that as y increases the pressure increases and the

gabs between the curves are more obvious near to the magma plate. Also, the pressure

takes the same values of the pressure deep in the magmatic fluid P0 for the large

values of y (as we move deep into the fluid) and the same effect is shown with l. The
pressure decreases as the Reynolds number R increases as shown in Figure 18. Figure

20 shows the variation of the pressure with y for different values of t. We can see that

the pressure increases as t increases for small values of y.

Other cases of symmetry will be considered for other boundary value problems else

where for other applications.

6 Concluding remarks
The significant features of Lie group analysis for hydro-magnetic Maxwell fluid

through a porous medium have been presented. Similarities solutions are obtained and

applied to an important phenomena in geology, which is the magmatic fluid. The main

points have been summarized as follows:

•As the Hall parameter m increases the disturbances of the velocity components

are increase.
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Figure 19 Variation of the dimensionless pressure distribution with y for different values of
Hartmann number M(U0 = V0 = 2; m0 = m1 = m2 = 2; t = 0; k = 0.5; R = 50; l = 50; m = 0.5; p0 = 5;
pa = 1).
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Figure 20 Variation of the dimensionless pressure distribution with y for different values of time t
(U0 = V0 = 2; m0 = m1 = m2 = 2; M = 2; k = 0.5; R = 50; l = 50; m = 0.5; p0 = 5; pa = 1; y = 0).
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•The disturbances in the fluid velocity components for a Newtonian fluid are less

than those for a non-Newtonian fluid (magmatic fluid)

•The magmatic fluid moves as a block for large values of the Hartmann number M.

•The pressure near to the magma plate is higher for a magneto-magma flow than

that for a magma flow without a magnetic field. Also, this pressure for a porous

medium is less than that for a medium with high permeability.

•The pressure increase near to the magma plate and take the constant value of the

pressure deep in the magmatic fluid for large values of y.
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